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Based on the wavelet packet decomposition (WPD) and artificial neural network (ANN) methods, this paper
presents a new technique for auditory roughness evaluation (ARE) of nonstationary vehicle noise, named WPD-
ANN-ARE model. According to sound transfer and perception by the human auditory system, the noise roughness
of a sample vehicle under different conditions of constant speed, acceleration, and braking are calculated. After
comparisons by the time-frequency analysis techniques in common use, a WPD model with approximately twenty-
one critical bands, which is specially designed by considering the auditory perception characteristics of human,
is proposed for envelope feature extraction of vehicle noise. Taking the WPD extracted features as inputs and
the calculated roughnesses as outputs, a back-propagation ANN with one hidden layer is trained and established
for ARE of nonstationary vehicle noises. The verification results show that errors of the time-varying roughness
calculated from the WPD-ANN-ARE are below 8.56 percent, which suggest a very good accuracy of the newly
proposed ARE model. In applications, the WPD-ANN-ARE can be directly used in ARE of vehicle noises. And
the modelling approach presented in this paper may be extended to other sound related fields for sound quality
evaluation (SQE) in engineering.

1. INTRODUCTION

Currently, traffic noise is a major source of noise pollution
especially in urban areas, which has attracted more public at-
tention.1 Because of the physiological and psychological ef-
fects of noise on drivers, this would increase the risk of traf-
fic accidents.1 Considerable research effort has been put in
sound quality evaluation (SQE) of vehicle noise in the past few
decades.2–4 The sound quality of a vehicle, as one of the im-
portant indices in ride comfort evaluation, has become a key
consideration of car buyers and manufacturers.

For auditory characteristics, it is different in the physics and
psychoacoustics, due to the human hearing process. Descrip-
tion of the sound quality is multidimensional. Some psychoa-
coustic indices, such as A-weighted SPL, loudness, sharpness,
roughness, fluctuation strength, tonality, annoyance, pleasant-
ness, etc., were proposed to quantitatively relate sound stim-
uli to human sensations.5–7 In the SQE engineering, it has
been found that the A-weighted SPL is not a perfect method
because the sound masking effects are ignored. Based on the
equal-loudness-contours, Zwicker proposed a methodology for
calculating the specific loudness, and thereby the loudness and
sharpness models. The Zwicker loudness model has been used
in the standard ISO 532B,8 and the sharpness model has not
yet been internationally standardized but has been accepted by
the German national standard DIN 45692.9

Auditory roughness is a complex effect which quantifies the
perception of rapid amplitude modulation of a sound signal.
The unit of measure is the asper.5 One asper is defined as
the roughness produced by a 1000 Hz tone of 60 dB which
is 100% amplitude modulated at 70 Hz. As an important psy-
choacoustic parameter, the roughness has been widely studied
and discussed. Helmholtz first presented the concept of au-

ditory roughness.10 Hearing tests showed that the amplitude
modulated sounds with modulation frequencies from 20 Hz to
70 Hz may generate roughness.11 Subsequently, many mathe-
matical models for quantitative calculation of auditory rough-
ness were proposed. Some of them were developed by consid-
ering the modulation frequency and index, the excitation enve-
lope and level differential, and the autocorrelations in critical
bands of a sound.7, 12–14 The Aures model has been regarded as
a flexible method in auditory roughness calculation.7 Thus, the
improved versions of the Aures model were developed by con-
sidering the effects of phase differences and carrier frequencies
in the critical bands.15, 16 Hoeldrich and Pflueger17 developed
a roughness model to evaluate vehicle interior noise using pa-
rameters that could be adjusted for different modulation pa-
rameters. The traditional roughness models mainly differ in
the methods used to transform the calculated excitations in the
critical bands into the roughness. In practice, these methods
are difficult to apply because the excitation level differentials
in the critical bands are not easy to obtain from real noise sig-
nals.

The psychoacoustical indices have been widely considered
in quality evaluation of industrial products. In view of the vehi-
cle noise SQE, Hashimoto18 studied a psychoacoustical boom-
ing index for both stationary and nonstationary interior noises,
which were quantified using a weighting function from the
subjective response to sensation level. The rumbling noise of a
vehicle below 300 Hz was investigated by Lee,19 who pointed
out that the human feeling on the rumbling noise mainly de-
pended on the roughness and loudness indices. Due to the
nonlinear perception feature of human auditory system, it is
sometimes impossible to find an exact physical model to de-
scribe the perception response for all people. Thus, follow-
ing the human hearing process, some SQE methods based on
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virtual human “ear” and “brain” have been recently proposed
for SQE of vehicle noises. The time-frequency analysis al-
gorithms, such as the short-time Fourier transform (STFT),
discrete wavelet transform (DWT), wavelet packet analysis
(WPA) and the Wigner-Ville distributions (WVD), were intro-
duced into SQE engineering for sound feature extraction (vir-
tual “ear”) of the impact and nonstationary vehicle noises.20–22

Originally used for signal processing, wavelet techniques have
been developed and successfully applied in structure analy-
sis, diagnosis of crack faults and wave propagation in struc-
tures.39–44 Due to good time-frequency characteristics, the
wavelet-based algorithms are usually considered for SQE of
both stationary and nonstationary noises.

It has been found that, the wavelet band filters with proper
sampling rates can be well matched to the critical filter bank in
the human auditory system. To classify sound patterns, some
techniques based on the artificial neural network (ANN) and
the support vector machine (SVM) methods (virtual “brain”)
were used for predicting the loudness, sharpness and annoy-
ance indices of vehicle noise.23–25 Compared with the loud-
ness and sharpness indices, the roughness of a sound is more
difficult in the feature extraction and perception modelling, be-
cause there exists hardly any correlation between the subjec-
tive impressions of test persons and available roughness pa-
rameters.17 To recognize the patterns of auditory roughness,
the ANN used in the loudness and sharpness predictions needs
to be reconstructed and modified. From the previous litera-
tures, it has been found that roughness, which has a big con-
tribution to the perceived annoyance of vehicle noise, cannot
be neglected.26 Currently, there is not any virtual “ear-brain”
based approach for auditory roughness prediction. This pa-
per attempts to solve the above key issues and develop a novel
model for roughness evaluation of vehicle noise.

Based on the above discussions, we concluded that the in-
situ methods for roughness calculations remain controversial
and cannot garner enough public acceptances to be used in
standards. Thus, it is both necessary and useful to develop a
new methodology to calculate the auditory roughness. In this
paper, a new roughness model is presented by combining the
WPD and ANN techniques and evaluates the vehicle interior
noise. The modulation index of a sound signal is used instead
of the statistical parameters. The WPD-ANN-ARE model is
programmed using Matlab and validated by tests. The conclu-
sion is that the developed method is shown to be both accurate
and effective for the ARE of vehicle noise, which is beneficial
for acoustical design and improvement in vehicle engineering.

2. ESTABLISHMENT OF VEHICLE NOISE
DATABASE

Sample vehicle noises with a 10 seconds signal frame were
measured with the LMS.testlab data acquisition system at the
sampling rate of 44100 Hz. The experimental conditions were
elaborately arranged, following the measurement method for
vehicle interior noise in the standard ISO 5128.28 A dry asphalt
four-lane two-way test road was selected. Around the test site,
there was no sound reflecting object within 50 meters. The
weather was clear with a temperature of 26◦C with no wind
when the test were carried on. Meanwhile, the windows were
closed; the air conditioner and all electronic equipment in the
vehicles were turned off. Two models of Volkswagen, Lavida

Figure 1. The measured vehicle noise signals and their spectra: (a) accelera-
tion from 50 km/h to 120 km/h, (b) braking from 80 km/h to 0 km/h and (c)
constant speed 70 km/h.

and Golf, Sedan with 1.6L four-cylinder gasoline engine, were
used in the experiments. To meet the requirements of signal
number in ARE modelling, eleven vehicle operating conditions
were set as constant speed of 30, 40, 50, 60, 70, 80, 90 and
100 km/h, emergency braking to a stop from 60 and 80 km/h,
and full throttle acceleration from 50 km/h to 120 km/h. Type
4189-A-021 microphones were mounted near to the passen-
ger’s right and left ears, according to the GB/T 18697 stan-
dard. Under the working conditions, the noise signals were
measured and saved in “.mat” and “.wav” formats respectively.
The signal-to-noise ratios of the measured signals were above
20 dB, due to well-controlled background noises from the test
site and the measurement system. The noise sample at each
point with 5 seconds signal frame was selected from the three
times measured results by hearing tests. As a preparation for
the ARE modelling, a database of the measured interior noises
is established. There are 132 noise signal frames (each vehicle:
11 working conditions by 6 channels) of the sample vehicles
included in the database, which is used for training and verifi-
cation of the WPD-ANN-ARE model in the following text.

Figure 1 gives the vehicle noises measured under the work-
ing conditions of acceleration from 50 km/h to 120 km/h, brak-
ing from 80 km/h to 0 km/h and constant speed 70 km/h. It can
be seen from their spectra that, regardless of the working con-
ditions, the vehicle noise energy is mainly distributed in a low-
frequency range below 400 Hz. The maximum energy com-
ponents of the signals are below 50 Hz, which may be caused
by vibration of the vehicle body. The energy components be-
tween 80 and 150 Hz are from the second order vibration of
the engine. The interior noise energies above 1000 Hz are very
small and can almost be neglected.

3. AUDITORY ROUGHNESS CALCULATION

3.1. Human Auditory-Perception Process
In psychoacoustics, it has been found that human auditory

perception is generated by vibrations from the stapes, which
stimulate different parts of the basilar membrane in the inner
ear, and thereby the auditory nerve. The auditory perception
process with nonlinear filtering properties in the frequency do-
main can be described by the critical bands.28 For a given fre-
quency, the critical band is the smallest band of frequencies
around it which activate the same part of the basilar mem-
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Figure 2. Procedure for roughness calculation of a vehicle noise.

brane. The critical bandwidth represents the human ear’s re-
solving power for simultaneous tones or partials. In this paper,
an empirical formula is used to convert one-third octave centre
frequency fc (kHz) into critical band rate z (Bark),29

z(fc) =

{
11.82 arctan(1.21fc) fc ≤ 1.5

5 ln(fc/1.5) + 12.61 fc > 1.5
. (1)

The critical bandwidths of the Bark scales are defined as
∆fG = 100 Hz (if fc < 0.5 kHz), otherwise ∆fG = 1/5fc.

In the SQE field, psychoacoustic parameters such as the
weighted SPLs, loudness, sharpness, roughness, fluctuation
strength, tonality and articulation index, have been discussed
in the past few decades. It has been found that, for a vehicle
noise, total effects of the loudness, sharpness and roughness on
sound quality are above 90 percent.29 This paper focuses only
on the study of the roughness index for vehicle noise evalua-
tion.

3.2. Roughness Index Calculation
In this paper, an improved Aures model,7 which considered

the effects of transfer functions of the human ear, modula-
tion index, modulation and carrier frequencies of a signal, is
slightly modified and used for auditory roughness calculation.
A procedure for roughness computation programming is given
in Figure 2. Following the steps in Figure 2, the total roughness
of a noise signal can be obtained.

Step 1: Signal partition and frequency weighting. Ac-
cording to the sound masking effects in the time domain, a
noise signal is first cut into a set of successive frames with
length of 50ms for short-time ARE. The fast Fourier transform
(FFT) is performed for calculating the one-third octave SPLs
of each frame by using the Blackman window. Considering
the structural effects of human ear, the sound transmission co-
efficients6 are weighted on the signal SPLs, before the signals
enter into the inner ear.

Step 2: Calculation of sound excitation level in the Bark
domain. The intensity quantity of a sound is based on critical

bandwidths and is therefore a subjective representation of fre-
quency. Sound intensity within a critical band can be expressed
as

IG(f) =

∫ f+0.5∆fG(f)

f−0.5∆fG(f)

dI
df
df. (2)

Accordingly, sound intensity level (SIL) LG (dB) may be
defined as

LG = 10 log
IG(f)

I0(f)
, (3)

where, f is the sound frequency, I0 is the intensity of a refer-
ence sound, I0 = 10−12 W/m2. The maximum SIL is LG in
a critical band. The frequency components in each frame are
transformed into excitation patterns by overlapping the critical
band filters. The calculated sound excitation levels in 24 chan-
nels (bands) are transferred into specific excitation time signal
ei(t) by the inverse fast Fourier transform (IFFT).

Step 3: Calculation of modulation indices. The cubic
spline interpolation method is used for extracting the amplitude
envelopes of ei(t). The obtained signal is fed to the weighting
function Hi of modulation frequency.15 The modulated signal
emi(t) is obtained. The modulation index in the ith channel
mi can be defined as

mi =
rmsemi(t)

|ei(t)|
, (4)

where, rmsemi(t) is the root mean square (RMS) of emi(t),
and |ei(t)| is RMS value of the signal ei(t).

Step 4: Specific and total roughness calculations. A phase
impact factor ci representing effects of the (i− 1) and (i+ 1)
channels on the ith channel is defined as

ci = ci−1 × ci+1, (5)

where, ci−1 and ci+1 are the correlation coefficients of emi(t)
with those in the (i − 1)th and (i + 1)th channels. Thus, the
specific and total values of roughness can be calculated by and
in the ith channel may be shown as

Ri = (gi × ci ×mi)
2, (6)

R = 0.25

24∑
i=1

Ri, (7)

where, Ri is the specific roughness in the ith channel, gi is the
weighting coefficient of carrier frequency, and R is the total
roughness.

4. FEATURE EXTRACTION

Vehicle noises are typically nonstationary signals, such as
the braking or the acceleration noises. Their features should
be represented in time and frequency domains. In this pa-
per, the extracted feature matrices of the vehicle noises will be
used for ANN training and verification, which needs the ma-
trix spaces to be as small as possible. The frequency spectral
analysis and continuous time-frequency representations, such
as the continuous wavelet transformm (WT), WVD and its im-
proved versions, cannot satisfy this requirement.21 The WPD
and Hilbert-Huang Transform (HHT) approaches, which have
been frequently mentioned in the fault diagnosis and sound
quality fields,20, 30, 31 are considered and compared for feature
extraction of the low-frequency acceleration vehicle noise in
this paper.
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4.1. Wavelet Packet Decomposition
The wavelet transform is the process of decomposing a sig-

nal using wavelets.33 A family of orthogonal functions as

Ψa,b(t) = |a|−1/2ψ[(t− b)/a]a, b ∈ R, a 6= 0 (8)

are generated from a wavelet function ψ(t) by dilation and
translation operations, which are governed by the scale fac-
tor a and shift factor b. Setting a = a−j0 and b = a−j0 kb0
(j, k ∈ Z, a0 > 1, b0 > 0), the wavelet function becomes
ψj,k(t) = a

j/2
0 ψ(aj0t − nb0). If a0 = 2, b0 = 1, the discrete

wavelet transform (DWT) and its reconstructed version of a
signal x(t) ∈ L2(R) are defined as,33

Wx(a, b) = Wx(2−j , 2−jk)

= 2j
∫ +∞

−∞
ψ(2jt− k)x(t)dt, (9)

x(t) =
∑
j

∑
k

Wx(2−j , 2−jk)ψ(2jt− k). (10)

Based on the DWT, the WPD was derived using the defi-
nitions of the scaling function φ(t) and the wavelet function
ψ(t). Let u0(t) = φ(t), u0(t) = ψ(t), and define:

u2n(t) =
√

2
∑
k

hkun(2t− k), (11)

u2n+1(t) =
√

2
∑
k

gkun(2t− k) (12)

These recursive equations specify a wavelet packet
{un(t)}, where hk and gk satisfy the equations∑
hn−2khn−2m = δk,m, (

∑
hn =

√
2), gn = (−1)nh1−n

and
{
uj,m,n(t) = 2j/2um(2jt−m)

}
, where j, m, and

n are the scale, translation, and oscillation parameters
j,m ∈ Z, n ∈ Z+ . The decomposed coefficients of the sig-
nal x(t) is Cj,n =

{
Cj,n

m

}
m∈Z , where Cj,n

m =< x, uj,m,n >.
Thus, WPD of the signal can be obtained by,

Cj,2n
m =

∞∑
k=−∞

h∗2m−kC
j+1,n
k , (13)

Cj,2n+1
m =

∞∑
k=−∞

g∗2m−kC
j+1,n
k . (14)

Conversely, the wavelet packet reconstruction is expressed
as the following,

Cj+1,n
m =

∞∑
k=−∞

h2m−kC
j,2n
k +

∞∑
k=−∞

g2m−kC
j,2n+1
k . (15)

4.2. Hilbert-Huang Transform
The HHT, which is combined by the empirical mode decom-

position (EMD) and the Hilbert spectral analysis, is an adaptive
time-frequency analysis method for analysing data in nonlin-
ear and nonstationary processes. The HHT kernel is the EMD
approach with which a signal can be decomposed into intrin-
sic mode functions (IMFs). The IMFs yield instantaneous fre-
quencies as functions of time that give an identification of sig-
nal components, thereby a signal representation of the HHT in

the time and frequency domains. To obtain the instantaneous
frequency characteristics of a signal, the IMFs are defined as
functions having the same numbers of zero-crossing and ex-
trema and the symmetric envelopes (with respect to time axis)
defined by the local maxima and minima. To extract the IMFs
from a complex signal in engineering, the EMD needs to be
performed. After EMD, the signal x(t) can be expressed as,

x(t) =

n∑
i=1

ci + rn, (16)

where, ci is the ith decomposed IMF of the signal x(t), rn is
the residual signal, which occupies very little energy of the sig-
nal, can be ignored. Taking the Hilbert transform on both sides
of Eq. 16, the Hilbert spectrumH(ω, t) may be determined by,

H(ω, t) = Re
n∑

i=1

ai(t)e
j
∫

ωi(t)dt, (17)

where, Re is the operator for the real part, ai(t) and ωi(t) are
the functions of the amplitude and the instantaneous frequency,
respectively. H(ω, t) can describe the signal amplitude vary-
ing on a time-frequency plane. The HHT marginal spectrum
h(ω) can be defined as,

h(ω) =

∫ T

0

H(ω, t)dt, (18)

where, T is the length of the signal x(t), h(ω) reflects the sig-
nal amplitude changing with frequency. The instantaneous fre-
quency of the IMFs can localize the signal characteristics in
the time-frequency domain.

4.3. Comparison of WPD and HHT
As an example, the 50 km/h to 120 km/h acceleration

noise signal was selected to compare the WPD and HHT.
As seen in Figure 1, the energy of vehicle noise was con-
centrated in the low-frequency range below 400 Hz. Thus,
for a clearer comparison, the sample signal was first pre-
processed by a resampling frequency of 882 Hz, and then
filtered by using a high-pass filter with a cutoff frequency
of 20 Hz to match the threshold of the human ear.5 A 2-
level WPD and a 9-level HHT were performed on the pre-
processed acceleration noise signal, respectively, using the
specifically written Matlab programs. In the WPD, the
Daubechies wavelet db35 was adopted since its characteris-
tics are closer to the critical bands.34 In the HHT, the IMFs of
the signal were calculated by using the EMD. The decom-
posed results are shown in Figs. 3 and 4. Figure 3 shows
the WPD component signals and their corresponding spec-
tra of the acceleration vehicle noise. Through the 2-level
WPD, the original signal was decomposed into four com-
ponents with approximate averaged frequency bandwidths
of 100 Hz, which is very close to the critical bands of hu-
man hearing in the low frequencies below 400 Hz. After the
HHT, eight IMFs and a residual component of the noise sig-
nal were obtained by EMD. The first four IMFs with nearly
all energy of the original sound signal and their spectra are
shown in Figure 4. It can be seen that the frequency band-
widths of the first, second, third and the fourth IMFs are
around 100 to 300 Hz, 50 to 150 Hz, 20 to 50 Hz and 20
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Figure 3. The WPD component signals of a vehicle acceleration noise and
their spectra.

Figure 4. The IMF components calculated by EMD of a vehicle acceleration
noise and their spectra.

to 30 Hz, respectively. Frequency overlaps have occurred
among the IMF components. It means that the HHT can-
not be used to define the critical bands according to the
auditory characteristics of human. The EMD is an adap-
tive method according to the signal features, which led to the
random frequency ranges of the IMFs. It can be seen from Fig-
ure 3 that, comparing with the HHT, the WPD can decompose
a signal into multiple levels and each reconstructed sub-
signal has a definite relative frequency band. This provides
the possibility to specially design for matching the critical
bands in the human auditory system. Therefore, the WPD
is applied in feature extraction of the nonstationary vehicle
noise in this paper.

4.4. Feature Extraction for Roughness
Modelling

Correct feature extraction of vehicle noise directly affects
the accuracy of a sound quality prediction. The feature repre-
sentation of a sound signal often involves a significant amount
of redundancy. To maintain the small size of the network in-
puts in the following section, it is necessary to reduce the re-
dundant information in the sound feature data in both the time

Figure 5. A specially designed wavelet tree for decomposition of vehicle noise
signal.

Table 1. Node combinations in the WPD for frequency range approximation
to critical bands.

Critical Selected nodes Approximate Corresponding
band rate z in the wavelet frequency ranges frequency ranges

(Bark) tree of WPD of the WPD (Hz) in one-third octave
analysis (Hz)

1 (8,0) 20–86 22–90
2 (8,1) 86–172 90–180
3 (8,2) 172–258 180–280
4 (8,3) 258–344 280–355
5 (8,4) 344–430 355–447
6 (8,5),(9,12) 430–559 447–562
7 (9,13),(8.7) 559–689 562–708
8 (7,4) 689–861 708–891
9 (7,5),(8,12) 861–1119 891–1120
10 (8,13),(7,7) 1119–1378 1120–1410
11 (6,4) 1378–1722 1410–1780
12 (6,5),(7,12) 1722–2239 1780–2240
13 (7,13),(6,7) 2239–2842 2240–2820
14 (5,4) 2842–3445 2820–3550
15 (5,5),(6,12) 3445–4478 3550–4470
16 (6,13),(5,7) 4478–5512 4470–5620
17 (4,4) 5512–6890 5620–7080
18 (4,5),(5 12) 6890–8957 7080–8910
19 (5 13),(4,7) 8957–11025 8910–11200
20 (3,4),(6,40) 11025–14126 11200–14100
21 (6,41),(5,21) 14126–17916 14100–17800

(4,11),(4,12)

and frequency domains. Considering the sound filtering and
masking effects of human auditory system, an incomplete 9-
level WPD model with 21 approximate critical bands was es-
tablished in the frequency domain and a 50 ms time interval
was selected in the time domain. According to the sampling
rate of the signal and the Zwicker model in which the one-third
octaves were used instead of the critical bands, the incomplete
wavelet tree was specially designed and shown in Figure 5.
Except for the nodes (4, 13) and (3, 7), the end nodes of all
WPD levels in the wavelet tree were used to construct the ap-
proximate critical bands. The WPD end-node combinations
and their corresponding frequency ranges are listed in Table 1.

It should be mentioned that, to simplify the wavelet tree,
the measured signals were first resampled at a rate of
S = 22050 Hz and passed through a high-pass filter with
a cutoff frequency of 20 Hz, because hearing threshold of
human is from 20 Hz to 20 kHz.5 The 9-level WPD with
Daubechies wavelet ‘db35’ with filter length of 70 was per-
formed by the Mallat algorithm. A set of wavelet band-pass
filters, combined by low- and high-pass filters with differ-
ent sampling rates, was created.34 Thus, if the WPD nodes
were properly combined, the wavelet band-pass filters can
be matched to the one-third octaves in the Zwicker model.
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For the N -level WPD, a wavelet filter bank with 2N − 1
band-pass filters may be created by the Mallat algorithm,
which is combined by 2N pairs of low- and high-pass fil-
ters. Through the Mallat algorithm, the ‘db35’ quadrature
mirror filters H , h and G, g were used for signal decompo-
sition and reconstruction, where H , G and h, g denote the
low- and high-pass filters, respectively. For a sub-signal
decomposition at node (n, m) in the wavelet tree, the fre-
quency (2m+1)S/2n+1 Hz was defined as the upper cutoff
frequency of H , as well as the lower cutoff frequency of G.
Inversely, the sub-signal should be reconstructed by the fil-
ters h and g. The approximate frequency ranges in Table 1
were defined by the cutoff frequencies of the wavelet band-
pass filters. For example, the 21th critical band was com-
bined by the nodes (6, 41), (5, 21), (4, 11) and (4, 12). The
lower and upper frequencies of the wavelet band-pass filter,
which consists of the high-pass filter at node (5, 20) and the
low-pass filter at node (3, 6) in Figure 5, are very close to
those of the corresponding one-third octave in the Zwicker
model, as seen in Table 1. In the implementation, the re-
sampled signals were fed to the WPD filter bank, which
should actually be completed by applying the 9-level WPD
to the resampled interior noise. The noise component in the
21th critical band could be finally obtained by summing the
reconstructed sub-signals at the related four nodes. The
Bark scale serial number is defined as 1 to 24. The scales
(critical bands) 22, 23, and 24 in high frequencies were ig-
nored, since vehicle noise is in a lower frequency range.
Considering the sound masking effects of human auditory
system in the time domain, very short duration backward
masking may be neglected, and the forward masking grad-
ually attenuates in the form of an exponential which ap-
proaches zero at 50 ms.16 Accordingly, in this paper, the
interval 50 ms was selected and applied to reduce the re-
dundant information in the time domain sound signal.

Auditory roughness is defined as the human perception to
the low-frequency envelope fluctuations of a sound signal.
There is a bandpass relationship between the roughness and
modulation sound frequency. Thus, the modulation index
m was selected as a representation of roughness feature of
sounds. A scheme of roughness feature extraction designed
for vehicle noises is shown in Figure 6. Firstly, a vehicle noise
was decomposed by using the WPD in Figure 5, and the de-
composed 21 sub-signals were reconstructed and combined ac-
cording to the definitions in Table 1. The 21 sub-signals were
numbered by i, where i equals 1, 2, 3 . . . 21. In the time di-
mension, the sub-signals were divided into R frames with a
50 ms interval. In the jth time interval, following Step 2 in
the procedure of roughness calculation in Figure 2, the cubic
spline interpolation was used to extract the signal envelopes
eij(t). As an example, the envelope of the first sub-signal
of a vehicle noise is shown in Figure 7. The extracted signal
envelopes eij(t) were further filtered by the weighting func-
tions Hi of modulation frequency shown in Figure 8, thereby
emij(t). Using Eq. 4, the modulation indexmij in the ith band
can be calculated. It was finally obtained a roughness feature
matrix with a size of 21 by R for each of the noise signals. An
example roughness feature matrix is given in Table 2. It can
be seen from the extracted matrix that the roughness feature
quantities of a vehicle noise fluctuate with both the time and
frequency, and mainly distributes in the low Bark scales.

Figure 6. A designed scheme for roughness feature extraction of vehicle noise.

Figure 7. The envelope of the first sub-signal extracted by using the cubic
spline interpolation method.

5. WPD-ANN-ARE MODELING
AND VERIFICATION

5.1. Artificial Neural Network with
Back-Propagation Algorithm

The ANN, a mathematical model inspired by biological neu-
ral networks, is composed of many interconnected artificial
neurons operating in parallel. The multilayered feedback net-
work is commonly used in engineering.

The ability to reproduce arbitrary nonlinear functions of in-
put makes them suitable for complex pattern recognition tasks.
In this work, a feed-forward ANN with three-layer perceptron
was adopted to project the input signal features to the output
roughness patterns of vehicle noises, as shown in Figure 9. The
inputs are multiplied by related weights and summed, and then
passed through a sigmoid function. The sample xk is fed to
the network and produces an output y. The input pattern xk is

Figure 8. The weighting filters of modulation frequency in different critical
bands.
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Table 2. The extracted roughness feature matrix of a vehicle noise in time-frequency domain.
XXXXXXXXz(Bark)

Time
0–50 ms 50–100 ms 100–150 ms 150–200 ms 200–250 ms 250–300 ms 300–350 ms

1 0.534047 0.237358 0.588959 0.519934 0.285207 0.179029 0.295678
2 0.202420 0.239060 0.347963 0.271142 0.177252 0.180797 0.230112
3 0.299086 0.297144 0.296830 0.323990 0.285190 0.263383 0.294479
4 0.152962 0.214216 0.266093 0.260634 0.156341 0.151784 0.187425
5 0.307120 0.324465 0.207618 0.157338 0.231361 0.231824 0.220478
6 0.176511 0.264153 0.292245 0.244347 0.255013 0.209269 0.227302
7 0.231546 0.223315 0.183365 0.162846 0.152775 0.194528 0.220136
8 0.238628 0.190091 0.165153 0.156044 0.179326 0.164027 0.194636
9 0.231651 0.219152 0.164951 0.154834 0.252755 0.277968 0.244536
10 0.268147 0.168014 0.093789 0.135045 0.195849 0.159032 0.136347
11 0.469105 0.163835 0.158002 0.155309 0.119621 0.160984 0.138859
12 0.257936 0.139854 0.186358 0.243770 0.187239 0.133022 0.159618
13 0.191223 0.122869 0.135978 0.174366 0.192444 0.219321 0.156835
14 0.239072 0.096717 0.066766 0.085774 0.100432 0.093885 0.082957
15 0.280601 0.139310 0.131546 0.097453 0.085003 0.089809 0.104920
16 0.326468 0.105770 0.115106 0.184955 0.171456 0.105484 0.111367
17 0.154201 0.087618 0.092174 0.107216 0.097012 0.089157 0.063544
18 0.243163 0.092721 0.081257 0.075249 0.077262 0.092905 0.125949
19 0.230395 0.085125 0.102897 0.106736 0.085199 0.089744 0.091888
20 0.286989 0.136321 0.196382 0.153535 0.130648 0.139838 0.111542
21 0.105753 0.064323 0.059713 0.097012 0.111512 0.077587 0.078394

Figure 9. A three-layer BP neural network with a hidden layer.

propagated through the network in the following way:

y
(2)
i = f1

 M∑
j=1

w
(2)
ij y

(1)
j


= f1

 M∑
j=1

w
(2)
ij f2

(
N∑

k=1

w
(1)
ij xk

) , (19)

where, y(1)
j and y(2)

i are the outputs of the hidden and output
units, andN andM are the numbers of input and hidden units;
w

(n)
ij is the weight corresponding to the jth source, ith target,

and nth layer; f1 and f2 are the transfer functions for the hid-
den and output layers, respectively. The pure linear (purelin)
and hyperbolic tangent (tansig) transfer functions are selected
in this paper, which are defined as,

f1(u) = u, f2(u) =
2

1 + e−2u
− 1. (20)

Thus, the tansig and purelin transfer functions were selected
according to the empirical formula.35

The back-propagation (BP) algorithm is a gradient-search
approach that attempts to minimize the squared error of the

output by adjusting the weights in the network backwards. The
mean squared error (MSE) of BP can be described as,

E =
1

2|L|

|L|∑
i=1

∑
{x}∈L

[d({x})− y({x})]2 , (21)

where, d(x) is the desired network output for sample x, and |L|
is the cardinality of a learning set. To minimize E, the change
in weight for output unit i from hidden unit j can be derived
by the gradient,

∆w
(2)
ij =

∂E

∂w
(2)
ij

=
∑
{x}∈L

[
di − y(2)

i

]
f(y

(2)
i )(1− f(y

(2)
i ))y

(1)
j . (22)

By the chain rule, the weight change for hidden units can be
given by,

∆w
(1)
jk =

∑
{x}∈L

∂E

∂y
(1)
j

∂y
(1)
j

∂w
(1)
jk

=
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∑
i

δ
(2)
i w

(2)
ij f(y

(1)
j ) {xk} (23)

in which, δ(2)
i is back-propagated to the hidden layers, δ(2)

j =

bdi − y(2)
i cf(y

(2)
i ). Using the momentum adaptive-learning-

rate algorithm,35 the weight can be updated by wnew = (1 −
α)wold−η∆w, where η and α denote the learning rate and the
momentum term, respectively.

5.2. Architecture of WPD-ANN-ARE Model
An established three-layer ANN model for ARE is shown in

Figure 9. However, some parameters for performing the ANN,
such as neuron (node) numbers of the input, hidden and output
layers, and the network training algorithm, need to be speci-
fied. The extracted roughness feature vector within a 50 ms
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Figure 10. RMS errors with respect to node numbers in the hidden layer.

interval of each vehicle noise is taken as inputs, thus the in-
put node number is 21. For training a network with n signals,
the dimension of the input matrix is extended to 21 × n. In
this paper, 33 left-ear noise signals measured under the eleven
working conditions are taken from the vehicle noise database,
i.e., n = 33. The network output is set to the total rough-
ness at that corresponding moment, which has been calculated
in Section 3, thus the output node number is 1. Accordingly,
the output matrix has a dimension of 1 × 33. Node number
Hn of the hidden layer is estimated by the following empirical
formula,37

Hn =
√
In +On + C, (24)

where, In andOn are the node numbers in the input and output
layers, and C is a constant, C = 1 − 10. One may calculate
that Hn equals to 4–16. To find an optimal Hn value, a set
of training tests was carried out by assuming Hn values from
4 to 16. The averaged RMS errors of ten tests are shown in
Figure 10. It can be seen that, with the Hn increasing, the
errors of predicted results are fluctuant and reach a minimum
value at Hn = 10. Thus, the node number of the hidden layer
was set to ten in this present work. In addition, the Levenberg-
Marquardt (LM) algorithm was adopted and used in the ANN
training,37 due to rapid convergence in solving nonlinear least
squares problems.

5.3. WPD-ANN-ARE Training
and Verification

The ANN training procedure is conducted by a Matlab pro-
gram. To check the robustness of the ANN structure, the nor-
malized noise samples are divided into three sets for network
training, validation, and testing.38 The training set is used for
learning, which is to fit the ANN weights. The validation set
is used to tune the ANN architecture. The test set is used only
to assess the performance of the fully ANN. The training and
validation sets are defined by 33 left- and right-ear noise sig-
nals, and the test set consists of 33 signals that are randomly
taken from the vehicle noise database. The robust performance
of the WPD-ANN-ARE model is shown in Figure 11. It can be
seen that the MSEs of the training, validation and test sets are
rapidly decreased within fourteen epochs. The network tends
to stabilize at the sixth epoch, and the MSE values reach 0.09 at
the eighth epoch. This implies that both the ANN structure and
the selected parameters are effective and feasible for ARE of
vehicle noise. To verify the WPD-ANN-ARE, furthermore, an
original noise signal was randomly selected from the vehicle

Figure 11. Robust performance of the WPD-ANN-ARE model.

Figure 12. Evaluated comparisons of the roughness results from the WPD-
ANN-ARE and Aures models

noise database and fed to the new model for roughness predic-
tion. Then, the comparison was made between the new model
and the Aures model, as shown in Figure 12. The selected ve-
hicle noise was measured at the driver position under the emer-
gency braking condition (stopping from 80 km/h), which is one
of the representative conditions. It can be seen that the WPD-
ANN-ARE result is very close to that from the Aures model,
especially for the roughness values above 0.3 asper. The muta-
tion of the auditory roughness is predicted by the new model,
which shows good characteristic in tracking the extreme val-
ues in the time domain, thus able to capture the main sensa-
tions of auditory roughness over time. In view of the results,
the MSE of the new model result is 0.0427, and the maximum
error of the predicted total roughnesses of the noise signals
is 8.56 percent, which can meet the engineering requirements
(less than 10 percent). The above comparisons suggest a good
accuracy of the WPD-ANN-ARE model in roughness evalua-
tion of vehicle noise. It should be mentioned that there is no
any standardized method for ARE till now. The Aures model is
the relative authority and has been widely accepted by the in-
ternational academic community which is the reason why it is
adopted as a reference for WPD-ANN-ARE model verification
in this paper.

6. CONCLUSIONS

This paper presents a new technique named WPD-ANN-
ARE model, which is developed by combining the WPD and
ANN, for ARE of vehicle noise. Considering the characteris-
tics of human auditory perception, a WPD-based model with
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21 critical bands is built to extract the noise features. Taking
the extracted roughness feature matrices defined by modula-
tion index as inputs and the calculated roughness from the psy-
choacoustic model as outputs, a three-layer ANN model is de-
signed and trained by the BP algorithm for ARE of noises. The
results show that the WPD-based model is effective for fea-
ture extraction of nonstationary vehicle noises, and the WPD-
ANN-ARE results are in agreement with those from the con-
ventional roughness model. This implies that the WPD-ANN-
ARE model is accurate enough to map a nonstationary vehicle
noise to its roughness, and may be regarded as a good substi-
tute for complex psychoacoustic models in vehicle SQE en-
gineering. In applications, the newly proposed technique can
be used to estimate sound quality of vehicles, and may be ex-
tended to other noise signals for ARE in engineering.
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