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(b, c)-inverse, inverse along an element, and
the Schützenberger category of a semigroup

Xavier Mary

Abstract. We prove that the (b, c)-inverse and the inverse along an element
in a semigroup are actually genuine inverse when considered as morphisms
in the Schützenberger category of a semigroup. Applications to the Reverse
Order Law are given.

C Green’s relations and the Schützenberger category of a
semigroup

In this first section, we provide the reader with the necessary definitions
and results regarding semigroups and categories. In particular, we recall
the definition of the Schützenberger category of a semigroup and the inter-
pretation of Green’s relations in this setting. Section 2 then presents the
main result of the article (Theorem C.7), that (b, c)-inverses (and inverses
along an element) are genuine inverses when considered as morphisms in the
corresponding Schützenberger category. Finally, applications to the Reverse
Order Law are given in Section 3.
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C.1 Green’s preorders and relations In this article, S denotes a
semigroup, E(S) its set of idempotents and S1 the monoid generated by S.
We recall below the definitions of Green’s preorders and relations [5].

For any two elements a, b ∈ S:

a 6L b⇐⇒ S1a ⊆ S1b⇐⇒ (∃x ∈ S1) a = xb;

a 6R b⇐⇒ aS1 ⊆ bS1 ⇐⇒ (∃x ∈ S1) a = bx;

a 6H b⇐⇒ {a 6L b and a 6R b}.

If 6K is one of these preorders, then aKb ⇔ {a 6K b and b 6K a}, and
Ka = {b ∈ S, bKa} denotes the K-class of a.

In particular, H = L ∧ R is the meet of L and R, and any non-empty
intersection of a L-class and a R-class is a H-class. Finally, D = L ∧ R =
L ◦ R denotes both the join and the relative product of L and R since the
two relations commute:

aDb⇐⇒ (∃x ∈ S) aLxRb⇐⇒ (∃y ∈ S) aRyLb.

The following cancellation property (and its dual) will prove very useful
in the sequel. Let a, b ∈ S be such that a 6L b. Then for any x, y ∈ S1, if
bx = by then ax = ay. In particular, if a 6L e with e ∈ E(S), then ae = a.

C.2 Schützenberger category of a semigroup In order to study
the semigroup S, various authors have introduced categories associated to
this semigroup in a canonical way, mainly as subcategories of the category
of right/left S-acts. This is the case for instance for K.S.S. Nambooripad in
the case of regular semigroups [12] (Other kind of categories are also studied,
notably in the case of inverse semigroups, see for instance [7] and references
therein).

Then, it was remarked by Costa and Steinberg [2, Theorem 3.3] that
the subcategory of left S-acts with principal left ideals as objects and inner
equivariant maps (inner right translations) as morphisms is equivalent to
a category constructed directly from S, which they call the Schützenberger
category of the semigroup. We recall its definition below but differ from [2]
in that we consider the opposite category.

Definition C.1. The Schützenberger category D(S) of a semigroup S has
for objects the elements of S, and morphisms are triples f = (a, x, b) with
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x ∈ aS1∩S1b. The domain of f is a, its codomain is b and we use the notation
f = a

x−→ b. If x = au = vb and g = (b, y, c) = b
y−→ c is a morphism with

y = bw = rc, then the composition is g ◦ f = a
x−→ b

y−→ c = a
vy=xw−→ c.

The Schützenberger category was named after Marcel-Paul Schützen-
berger who, in a seminal paper [13], associated to each H-class of a semi-
group a group (of inner translations of principal right ideals), a property
before only known for H-classes containing an idempotent (which form a
maximal subgroup of the semigroup).

As observed in [2], D(Sop) ' D(S)op, easing the use of duality (by duality,
we always mean working in the opposite semigroup/category).

C.3 Categorical interpretation of Green’s relations Let a, b, x ∈
S. By definition, a x−→ b exists if and only if x 6L b and x 6R a. Invertibil-
ity of such morphisms has been considered in [2, Lemma 3.6]. We propose
here a slightly different version, with a direct proof.

Lemma C.2. Let a, b, x ∈ S. Then a
x−→ b is invertible if and only if

aRxLb. In this case, its inverse is b b−→ x
a−→ a = b

y−→ a with aLyRb.
Proof. (If part) Assume that aRx and xLb. Then a x−→ x and x a−→ a are
well defined, and composition proves that they are inverse of each other. By
duality, so are x x−→ b and b b−→ x, and finally a x−→ b = a

x−→ x
x−→ b is

invertible (by the 2-out-of-3 property of isomorphisms). Its inverse is given
by the composite of the inverses b b−→ x

a−→ a.
(Only if part) Assume that a x−→ b is invertible with inverse b y−→ a. By
duality we have only to prove that aRx. First, x 6R a and y 6R b, so that
y = bu for some u ∈ S1. Second, as

a
a−→ a = a

x−→ b
y−→ a = a

xu−→ a

then a = xu and a 6R x, so that finally aRx.

Lemma C.2 gives a diagrammatic proof thatR and L commute. Also, we
recover directly and in a transparent way the following crucial result about
trace products and existence of idempotents, due to Miller and Clifford.

Theorem C.3 ([10, Theorem 3]). Let a, b ∈ S. Then ab ∈ Ra ∩Lb (ab is a
trace product) if and only if Rb ∩ La contains an idempotent.
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By Lemma C.2, the product ab is a trace product if and only if a ab−→ b
is invertible, and Rb ∩ La contains an idempotent if and only if there exists
e ∈ E(S) such that b e−→ a is an invertible morphism. Therefore, the
previous theorem subsumes to the following result (in the category D(S)),
where the relation between a, b and e is now explicit: b e−→ a is nothing but
the inverse of a ab−→ b in the Schützenberger category D(S).

Corollary C.4. Let a, b ∈ S. Then a ab−→ b is invertible if and only if there
exists e ∈ E(S) such that b e−→ a is an invertible morphism. In this case,
the two morphisms are inverse of each other.

Proof. (If part) Assume that a ab−→ b is invertible and let b e−→ a be its
inverse. As a ab−→ b

e−→ a = a
ae−→ a = a

a−→ a then ae = a. But e 6L a
and by cancellation ee = e (e is idempotent).
(Only if part) Conversely, let e ∈ E(S) be such that b e−→ a is invertible.
Then bReLa by Lemma C.2, and ae = a, eb = b. It follows that b e−→ a is
a morphism that satisfies a ab−→ b

e−→ a = a
ae−→ a = a

a−→ a and dually
b

e−→ a
ab−→ b = b

b−→ b. Finally a ab−→ b is the inverse of b e−→ a.

Let b ∈ S. We finally consider the local monoid hom(b, b) (named local
divisor by Diekert et. al. [3]). To this end, we recall the definition ofMitsch’s
partial order 6M [11]: for any a, b ∈ S,

a 6M b⇐⇒ (∃x, y ∈ S1) a = ax = bx = ya = yb.

This partial order generalizes the natural partial order on the idempotents
of S and the Nambooripad-Hartwig order on regular semigroups.

Proposition C.5. Let a, b ∈ S. Then
(i) hom(b, b) = {b a−→ b|a 6H b};
(ii) iso(b, b) = {b a−→ b|aHb};
(iii) E (hom(b, b)) = {b a−→ b|a 6M b}.

Proof. The first two statements follow directly from Lemma C.2. For the
third one we let a ∈ S, a 6H b. Then a = bx = yb for some x, y ∈ S1, so
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that

b
a−→ b

a−→ b = b
a−→ b

bx−→ b

= b
ax−→ b

= b
yb−→ b

a−→ b

= b
ya−→ b.

Finally, under these assumptions, b a−→ b is idempotent if and only if ax =
a = ya if and only if a 6M b.

C Inverse along an element and (b, c)-inverse

Let a, x ∈ S. One says that x is an inner (resp. outer, resp. reflexive) in-
verse of a if the equation axa = a (resp. xax = x, resp. both) is satisfied. A
reflexive inverse of a that commutes with a is unique if it exists, and called
the group inverse of a. It is denoted by a#. In this case, one says that a is
group invertible or completely regular. This happens if and only if a2Ha if
and only if the H-class Ha is a subgroup of S ([5, Theorem 7] or [10, Corol-
lary 4]), and a# is the inverse of a in this group.

In [8] a special outer inverse, called inverse along an element, was intro-
duced, on the basement of Green’s relation H.
Definition C.1. Let a, d ∈ S. Then a is invertible along d if there exists
x ∈ S such that xad = d = dax and x 6H d.

If such an element exists then it is unique, and we denote it by a−d.
Another characterization is the following ([8, Lemma 3] and [9, Theorem

2.2]).

Lemma C.2. Let a, d ∈ S. Then a is invertible along d if and only if there
exists x ∈ S such that xax = x and xHd, and in this case a−d = x. This
happens if and only if dadHd.

That is, x is the only outer inverse of a in theH-class of d (hence depends
only on the H-class).

In the same time, M.P. Drazin defined [4] the (b, c)-inverse (extending
notably the Bott-Duffin (e, f)-inverse, which is recovered by letting b = e
and c = f be idempotents).
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Definition C.3. Let a, b, c, x ∈ S. Then x is a (b, c)-inverse of a if
(i) x ∈ (bSx) ∩ (xSc),
(ii) xab = b, cax = c.

A (b, c)-inverse, if it exists, is also unique and satisfies xax = x ([4,
Theorem 2.1]). We will denote it by a−(b,c) in the sequel.

It is proved in [4] and [8] that these two new notions generalize the
classical generalized inverses (group inverse, Moore-Penrose inverse, Drazin
inverse). It happens that they are actually equivalent notions.

C.1 Equivalence of the definitions It is commonly known that
inverses along an element are a special case of (b, c)-inverses, since a−d =
a−(d,d). Surprisingly, that the converse is also true ((b, c)-inverses are inverses
along an element) seems to have remained unnoticed by many scholars. The
next result presents the exact relation between the two notions (and also
their connexion with the Bott-Duffin inverse).

Theorem C.4. (i) Let a, b, c, x ∈ S. If a is (b, c)-invertible with inverse x,
then bDc and for all d ∈ Rb ∩ Lc, a is invertible along d with inverse x.

(ii) Let a, d ∈ S. If a is invertible along d, then for all b ∈ Rd and c ∈ Ld,
a is (b, c)-invertible and a−(b,c) = a−d.

(iii) In particular, if a, d ∈ S are such that a is invertible along d, then
e = a−da and f = aa−d are idempotents such that e 6R d and f 6L d. But
also ed = d and df = f by definition of the inverse along d, and e ∈ Rd,
f ∈ Ld. Finally a is Bott-Duffin (e, f)-invertible and a−(e,f) = a−d by (2).

Proof. (i) Assume that a is (b, c)-invertible with (b, c)-inverse x = a−(b,c).
Then xab = b, cax = x and b 6R x, c 6L x. As also x ∈ (bSx) ∩ (xSc),
then x 6R b and x 6L c. Finally bRxLc and bDc. Also, Rb ∩Lc = Hx. Let
d ∈ Rb ∩ Lc. Then x satisfies xax = x and xHd, and x = a−d by Lemma
C.2.

(ii) Let a, d ∈ S such that a−d exists, and let b ∈ Rd, c ∈ Ld. By
cancellation properties, as a−dad = d then a−dab = b and as daa−d = d
then caa−d = c. Also, as a−dRdRb then a−d = bx for some x ∈ S1. Then
a−d = a−daa−d = b(xa)a−d and a−d ∈ bSa−d. By symmetry, a−d ∈ a−dSc
and finally, a−d is the (b, c)-inverse of a.
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(iii) Let a, d ∈ S such that a−d exists. Then e = a−da and f = aa−d

are idempotents with e ∈ Rd, f ∈ Ld, so that a is (e, f)-invertible and
a−d = a−(e,f) by (2).

This theorem shows that the three notions are essentially the same, and
that a−(d,d) = a−d. However, while the using of two elements instead of one
offers some flexibility (for instance one can choose b, c idempotents), other
properties require b = c (for instance the property a−d = d(ad)# = (da)#d
[8, Theorem 7]).

As a consequence of Theorem C.4 and Lemma C.2, we see that the
requirements in the definition of the (b, c)-inverse can be relaxed.

Corollary C.5. Let a, b, c, x ∈ S. The following statements are equivalent:
(i) x is the (b, c)-inverse of a;
(ii) xab = b, cax = c, x 6R b and x 6L c;
(iii) xax = x and x ∈ Rb ∩ Lc.

Thus x = a−(b,c) is the only outer inverse of a in the H-class H = Rb∩Lc.

C.2 Interpretation through the variant semigroup For any a ∈
S we let Sa = (S, ·a) be the variant semigroup at a, with multiplication
·a : (s, t) 7→ sat.

Theorem C.6. Let a, b, c, d ∈ S. Then:
(i) a is (b, c)-invertible if and only if c ·a b is a trace product in Sa, in

which case a(b,c) is the unique idempotent in Rab ∩ Lac (where Ka denotes
Green’s relation K in Sa).

(ii) a is invertible along d if and only if d is completely regular in Sa (Ha
d

is a subgroup of Sa), in which case a−d is the identity of the group Ha
d .

C.3 Categorical interpretation of the (b, c)-inverse In this sec-
tion, we prove that the (b, c)-inverse (hence also the Bott-Duffin (e, f)-inverse
and the inverse along an element) actually corresponds to a genuine inverse,
but in the category D(S).

Theorem C.7. Let a, b, c ∈ S. Then a is (b, c)-invertible if and only if
c
cab−→ b is an isomorphism of D(S) (cab ∈ Rc∩Lb), in which case its inverse

morphism is b a
−(b,c)

−→ c.
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Proof. (If part) Assume that c cab−→ b is invertible and let b x−→ c be its
inverse. Then bRxLc by Lemma C.2. Also b b−→ b = b

x−→ c
cab−→ b = b

xab−→ b
so that xab = b, and dually cax = c. It follows that x is the (b, c)-inverse of
a by Corollary C.5.
(Only if part) Conversely, let x = a−(b,c) be the (b, c)-inverse of a. Then
b

x−→ c is well-defined and satisfies b x−→ c
cab−→ b = b

xab−→ b = b
b−→ b.

Dually c cab−→ b
x−→ c = c

cax−→ c = c
c−→ c, so that c cab−→ b is an invertible

morphism with inverse b x−→ c.

Decompose c cab−→ b as c cab−→ cab
cab−→ b. We deduce from Lemma C.2 and

Theorem C.7 the following corollary.

Corollary C.8. Let a, b, c ∈ S. Then the following statements are equiva-
lent:

(i) a is (b, c)-invertible;
(ii) c cab−→ b is invertible;
(iii) c cab−→ cab and cab cab−→ b are invertible; in which case

b
a−(b,c)

−→ c = b
b−→ cab

c−→ c.

Proof. By Theorem C.7, (i)⇔ (ii), and (iii)⇒ (ii) by composition. Finally
(ii)⇒ cRcabLb⇒ (iii) by Lemma C.2. Under these conditions, the equality
follows from b

b−→ cab being the inverse of cab cab−→ b and cab c−→ c being
the inverse of c cab−→ cab.

To close this section, we give a diagrammatic proof of [8, Theorem 7].

Theorem C.9 ([8, Theorem 7]). Let a, d ∈ S. Then a is invertible along d
if and only if adLd and Had is a group. In this case a−d = d(ad)#.

Proof. Assume that a is invertible along d. Then dadHd and, in particular,
adLd. It follows that d d−→ ad is well-defined and invertible, with inverse
ad

ad−→ d. But then

d
dad−→ d = d

d−→ ad
(ad)2−→ ad

ad−→ d

is invertible if and only if ad
(ad)2−→ ad is invertible, that is, (ad)2Had by

Proposition C.5, or equivalently if and only if Had is a group. To obtain the
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formula, just invert the previous morphisms and compose, with the inverse

of ad
(ad)2−→ ad being ad

(ad)#ad−→ ad, as seen next:

d
a−d−→ d = (d

dad−→ d)−1

=

(
d

d−→ ad
(ad)2−→ ad

ad−→ d

)−1

= d
d−→ ad

(ad)#ad−→ ad
ad−→ d

= d
d−→ ad

ad(ad)#−→ d

= d
d(ad)#−→ d.

We will hereafter also use the dual statement: a is invertible along d if
and only if daRd and Hda is a group, in which case a−d = (da)#d.

C Application to the Reverse Order Law

As an application, we consider a common problem regarding generalized
inverses, the so-called Reverse Order Law (ROL), that aims to generalize
the well-known property of (genuine) inverses: if a, b are invertible, then so
is ab and (ab)−1 = b−1a−1.

The main results about ROLs for (b, c)-inverses can be found in [1].

Theorem C.1 ([1, Theorems 2.3 and 2.7, Corollary 2.4 ]).
Let a,w, b, s, t, c ∈ S.

(i) Assume that a−(t,c) and w−(b,s) exist. Then (aw)−(b,c) exists and
equals w−(b,s)a−(t,c) if and only if b = w−(b,s)a−(t,c)awb and c = caww−(b,s)a−(t,c).

(ii) In particular if a−(t,c) and w−(b,s) exist and a 6L s, w 6R t then
(aw)−(b,c) exists and equals w−(b,s)a−(t,c).

(iii) Assume that a−(t,c) and
(
a−(t,c)aw

)−(b,s) exist. Then (aw)−(b,c) ex-

ists and equals
(
a−(t,c)aw

)−(b,s)
a−(t,c) if and only if c = caw

(
a−(t,c)aw

)−(b,s)
a−(t,c).

We slightly improve these results by using the 2-out-of-3 and 2-out-of-6
properties of isomorphisms, and show that they rely on st being a trace
product (st ∈ Rs ∩ Lt).
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Theorem C.2. Let a,w, b, s, t, c ∈ S be such that a−(t,c) and w−(b,s) exist.
Then (aw)−(b,c) exists and equals w−(b,s)a−(t,c) if and only if there exists
e ∈ E(S) such that

(i) t e−→ s is an invertible morphism;
(ii) caewb = cawb.
In this case, st is a trace product.

Proof. Assume that a−(t,c) and w−(b,s) exist. Then

b
w−(b,s)

−−−−→ s
st−−−−→ t

a−(t,c)

−−−−→ c = b
w−(b,s)a−(t,c)

−−−−−−−−→ c

is invertible if and only if s st−→ t is invertible, if and only if st is a trace
product by Lemma C.2. By Corollary C.4 this occurs if and only if t e−→ s
is an invertible morphism for some e ∈ E(S) (which is then precisely the
inverse of s st−→ t). In this case, it holds that

(b
w−(b,s)a−(t,c)

−−−−−−−−→ c)−1 = c
cat−−−−→ t

e−−−−→ s
swb−−−−→ b = c

caewb−−−−→ b

and we conclude by Theorem C.7 and unicity of the inverse.

The following corollaries are then straightforward (in the second one, we
just let s = b and c = t).

Corollary C.3. Let a,w, b, s, t, c ∈ S be such that a−(t,c) and w−(b,s) exist,
st is a trace product and either a 6L s or w 6R t. Then aw has a (b, c)-
inverse and (aw)−(b,c) = w−(b,s)a−(t,c).

Proof. As st is a trace product, then t e−→ s is an invertible morphism for
some e ∈ E(S) by Corollary C.4, and tReLs by Lemma C.2. Assume that
a 6L s (the other case is dual). Then a 6L sLe hence a 6L e by transitivity.
Thus ae = a by cancellation and we conclude by Theorem C.2.

Corollary C.4. Let a,w, b, c ∈ S be such that a−c and w−b exist. Then
(aw)−(b,c) exists and equals w−ba−c if and only if c e−→ b is an invertible
morphism for some e ∈ E(S) (bc is a trace product) such that caewb = cawb.
Moreover, in this case

(aw)−(b,c) = (aw)−bc = w−ba−c.



(b, c)-inverse and the Schützenberger category 265

Proof. The nontrivial part of the corollary is the equality (aw)−(b,c) =
(aw)−(bc). Assume that bc is a trace product. Then by definition bRbcLc
and by Theorem C.4.(i), (aw)−(b,c) = (aw)−bc.

Theorem C.5. Let a,w, b, s, t, c ∈ S be such that a−(t,c) and
(
a−(t,c)aw

)−(b,s)

exist. Then (aw)−(b,c) exists and equals
(
a−(t,c)aw

)−(b,s)
a−(t,c) if and only

if s st−→ t is an invertible morphism (st is a trace product).

Proof. Assume that a−(t,c) and
(
a−(t,c)aw

)−(b,s) exist. Then

b
(a−(t,c)aw)

−(b,s)

−−−−−−−−−−−→ s
st−−−−→ t

a−(t,c)

−−−−→ c = b
(a−(t,c)aw)

−(b,s)
a−(t,c)

−−−−−−−−−−−−−−−→ c

is invertible if and only if s st−→ t is invertible. In this case its inverse is

c
cat−−−−→ t

e−−−−→ s
sa−(t,c)awb−−−−−−−→ b = c

caea−(t,c)awb−−−−−−−−→ b

(where t e−→ s, e ∈ E(S) is the inverse s st−→ t). But then a−(t,c)RtRe and
ea−(t,c) = a−(t,c), so that caea−(t,c) = caa−(t,c) = c. We deduce that

c
cat−−−−→ t

e−−−−→ s
sa−(t,c)awb−−−−−−−→ b = c

cawb−−−−→ b

and by Theorem C.7 and unicity of the inverse,

(aw)−(b,c) =
(
a−(t,c)aw

)−(b,s)
a−(t,c).

Corollary C.6. Let a,w, b, c ∈ S be such that a−c and (a−caw)
−b exist.

Then the following statements are equivalent:
(i) b bc−→ c is an invertible morphism;
(ii) (aw)−(b,c) exists and (aw)−(b,c) = (a−caw)

−b
a−c;

(iii) (aw)−(b,c) and (aw)−bc exist, and (aw)−(b,c) = (aw)−bc.

Proof. The equivalence (i)⇔ (ii) is Theorem C.5 with s = b and c = t.
(ii) ⇒ (iii) Assume (ii). As (ii) ⇔ (i) then b

bc−→ c is an invertible
morphism. By Lemma C.2, bc ∈ Rb ∩Lc and by Theorem C.4.(i), (aw)−(bc)

exists and equals (aw)−(b,c).
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(iii)⇒ (i) Assume (iii). As by definition (aw)−(b,c) ∈ Rb ∩Lc, (aw)−bc ∈
Hbc and by assumption (aw)−(b,c) = (aw)−bc then bc ∈ Rb ∩ Lc, and by
Lemma C.2 b bc−→ c is an invertible morphism.

We deduce the following equivalences involving the Bott-Duffin inverse
and the inverse along a trace product.

Corollary C.7. Let w ∈ S and e, f ∈ E(S). Consider the following state-
ments:

(i) (fw)−e exists;
(i’) (we)−f exists;
(ii) (fw)−e exists, w−(e,f) exists and w−(e,f) = (fw)−e f ;
(ii’) (we)−f exists, w−(e,f) exists and w−(e,f) = e (we)−f ;
(iii) w−(e,f) exists;
(iv) w−(e,f) and w−ef exist and are equal;
(v) ef is a trace product.
Then

(i) ∧ (i′)⇔ (ii)⇔ (ii′)⇔ (iii) ∧ (v)⇔ (iv)⇔ (i) ∧ (v)⇔ (i′) ∧ (v).

Under these assumptions:

w−(e,f) = w−ef = (fw)−e f = e (we)−f = e(fwe)#f.

Proof. First, by passing to the opposite semigroup and considering the sym-
metry that exchanges e and f , we observe that the symmetric dual of (i)
(resp. (ii)) is (i’) (resp. (ii’)) whereas the symmetric duals of (iii), (iv) and
(v) are themselves (for instance, w−(e,f) exists in S if and only if fRfweLe if
and only if fLop(e×w×f)Rope in the opposite semigroup Sop = (S,× = .op),
that is w−(f,e) exists in the opposite semigroup, which is the symmetric of
(iii)). Second, as in Corollary C.6, by definition of the (b, c)-inverse and the
inverse along an element, and by Lemma C.2, (iv)⇒ (v). And conversely, by
Theorem C.4.(i), (v) ∧ (iii)⇒ (iv). Finally, (ii)⇒ (i) ∧ (iii) and (iv)⇒ (iii)
are tautological. Thus, it is sufficient to prove that (i)∧(i′)⇒ (ii), (ii)⇒ (v),
(iii) ∧ (v)⇒ (i) and (i) ∧ (v)⇒ (ii).
To prove that (ii) ⇒ (v) and (i) ∧ (v) ⇒ (ii), we work in S1 and observe
that, as f is idempotent, then 1 is invertible along f with 1−f = f . We then
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use Corollary C.6 with a = 1, b = e and c = f .
We finally prove the last two implications.

(i) ∧ (i′) ⇒ (ii) Assume (i) and (i’). Then by Theorem C.9 and its
dual eLfweRf , so that w is (e, f)-invertible by Theorem C.7. Let x =
(fw)−e f . Then x = e(fwe)#f = e(we)−f by Theorem C.9. Still by The-
orem C.9, as (we)−f exists then wefLf , and f = ywef for some y ∈ S1.
And as (fw)−e exists, then eLfwe and fwe is group invertible, so that
e = zfwe = z(fwe)2(fwe)# for some z ∈ S1. It follows that f = ywef =
ywz(fwe)2(fwe)#f = (ywzfwefw)x, so that fLx. By dual arguments
eRx, and x ∈ Re ∩ Lf . Also xwx = (fw)−e fw (fw)−e f = (fw)−e f = x
and by Corollary C.5, x = w−(e,f).

(iii)∧ (v)⇒ (i) Assume (ii) and (v). Then Rf ∩Le is a group by (v) and
Theorem C.3 that contains fwe by (iii) and Theorem C.7. Thus (fw)eLe
and H(fw)e is a group, which is equivalent to (i) by Theorem C.9.

Finally, under these assumptions, w−(e,f) = w−ef = (fw)−e f = e (we)−f ,
and the last equality follows from Theorem C.9: (fw)−e = e(fwe)#.

Example C.8. Let S = T3 be the full transformation semigroup, which
consists of all functions from the set {1, 2, 3} to itself with multiplication
(f, g) 7→ g ◦ f . We write (abc) for the function which sends 1 to a, 2 to b,
and 3 to c.
The egg-box diagram form T3 is as follows (R-classes are rows, L-classes
columns and H-classes are squares; bold elements are idempotents).

(1 1 1) (2 2 2) (3 3 3)
(1 2 2), (1 3 3), (2 3 3),
(2 1 1) (3 1 1) (3 2 2)
(2 1 2), (3 1 3), (3 2 3),
(1 2 1) (1 3 1) (2 3 2)
(2 2 1), (3 3 1), (3 3 2),
(1 1 2) (1 1 3) (2 2 3)

(1 2 3), (2 3 1),
(3 1 2), (1 3 2),
(3 2 1), (2 1 3)

Let w = (213), e = (122) and f = (323). Then ef = (322) ∈ Re ∩ Lf
and ef is a trace product. Also fw = (313) is invertible along e since
efwe = (211)He with inverse (fw)−e = (211). It then follows from Corol-
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lary C.7 that

w−(e,f) = w−(ef) = (213)−(322) = (fw)−ef = (211)(323) = (233).

We also verify that fwe = (212)H(121) is group invertible with group
inverse (212), that (we)−f exists and is equal to (232) and that

w−(e,f) = (233) = e (we)−f = (122)(232) = e(fwe)#f = (122)(212)(323).

Also, we observe these simple ROLs that involve triple products.

Theorem C.9. Let a,w, b, r, c ∈ S. Consider the following statements:
(i) a has a (r, c)-inverse;
(ii) w has a (b, r)-inverse;
(iii) arw has a (b, c)-inverse.
Then any two of the three properties imply the third. Moreover, in case

the inverses exist then:
(i) if b = r, then (arw)−(r,c) = (rw)#a−(r,c);
(ii) if c = r, then (arw)−(b,r) = w−(b,r)(ar)#;
(iii) if b = c = r, then (arw)−r = (rw)#r(ar)# = r(wr)#(ar)# =

(rw)#(ra)#r;
(iv) if r is idempotent, then (arw)−(b,c) = w−(b,r)a−(r,c);
(v) if bc is a trace product and r = e is the idempotent in Rc ∩ Lb then

(aew)−bc = w−ba−c.

Proof. We just use the 2-out-of-3 property of isomorphisms on the compo-
sition

c
car−−−−→ r

rwb−−−−→ b = c
carwb−−−−→ b.

For the other statements, we pass to the inverse. In the first case, w−(r,r) =
w−r = (rw)#r by Theorem C.9 so that

r
w−(r,r)

−−−−→ r
a−(r,c)

−−−−→ c = r
(rw)#r−−−−→ r

a−(r,c)

−−−−→ c = r
(rw)#a−(r,c)

−−−−−−−−→ c.

The second case is dual and the third combines the previous two. For the
fourth one, as r is idempotent then

b
w−(b,r)

−−−−→ r
a−(r,c)

−−−−→ c = b
w−(b,r)a−(r,c)

−−−−−−−−−→ c.

The fifth statement is then straightforward (see Theorem C.4.(ii)).
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Example C.10. We consider the setting of Example C.8. Let a = (231),
w = (221), b = r = (232) and c = (211). Then w = (221) is invertible
along r = (232) with inverse w−r = (323), and a is (r, c)-invertible (since
car = (233) ∈ Rc ∩ Lr) with inverse a−(r,c) = (212). It holds that rw =
(212) = (rw)# and arw = (122). We deduce from Theorem C.9 that arw
is (r, c)-invertible and

(arw)−(r,c) = (rw)#a−(r,c) = (212)(212) = (121).

We verify this equality: x(arw)r = (121)(122)(232) = (232) = r, c(arw)x =
(211)(122)(121) = (211) = c and x = (121) ∈ Rr ∩ Lc.

Finally, by letting s = a and t = w in Theorems C.2 and C.5, or r = e be
the idempotent in Rw ∩ La in Theorem C.9, we obtain the following result.

Theorem C.11. Let a,w, b, c ∈ S. Then the following statements are equiv-
alent:

(i) a−(w,c), w−(b,a) and (aw)−(b,c) exist, and (aw)−(b,c) = w−(b,a)a−(w,c);
(ii) a−(w,c), w−(b,a) exist;
(iii) ca, aw and wb are trace products.

Proof. (i)⇒ (ii) Straightforward.
(ii) ⇒ (iii) Assume (ii). Then caw ∈ Rc ∩ Lw and awb ∈ Ra ∩ Lb by

Corollary C.8 so that aw ∈ Ra ∩ Lw is a trace product, and a
aw−→ w is

invertible. Let w e−→ a, e ∈ E(S) be it inverse. Then e ∈ Rw ∩ La hence
ae = a and dually ew = w. By Theorem C.7, c caw−→ w is invertible hence
so is c caw−→ w

e−→ a = c
cae−→ a = c

ca−→ a and ca is a trace product. We
conclude by duality that wb is also a trace product.

(iii)⇒ (i) Assume (iii) and consider the following composition:

c
cawb−→ b = c

caw−→ w
e−→ a

awb−→ b

= c
ca−→ a

awb−→ b

= c
caw−→ w

wb−→ b.

By the 2-out-of-6 property, all morphisms are isomorphisms and a−(w,c),
w−(b,a) (aw)−(b,c) exist. Moreover, by inverting the previous morphisms the
following equality is satisfied.

b
(aw)−(b,c)

−→ c = b
w−(b,a)

−→ a
aw−→ w

a−(w,c)

−→ c

= b
w−(b,a)a−(w,c)

−→ c.
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(Indubitably, a direct proof based on Theorem C.3 is also possible).

Example C.12. Let S be a semigroup with involution. It is known that
a ∈ S is Moore-Penrose invertible (MP-invertible) if and only if aa∗, a∗a are
trace products [8, Corollary 12], in which case the MP-inverse a+ satisfies
a+ = a−a

∗ [8, Theorem 11]. It is also known [6] that (aw)+ = w+a+

if and only if a,w are MP-invertible and aww∗ 6L a and a∗aw 6R w.
Let a,w ∈ S be MP-invertible elements. Then a∗a and ww∗ are trace
products. By Theorem C.11 with c = a∗, b = w∗, aw is a trace product if
and only if a−(w,a∗) and w−(w∗,a) exist (if and only if aww∗ ∈ Ra ∩Lw∗ and
a∗aw ∈ Ra∗ ∩ Lw), and in this case

(aw)+ = (aw)−(w∗,a∗) = w−(w∗,a)a−(w,a∗)

since (aw)∗ ∈ Rw∗ ∩ La∗ . Observe that this formula is very different from
Greville’s in general.

Let S = M2(Q), A =

(
1 0
1 0

)
and W =

(
1 1
2 2

)
. Then A+ = 1

2

(
1 1
0 0

)

and W+ = 1
10

(
1 2
1 2

)
. Also AW =

(
1 1
1 1

)
∈ RA ∩ LW (1

2AWA = A and
1
2WAW = W ). Thus AW is a trace product and

(AW )+ = (AW )−(W ∗,A∗) = W−(W ∗,A)A−(W,A∗)

where all terms exist. Pose X = 1
2A. Then AWX = A and XWW ∗ = W ∗.

As also 1
6W

∗A = X thenX ∈ RW ∗∩LA andX = W−(W ∗,A). Pose Y = 1
2W .

Then Y AW = W and A∗AY = A∗. As also Y A∗ = Y then Y ∈ RW ∩ LA∗
and Y = A−(W,A∗). Finally, the ROL of Theorem C.11 gives

(AW )+ = XY =
1

4
AW =

1

4

(
1 1
1 1

)
.

One can then check directly that the Moore-Penrose equations are satis-
fied. On the other hand, Greville’s formula does not hold since A∗AW =(

1 1
1 1

)
66R W , and indeed (AW )+ 6= W+A+.
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