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The Lie map generator of the dipole fringe field is derived up to the 4th order of canonical variables.
We discovered significant closed orbit deviation and octupolelike potential when the bending radius ρ is
small. We found that the closed orbit deviation is proportional to g2=ρ and the octupolelike potential effect
is proportional to 1=ðgρ2Þ, where g is the vertical magnet gap.
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I. INTRODUCTION

The fringe field of dipole magnets can be mportant in
charged-particle beam dynamics [1,2]. For example, the
edge angle effect on the vertical focusing has been para-
metrized by the fringe field integral introduced [1] and
measured [3]. The nonlinear beam dynamics of the fringe
field has also been included up to a sextupolelike potential
in Ref. [2]. The fringe field effect is particularly important
for compact accelerators that have a small bending radius.
Applications of compact storage rings include the Inverse
Compton Light Source (see, e.g., [4]), proton therapy
synchrotrons, etc.
The fringe field of dipole magnets typically extends to

the range of the vertical magnet gap. The range of the fringe
field is usually minimized to avoid magnetic field coupling
due to limited available space in compact storage rings. As
the range of the fringe field is reduced, parts of the fringe
field effects may be minimized and others amplified. In
particular, higher-order nonlinearity can become important.
Often overlooked, an important feature of the dipole

fringe field effect is the closed orbit deviation from the
design orbit. This change of the closed orbit arises from the
fact that the fringe field introduces continuously varying
curvature, while the design orbit is defined by constant
curvature starting from the hard edge dipole boundary.
Although this fact is naive and simple, its effect can be large
for compact storage rings and thus should not be disre-
garded. If not considered, it can cause significant misalign-
ment errors for all other accelerator elements. As the fringe
field extent decreases, the closed orbit deviation will also
decrease. However, higher-order nonlinearity would
increase. It is important to understand how these effects
rely on the fringe field extent.

Recently, the fringe field effects on nonlinear dynamics
for compact rings and large emittance beams have been
considered in Refs. [5,6]. The numerical method was used
to extract the Taylor map or Lie map out of the 3D field data
[7,8]. However, there is still a demand for an analytic
expression of the fringe field map, particularly when the 3D
field data are not available at the design stage. Because of
its complex nonlinear effects, it is often hard to uncover the
underlying physics based on simulation results alone. In
addition, a good understanding of the dipole fringe field
map can benefit not only storage ring design but also dipole
magnet design.
Theoretical studies on the influence of dipole fringe

fields have been carried out by many researchers from the
early 1960s through the early 1970s [9–14]. Although some
earlier studies derived mapping equations up to third order
of phase space variables, they often led to complicated
expressions with too many integration parameters. This
paper is intended to provide a simpler physics picture of
fringe field effects.
The Lie algebraic method is useful to study the fringe field

effect [15]; e.g., the Methodical Accelerator Design ver.10
Polymorphic Tracking Code (MADX PTC) module imple-
mented the second-order fringe field effect with a hard edge
approximation [2]. However, the derivation is carried out on
the pole face parallel frame, and it disregards the closed orbit
deviation. This paper studies the effective thin map of the
dipole soft fringe field using the Lie map method up to the
next leading order of Magnus’ series and up to the 4th order
of canonical variables with respect to the design orbit. We
also calculate the mapping equation out of the Lie map to
compare it with the simulation and an earlier study [1].
We organize this paper as follows. In Sec. II, we build

a general fringe field model. Section III presents the
corresponding Hamiltonian. Section IV reviews the Lie
algebraic method to build an effective thin map. Section V
presents the derived analytic map. Section VI compares the
theory with the simulation results. Section VII discusses the
fringe field induced closed orbit effect. Section VIII
discusses the physics of the octupolelike potential.
Section IX briefly shows the nonlinear detuning effect
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by an octupolelike potential. Section X show fringe field
effects on a compact ring as an example. Finally, the
conclusion is in Sec. XI.

II. GENERAL MODELING OF
DIPOLE FRINGE FIELD

A. Fringe field extent

Conventionally, the dipole vertical gap and magnet
aperture are used to represent the fringe field extent
[1,7], because the fringe field extent is generally about
the size of the magnet aperture. Throughout the paper, we
will use the vertical gap g to represent the fringe field
extent.
Using dimensional analysis, we can understand the

relationship between the vertical gap and the fringe field
extent. The physical quantities of length dimension
include horizontal width, longitudinal length, and vertical
gap of a dipole. Normally, the horizontal width and
longitudinal length are large enough that their effect on
the fringe field is minimal. Therefore, the vertical gap is
the main contribution to the fringe field extent. Apart
from the vertical gap, the pole face shaping or a magnetic
clamp is used to shape the fringe field and effectively
reduce the fringe field extent. However, even after shaping
the fringe field, the extent will still increase as the vertical
gap increases. The field shaping can be understood in the
Enge-functional model, which is often used for fringe
field modeling:

Bzðs̄Þ
B0

¼ 1

1þ ec0þc1ðs̄ϵÞþc2ðs̄ϵÞ2þc3ðs̄ϵÞ3þ��� ; ð1Þ

where ϵ is a length dimensional physical quantity relevant
to the fringe field and ci are coefficients that determine the
field shape. This model is quite general, because there are
many parameters that fit on a realistic field. Note that
these coefficients are responsible for the field shape and
thus can reduce the fringe field extent effectively.
However, ϵ is still the main contribution for the overall
field extent. Since the vertical gap is the only length
dimensional quantity relevant to the fringe field, the
vertical gap is often used as ϵ in this modeling.

B. Edge parallel frame

Consider a rectangular dipole shown in Fig. 1, where
the shaded region indicates the dipole. The right-hand rule
coordinate system ðx; s; zÞ is adopted. The rectangular
frame parallel to the edge is characterized by adding a
bar on top of each coordinate variable ðx̄; s̄; z̄Þ. ρ is the
design curvature, and θE is the edge angle. The coordinate
relation between the edge parallel frame and the Frenet-
Serret frame near the dipole entrance is given by

s̄ðx; sÞ ¼ ρðsÞ sin θE − ½ρðsÞ þ x� sin θS; ð2Þ

x̄ðx; sÞ ¼ ½ρðsÞ þ x� cos θS − ρðsÞ cos θE; ð3Þ

where s̄ ¼ 0 is the location of the dipole entrance, ρðsÞ is
infinite before the edge, and constant design curvature after
the edge, and

θS ¼ θE −
s

ρðsÞ :

C. Field symmetries

By the symmetric nature of the rectangular dipole, the
magnetic scalar field can be written as [16]

Φ̄ðx̄; s̄; z̄Þ
Bρ

¼
X
n;m¼0

ϕ̄2m;2nþ1ðs̄Þ
x̄2m

ð2mÞ!
z̄2nþ1

ð2nþ 1Þ! ; ð4Þ

where Bρ is the rigidity. This symmetry is still approx-
imately true near the edge for nonrectangular dipoles.

D. Curved field boundary model

Since the horizontal dipole width is finite, we expect the
fringe field to degrade toward each of the horizontal ends.
This fact can be modeled by a curved field boundary at
dipole ends [1] as shown in Fig. 2. Note that the curved

FIG. 1. Rectangular dipole and two coordinate systems.

FIG. 2. Curved field boundary. R is the field boundary radius,
and r is the distance from the origin to an arbitrary point.

KILEAN HWANG and S. Y. LEE Phys. Rev. ST Accel. Beams 18, 122401 (2015)

122401-2



field boundary model has rotational symmetry about the
origin of the curve, and thus, instead of Eq. (4), the
magnetic potential at dipole entrance could also have been
written as

Φ̄ðr; z̄Þ
Bρ

¼
X
n¼0

ψ2nþ1ðrÞ
z̄2nþ1

ð2nþ 1Þ! ; ð5Þ

where r2 ¼ ðR − s̄Þ2 þ x̄2. Then expansion in x̄ gives us

Φ̄
Bρ

≃ ψ1z̄þ
∂rψ1

R − s̄
x̄2

2
z̄þ ψ3

z̄3

3!
; ð6Þ

where ∂r denotes the derivative with r. Therefore, we find

ϕ̄01 ¼ ψ1; ð7Þ

ϕ̄21 ¼
∂rψ1

R − s̄
: ð8Þ

However, for generality, we will not use the curved
field boundary model. Instead, what we do learn from
this modeling is that ϕ̄21 is of the order of 1=ðρgRÞ,
where g is the vertical magnet gap which also represents
the fringe field extent. Normally, g ≪ R as well as g ≪ ρ.
If we do not use the curved field boundary model, we

need to find a way to define the length dimensional quantity
R, which can describe how the fringe field degrades
towards each of the horizontal ends. Rewriting Eq. (8)
in terms of the vertical magnetic field,

∂2Bz

∂x̄2 ¼ B0
z

R − s̄
: ð9Þ

We define the parameter R as

R≡ Bz=g
∂2
x̄Bz

����
s̄¼0

; ð10Þ

where ∂ x̄ denotes the derivative with respect to x̄. When
the derivative is not available, the other way to define R is
to take it as the horizontal width of the dipole. It is expected
that as the dipole width becomes larger the horizon
degradation would become smaller.
In order to simplify, let us rewrite the potential Eq. (4) as

Φ̄
Bρ

≃ āðs̄Þz̄þ b̄ðs̄Þ x̄
2

2
z̄ − ½ā00ðs̄Þ þ b̄ðs̄Þ� z̄

3

3!
; ð11Þ

where we have used the Poisson equation and redefined

āðs̄Þ ¼ ϕ̄01ðs̄Þ; b̄ðs̄Þ ¼ ϕ̄21ðs̄Þ: ð12Þ

Assuming the neighboring fringe field does not overlap, we
require the following boundary conditions:

āðLÞ ¼ 1=ρ; āð−LÞ ¼ 0;

āðnÞð�LÞ ¼ 0; b̄ð�LÞ ¼ 0; b̄ðnÞð�LÞ ¼ 0; ð13Þ

where the superscript n indicates the nth-order derivative
and the boundary L must be ∞, as the fringe field and its
derivatives do not suddenly vanish at any finite value of L.

III. FRINGE FIELD HAMILTONIAN

In order to construct the Hamiltonian for the Frenet-
Serret frame (fsFrame), we would like to build the vector
potential in fsFrame. As the vector potential is not unique,
we fix the gauge such that Az ¼ 0. Then, B ¼ −∇Φ ¼
∇ × A simplifies to

∂As

∂z ¼ hs
∂
∂xΦ;

∂Ax

∂z ¼ −
1

hs

∂
∂sΦ;

∂As

∂x −
∂Ax

∂s ¼ −hs
∂
∂zΦ; ð14Þ

where hs ¼ 1þ x=ρ is the geometric factor. Therefore, we
find

As ¼
Z

dz

�
hs

∂
∂xΦ

�
−
Z

dx

�
hs

∂
∂zΦ

�
z¼0

;

Ax ¼ −
Z

dz

�
1

hs

∂
∂sΦ

�
: ð15Þ

Then, the Hamiltonian can be obtained by

HFðx; px; z; pzÞ

¼ −
�
1þ x

ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 −

�
px −

Ax

Bρ

�
2

− pz

s
−
As

Bρ
;

where δ is the fractional momentum deviation. Explicitly,
we write the Hamiltonian up to the 4th order of canonical
variables which are responsible for the nonlinear detuning.
However, since there is a closed orbit deviation introduced
by the fringe field, we include one more extra order in the
horizontal variables:
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HF ≃Dþ x

�
a −

1þ δ

ρ

�
þ z2

2

�
a0 sin θS þ a0

cos θS
1þ δ

px

�
þ x2

2

�
a
ρ
− a0 sin θS

�
þ x3

3!

�
a00sin2θS − 2

a0

ρ
sin θS

�

þ xz2

2

�
a0

ρ
sin θS − a00sin2θS

��
1þ px

1þ δ
cot θS

�
þ x4

4!

�
3
a00

ρ
sin2θS − að3Þsin3θS

�

þ x2z2

4

�
að3Þsin3θS − 2

a00

ρ
sin2θS

��
1þ px

1þ δ
cot θS

�
þ z4

4!

�
−að3Þ sin θS

�
1þ px

1þ δ
cot θS

�
þ 3ða0Þ2 cos

2θS
1þ δ

�

þ
�
x5

5!
−
x3z2

3!2!

�
½að4Þsin4θS� þ

xz4

4!
½að4Þsin2θS� − x

�
b
s2

2
sin2θE

�
þ x2 − z2

2

�
bs cos θE sin θE − b0

s2

2
sin3θE

�

þ
�
x3

3!
−
xz2

2

��
bcos2θE − 2b0s cos θEsin2θE þ b00

s2

2
sin4θE

�
; ð16Þ

where aðsÞ and bðsÞ are defined, respectively, by

a ¼ āðs̄jx¼0Þ ¼ āðρ sin θE − ρ sin θSÞ;
b ¼ b̄ðs̄jx¼0Þ ¼ b̄ðρ sin θE − ρ sin θSÞ ð17Þ

and the drift is approximated to

D ¼ p2
x þ p2

z

2ð1þ δÞ : ð18Þ

The approximation is enough for the calculation of the map
up to the next leading orders.

IV. EFFECTIVE THIN MAP

In order to calculate the map, we would like to briefly
review some of the Lie algebraic techniques in this section.

A. Magnus series

Let Hðsjs0Þ be the time evolution operator from s0 to s
which acts on canonical variables of the Hamiltonian
system such that xðsÞ ¼ H½xðs0Þ; s�xðs0Þ, where x is the
set of canonical variables and s is the time variable. Then it
satisfies the following differential equation [15]:

d
ds

H½xðs0Þ; s� ¼ −H½xðs0Þ; s�∶H½xðs0Þ; s�∶; ð19Þ

where H is the Hamiltonian and the pair of colons is
Dragt’s notation [15] of the Poisson bracket. Magnus’s
exponential solution of the differential equation of oper-
ators such as Eq. (19) is given by [15]

Hðsjs0Þ ¼ exp ½∶ΩHðsjs0Þ∶�;

ΩHðsjs0Þ ¼ −
Z

s

s0

ds1Hðs1Þ

þ 1

2

Z
s

s0

ds1

Z
s1

s0

ds2∶Hðs2Þ∶Hðs1Þ þOðH3Þ;

ð20Þ

where ΩH is the Lie map generator. Unlike a Dyson series,
the exponent solution is symplectic.

B. Perturbation

Let VðsÞ ¼ HðsÞ −DðsÞ, where D is the drift part of the
Hamiltonian which is integrable. And let Hðsjs0Þ ¼
Pðsjs0ÞDðsjs0Þ be the time evolution operator of the
Hamiltonian system, where Dðsjs0Þ is the unperturbed
map such that

d
ds

Dðsjs0Þ ¼ −Dðsjs0Þ∶DðsÞ∶: ð21Þ

Then the perturbation map Pðsjs0Þ is given by [15]

Pðsjs0Þ ¼ exp ½∶ΩVðsjs0Þ∶�;

ΩVðsjs0Þ ¼ −
Z

s

s0

ds1∶Dðs1js0ÞVðs1Þ þ
1

2

Z
s

s0

ds1

Z
s1

s0

ds2

× ∶∶Dðs2js0ÞVðs2Þ∶Dðs1js0ÞVðs1Þ∶: ð22Þ

Note that the Lie map of the time-independent Hamiltonian
is Hðsþ ljsÞ ¼ expð−∶Hl∶Þ. Therefore, the exponent of
the Magnus solution corresponds to the effective thin
Hamiltonian.

C. Effective thin map of dipole entrance

Let HF ¼ Dþ VF and HB ¼ Dþ VB be the fringe field
and ideal bending magnet Hamiltonian, respectively. And
letD, F , and B be the Lie map of the drift, fringe field, and
ideal bend, respectively. Then they can be factorized into

F ðLj − LÞ ¼ exp ½∶ΩF∶�DðLj − LÞ; ð23Þ

BðLj0Þ ¼ exp ½∶ΩB∶�DðLj0Þ: ð24Þ

The effective thin map M is the fringe field map sand-
wiched by the inverse drift and inverse ideal bend map:

KILEAN HWANG and S. Y. LEE Phys. Rev. ST Accel. Beams 18, 122401 (2015)

122401-4



M ¼ D−1ð0j − LÞF ðLj − LÞB−1ðLj0Þ
¼ exp ½∶D−1ð0j − LÞΩF∶� exp ½−∶ΩB∶�
¼ exp ½∶D−1ð0j − LÞΩF∶ − ∶ΩB∶

−
1

2
∶∶D−1ð0j − LÞΩF∶ΩB∶þ � � ��

≡ exp ½∶ΩM∶�; ð25Þ

where we have used the Baker-Campbell-Hausdorff
formula [15]. Defining the interaction picture potential by

V intðsÞ ¼ Dðsj0ÞVðsÞ; ð26Þ
the Lie map generator ΩM becomes

ΩM ¼ −
Z

L

−L
ds1V int

F ðs1Þ þ
Z

L

−0
ds1V int

B ðs1Þ

þ 1

2

Z
L

−L
ds1

Z
s1

−L
ds2∶V int

F ðs2Þ∶V int
F ðs1Þ

−
1

2

Z
L

0

ds1

Z
s1

0

ds2∶V int
B ðs2Þ∶V int

B ðs1Þ

−
1

2

Z
L

−L
ds2

Z
L

0

ds1∶V int
F ðs2Þ∶V int

B ðs1Þ: ð27Þ

V. CALCULATION RESULT

The integration in Eq. (27) is over the longitudinal
coordinate s of the design orbit. However, the measurement
of the field along the curved frame can be cumbersome.
Therefore, we will convert the integration variable from s to
s̄, using Eq. (2).
In addition, we define the dimensionless field integration

parameters

K0 ¼
Z

∞

−∞

B0Θðs̄Þs̄ − Bzs̄
B0g2

ds̄; ð28Þ

K1 ¼
Z

∞

−∞

B0Θðs̄Þ − Bz

B0g
ds̄; ð29Þ

K2 ¼
Z

∞

−∞

BzðB0 − BzÞ
B2
0g

ds̄; ð30Þ

K3 ¼ g
Z

∞

−∞

B0
zB0

z

B2
0

ds̄; ð31Þ

K4 ¼
R
g2

Z
∞

−∞

∂2
x̄Bzs̄2

B0

ds̄; ð32Þ

K5 ¼
R
g

Z
∞

−∞

∂2
x̄Bzs̄
B0

ds̄; ð33Þ

K6 ¼ R
Z

∞

−∞

∂2
x̄Bz

B0

ds̄; ð34Þ

where Θðs̄Þ is the step function which is 1 inside of the
dipole and 0 outside of the dipole, and we set L ¼ ∞.
Although the normalization constants R and g will cancel
out with the coefficients of Eqs. (35) and (36), this
normalization makes the field integration parameters uni-
versal. This means they are about same order of magnitude
for all dipoles. Among them, K2 is the well-known
parameter so-called Field INTegration (FINT) which is
responsible for vertical focusing correction [1,2].
Then, Eq. (27), the Lie map generator for the dipole

entrance, becomes

ΩM ¼ x
cos θE

g
ρ
K1 − x

sec3θE sin θE
2ð1þ δÞ

g2

ρ2
K0 þ px

sec2θE
ð1þ δÞ

g2

ρ
K0 þ

xpx − zpz

1þ δ

g
ρ
K1

sin θE
cos2θE

þ x2 − z2

2

tan θE
ρ

−
x2

2

sin2θE
2ρð1þ δÞcos3θE

g
ρ
K1 þ

z2

2

sec3θE
ð1þ δÞ

�
g
2ρ2

K1 þ ð1þ sin2θEÞ
g
ρ2

K2

�

−
x3

3!

tan3θE
2ρ2ð1þ δÞ þ

xz2

2

�
tan θEsec2θE
2ρ2ð1þ δÞ

�
þ
�
x2px − z2px − 2xzpz

2ð1þ δÞ
�
tan2θE

ρ
−

z2px

2ρð1þ δÞ

þ z4

4!

�
4

cos θE
−

8

cos3θE

�
K3

ρ2g
þ x

sin2θE
2cos3θE

g2

ρR
K4 þ

z2 − x2

2

sin θE
cos3θE

g
ρR

K5 þ
�
xz2

2
−
x3

3!

�
K6=ρR
cos3θE

: ð35Þ

In the same way, one can calculate the Lie map generator for the dipole exit:

ΩM ¼ x
cos θE

g
ρ
K1 − x

sec3θE sin θE
2ð1þ δÞ

g2

ρ2
K0 − px

sec2θE
ð1þ δÞ

g2

ρ
K0 −

xpx − zpz

1þ δ

sin θE
cos2θE

g
ρ
K1

þ x2 − z2

2

tan θE
ρ

−
x2

2

sin2θE
2ρð1þ δÞcos3θE

g
ρ
K1 þ

z2

2

sec3θE
ρð1þ δÞ

�
g
2ρ2

K1 þ ð1þ sin2θEÞ
g
ρ2

K2

�

DIPOLE FRINGE FIELD THIN MAP FOR COMPACT … Phys. Rev. ST Accel. Beams 18, 122401 (2015)

122401-5



−
x3

3!

tan3θE
2ρ2ð1þ δÞ þ

xz2

2

�
tan θEsec2θE
2ρ2ð1þ δÞ

�
−
�
x2px − z2px − 2xzpz

2ð1þ δÞ
�
tan2θE

ρ
þ z2px

2ρð1þ δÞ

þ z4

4!

�
4

cos θE
−

8

cos3θE

�
K3

ρ2g
þ x

sin2θE
2cos3θE

g2

ρR
K4 þ

z2 − x2

2

sin θE
cos3θE

g
ρR

K5 þ
�
xz2

2
−
x3

3!

�
K6=ρR
cos3θE

: ð36Þ

A. Discussion on bending angle

By definition, the design bending angle is given by

θ ¼
Z

ds
ρ
≃

Z
ds̄
ρ
: ð37Þ

However, the actual bending angle is

θ ¼
Z

dl
Bz

ρB0

≃
Z

ds̄
Bz

ρB0

; ð38Þ

where l is the path length. Therefore, in order to meet the
design bending angle to the leading order, we require the
integration parameter K1 to be zero:

K1 ¼
Z

∞

−∞

B0Θðs̄Þ − Bz

B0g
ds̄ ¼ 0: ð39Þ

Then, the mapping equations by Eqs. (35) and (36)
become, for the dipole entrance,

Δx ¼ −
sec2θE
1þ δ

g2

ρ
K0 −

x2tan2θE
2ρð1þ δÞ þ

z2 sec2θE
2ρð1þ δÞ ; ð40Þ

Δz ¼ xztan2θE
ρð1þ δÞ ; ð41Þ

Δpx ¼ −
sec3θE sin θE

1þ δ

g2

ρ2
K0 þ x

tan θE
ρ

þ z2

2

tan θE þ 2tan3θE
ρ2ð1þ δÞ þ xpx − zpz

1þ δ

tan2θE
ρ

þ sin2θE
2cos3θE

g2

ρR
K4 − x

sin θE
cos3θE

g
ρR

K5 þ
z2 − x2

2cos3θE

K6

ρR
;

ð42Þ

Δpz ¼ z

�
−
tan θE
ρ

þ 1þ sin2θE
ð1þ δÞcos3θE

g
ρ2

K2

�
−

zpx

ρð1þ δÞ
−
xpz þ zpx

ρð1þ δÞ tan2θE

þ z3

1þ δ

K3

ρ2g

�
2

3 cos θE
−

4

3cos3θE

�
þ xz
cos3θE

K6

ρR
:

ð43Þ
From Eqs. (40) and (42), we find that there is a closed orbit
and momentum deviation. The mapping equations for the
dipole exit are

Δx ¼ sec2θE
1þ δ

g2

ρ
K0 þ

x2tan2θE
2ρð1þ δÞ −

z2 sec2θE
2ρð1þ δÞ ; ð44Þ

Δz ¼ −
xztan2θE
ρð1þ δÞ ; ð45Þ

Δpx ¼ x
tan θE
ρ

−
x2 þ z2

2

tan3θE
ρ2ð1þ δÞ −

xpx − zpz

1þ δ

tan2θE
ρ

þ sin2θE
2cos3θE

g2

ρR
K4 − x

sin θE
cos3θE

g
ρR

K5 þ
z2 − x2

2cos3θE

K6

ρR
;

ð46Þ

Δpz ¼−z
�
tanθE
ρ

−
1þ sin2θE

ð1þ δÞcos3θE
g
ρ2

K2

�
þ zpx

ρð1þ δÞ
þ xpzþ zpx

ρð1þ δÞ tan2θE

þ xz
sec2θE tanθE
ρ2ð1þ δÞ þ z3

1þ δ

K3

ρ2g

�
2

3cosθE
−

4

3cos3θE

�

− z
sinθE
cos3θE

g
ρR

K5þ
xz

cos3θE

K6

ρR
: ð47Þ

Note that there is a closed orbit deviation also, but the
closed orbit momentum deviation is not present for the
dipole exit. The octupolelike potential is present for both

TABLE I. The effect of the nonlinear fringe field on chroma-
ticities ξ and nonlinear detuning parameters α of Tsinghua
Thomson scattering X-ray source (TTX). The 3rd-order and
4th-order fringe field kicks are gradually turned on, and the
nonlinear optics parameters are measured from the tracking data.
“Kin” represents the case when only linear fringe field kicks are
used in tracking and thus the nonlinear optics contribution comes
purely from the nonlinear kinetics. “Sext” represents the case
when a sextupolelike fringe field kick is added, and “Oct”
represents the case when an octupolelike fringe field kick is
finally added. The 1st-order chromaticity ξ comes from a
sextupolelike potential, and thus the octupolelike fringe field
kick does not contribute. And since the octupolelike fringe field
kick is vertical, it contributes only on the vertical detuning
parameter.

Switch αxx½m−1� αxz½m−1� αzz½m−1� ξx ξz

Kin 20.3 5.84 12.4 −2.09 −0.99
Sext 14.6 669 389 −1.81 −9.71
Oct 14.5 669 1021 −1.81 −9.71
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the entrance and exit. Note also that the closed orbit
deviation is proportional to g2, while the octupolelike
potential is inversely proportional to g. Therefore, as one
makes the fringe field as sharp as possible, the closed orbit
deviation will vanish, but the octupolelike potential and
higher nonlinear effect will increase drastically. In addition,
since the octupolelike potential is coupled with z3, it can
contribute to large vertical detuning as shown in Table I.

VI. SIMULATION

Now, we verify our derivation via computer simulation.
We track the particle through the Lorenz force which can be
simplified to

d
dτ

p̄ ¼ p̄ × B̄;

d
dτ

x̄ ¼ p̄; ð48Þ

where

dτ ¼ p0

mγ
dt;

B̄ ¼ B
Bρ

;

x̄ ¼ x;

p̄ ¼ pmech

p0

; ð49Þ

where pmech indicates the mechanical momentum. The
definition of τ is somewhat similar to proper time in
relativity, but here it is normalized to a length dimensional
quantity.

A. Simulation of thin map

An effective thin map is obtained by sandwiching the
back transforms of the drift and dipole at each end of
the fringe field map. As for the dipole entrance, we used the
following steps.
(i) Transform from fsFrame to rFrame (rectangular frame

perpendicular to the edge).
(ii) Back drift to s̄ ¼ −L, where we used a large enough

value of the field boundary L ¼ 30g.
(iii) Apply the leapfrog method until the particle

reaches s̄ ¼ L.
(iv) Back transform using an ideal dipole field until the

particle reaches s̄ ¼ −x̄ tan θE, which corresponds to s ¼ 0.
(v) Transform back to fsFrame.

B. B-field setting

Throughout the simulation, we assume the horizontal
width is large enough that b̄ is ignorable. Then the magnetic
field can be obtained from

Φ̄ðx̄; s̄; z̄Þ
Bρ

¼ ā z̄−ā00
z̄3

3!
þ āð4Þ

z̄5

5!
− āð6Þ

z̄7

7!
þ � � � : ð50Þ

And we use the the logistic functional fringe field
model

āðs̄Þ ¼ 1=ρ
1þ exp ð−s̄=gÞ : ð51Þ

This setting gives a simple analytic expression for field
integration parameters:

K0 ¼ π2=6;

K1 ¼ 0;

K2 ¼ 1;

K3 ¼ 1=6;

K4;5;6 ¼ 0: ð52Þ
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FIG. 3. Δxco for the dipole entrance.
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FIG. 4. Δpx;co for the dipole entrance.
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C. Closed orbit effect for dipole entrance

The closed orbit effect can be checked by setting all the
initial canonical variables to zero, i.e., x ¼ z ¼ px ¼
pz ¼ δ ¼ 0. In this simulation, θE ¼ π=8 is used as an
example. The simulation results for the dipole entrance
with various values of g and ρ are shown in Figs. 3 and 4.
They show good agreement with our derivation. Note that
the closed orbit deviation is proportional to g2 and about the
order of a millimeter.

D. Closed orbit effect for dipole exit

In the same way, the simulation results for the dipole exit
with various values of g and ρ are shown in Figs. 5 and 6.
Recall that there was no closed orbit momentum deviation
for the dipole exit up to the order of g2. Therefore, we fit it
to the next order Oðg3=ρ2Þ.

E. Octupolelike potential effect

Since we have good agreement with Ref. [1] up to the
sextupolelike potential, we jump to verify the octupolelike

potential effect, which is present in the following
differential:

∂3

∂z3 Δpz ¼
K3

ð1þ δÞρ2g
�

4

cos θE
−

8

cos3θE

�
: ð53Þ

Note that the octupolelike potential is inversely proportional
to the fringe field extent. In order to verify the differential,
we exploit the automatic differentiation technique [17]
similar to the differential algebra [7]. The theoretical and
simulated values of the differential ∂3

zΔpz are shown in
Fig. 7.

VII. UNDERSTANDING CLOSED ORBIT EFFECT

The fringe field effect on the closed orbit deviation rises
from the nonconstant curvature of the particle trajectory.
Consider a particle initially following the design orbit

FIG. 8. Illustration of the difference between the particle orbit
and the design orbit at the dipole exit. The bold line represents the
design orbit, and the thick dashed line represents the particle
trajectory. The curvature of the particle trajectory increased step
by step. Initially, ρ is the design curvature, then ρ1 ¼ 2ρ and
ρ0 ¼ 3ρ, and finally exits the field region. The three large dots
correspond to the origins of the three curvatures.
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FIG. 6. Δpx;co for the dipole exit.
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FIG. 5. Δxco for the dipole exit.
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inside of a dipole. When the particle starts to see the fringe
field near the dipole exit, the deflecting angle becomes
smaller and smaller. Therefore, when it passes through the
fringe field, there is a net displacement indicated by xc in
Fig. 8. Note that if the total deflection angle is the same as
the design angle of the dipole, there is only a closed orbit
deviation and no closed orbit momentum deviation.
Figure 9 illustrates how the closed orbit and momentum

deviation arise by the dipole fringe field at the entrance.
Consider a particle initially following the design orbit
outside of a dipole. When the particle starts to see the fringe
field near the dipole entrance, it starts to deflect slowly.
When it finally passes through the fringe field, we see that

the particle trajectory and the design orbit differ not only by
a displacement but also by an angle indicated by the two red
tangential lines.
Figure 10 illustrates that the closed orbit effect of the

dipole entrance and exit fringe field does not cancel out
when a particle passes through a dipole.

VIII. UNDERSTANDING OCTUPOLELIKE
POTENTIAL

The physics behind the octupolelike potential is the
Maxwellian constraint on the magnetic potential:

∇2Φ ¼ 0: ð54Þ

As the fringe field extent decreases, ∂2
s̄Φ increases. Since

the horizontal variation of the field is slow, this must be
canceled by ∂2

zΦ. Therefore, the magnetic potential that
obeys the Maxwellian constraint is

Φ ¼ −Bzþ B00 z
3

3!
þ � � � : ð55Þ

Note that the second term is a sextupolelike potential.
However, as the integrated effect of it is zero

R
B00ds ¼ 0,

the leading order of its effect is the 2nd order of this
sextupolelike potential which is an octupolelike potential.
This is similar to the fact that sextupoles in an accelerator
contribute to the nonlinear detuning by concatenation of all
sextupoles.

IX. DETUNING BY OCTUPOLELIKE POTENTIAL

One of the interesting effects of the octupolelike potential
is the detuning effect. Since a Lie map generator of an
accelerator element is an effective Hamiltonian multiplied by
the length of the element, we find the effective octupolelike
potential of Eqs. (35) and (36) can be written as [18]

Hoct ¼ δðsÞ z
4

4!

�
4

cos θE
−

8

cos3θE

�
K3

ρ2g
; ð56Þ

where δðsÞ indicates the Dirac delta function at the dipole
edge. Therefore, the vertical detuning parameter is

αzz ¼ −
1

16π

�
4

cos θE
−

8

cos3θE

�
K3

ρ2g

Z
β2zðsÞδðsÞds

≃ −
β2zð0Þ
16π

�
4

cos θE
−

8

cos3θE

�
K3

ρ2g
; ð57Þ

where, in the last line, we assumed that the betatron function
is continuous across the edge, i.e., βzð0−Þ≃ βzð0þÞ which
usually is true. By dimensional analysis, the sextupolelike
potential of the fringe field edge will contribute to the
detuning parameter by an order of Oðβ2xβz=ρ4Þ. Therefore,
the effect by octupolelike potential on the detuning

FIG. 9. Illustration of the difference between the particle orbit
and the design orbit at the dipole entrance. The bold line
represents the design orbit, and the thick dashed line represents
the particle trajectory. The curvature of the particle trajectory
decreased step by step. Initially, ρ0 ¼ 3ρ, then ρ1 ¼ 2ρ, and
finally reaches the design curvature ρ. The three large dots
correspond to the origins of the three curvatures. The blue line
indicates the coordinate s where the particle orbit curvature
finally becomes ρ. Red lines are tangent to the particle and design
orbit at s.

FIG. 10. Particle trajectory passing through the dipole.
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parameter can be larger as the fringe field extent becomes
shorter. It is worth mentioning that the hard-edge model is ill
defined if one goes beyond a quadrupole, and the fact that
the detuning term by an octupolelike potential is infinite in
the hard-edge model has already been known [7,19].

X. EXAMPLE ON A COMPACT RING DESIGN

The effect of the dipole fringe field is important to
compact storage rings. As an example, we discuss the
dipole fringe field effect on a Tsinghua Thomson scattering
X-ray (TTX) source, which is a 4.8 meter storage ring
composed of all linear elements. The ring consists of a pair
of quadrupoles which are used to adjust the damping
partition number and four dipoles whose edge angles are
chosen for proper betatron tunes [4]. The layout is shown in
Fig. 11. The bending radius is ρ ¼ 0.24 m, and the fringe
field extent and FINT K2 assumed for the machine design
were g ¼ 25.4 mm and K2 ¼ 0.9, respectively [4]. In order
to see the nonlinear effects of the dipole fringe field, we
gradually turned on the sextupolelike fringe field potential
and then the octupolelike fringe field potential and mea-
sured nonlinear detuning parameters and chromaticities on
tracking data. As for the 4th-order fringe field effect, we
assumedK3 ¼ 1=6, which comes from a logistic functional
model like Eq. (52). The result is shown in Table I. Note
that even if TTX consists of the all linear elements the
nonlinear kinetics D ¼ −ð1þ x

ρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 − p2

x − p2
z

p
contribute to nonlinear detuning and chromaticity signifi-
cantly. However, it shows that the nonlinear fringe field
effect contribution on the nonlinear optics parameter can be
more important especially for the vertical motion.
Since TTX is very compact, it is sensitive to the change

of fringe field extent by Eqs. (43) and (47). Therefore, in
order to see the scaling law of detuning parameter Eq. (57),
we variedK2 along with g such that gK2 is constant. And as
shown in Fig. 12, the result agreed with the theory Eq. (57).

Next, we turned on K0, which is responsible for the
closed orbit deviation, and searched for the fixed point.
The result can be found in Fig. 13. Note that the closed
orbit of several millimeters is generated. As the beam pipe
radius is also about millimeter order, there can be severe
beam loss. The concave corresponds to the dipole loca-
tion, and the convex corresponds to the focusing quadru-
pole location. It shows that, as the dipole fringe field
introduces a closed orbit deviation, the focusing quadru-
poles appear to be misaligned and effectively work as

FIG. 11. TTX layout: Four dipoles in red and two focusing
quads in blue.
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FIG. 12. Contribution of an octupolelike potential of the
effective fringe field map on the detuning parameter. The super-
script “4th” denotes the detuning contributed by only the 4th-order
potential. The tune is calculated by applying a numerical analysis
of fundamental frequencies [20] algorithm on numerical turn-by-
turn tracking data. When we track the particles, we gave a fringe
field kick according to Eqs. (40)–(47) which are verified by
Figs. 3–7 and Ref. [1]. And the detuning is calculated from the
difference of the tunes for different initial amplitudes of the
betatron motion on tracking data.
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FIG. 13. Closed orbit of TTX introduced by the dipole fringe
field effect. The fringe field effect is assumed equal to the dipole
magnetic gap of 25.4 mm.
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bending magnets. This example illustrates the importance
of the closed obit deviation and corresponding misalign-
ment error for a compact ring.

XI. CONCLUSION

We derived the effective thin Lie map generator and
mapping equations of transverse dynamics for the dipole
fringe field up to an octupolelike potential. Two major
findings were the closed orbit deviation, which is of the
order of g2=ρ, and the octupolelike potential, which is of
the order of 1=ðgρ2Þ. These two effects were not included in
SLAC-75 [1].
The closed orbit effects depend mainly on two field

integration parameters K0 and K1. The field integration
parameter K1 must vanish by definition or, equivalently, by
dipole design in order to have the intended bending angle as
the design orbit. We also showed that the closed orbit
deviation can be large enough to graze the beam pipe for a
compact ring.
The octupolelike potential was shown to be inversely

proportional to the fringe field extent. Similarly, higher-
order nonlinearities are expected to be inversely propor-
tional to the higher power of fringe field extent.
Therefore, a careful dipole fringe field design will be

needed for the compromise between the closed orbit and
nonlinearities. For example, when the beam emittance is
small, the closed orbit deviation is a more important
concern than the nonlinearities. Therefore, one would like
to minimize the fringe field extent in this case.
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