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Abstract

In multivariate time series analysis, spectral coherence measures the linear dependency be-

tween two time series at different frequencies. However, real data applications often exhibit

nonlinear dependency in the frequency domain. Conventional coherence analysis fails to

capture such dependency. The quantile coherence, on the other hand, characterizes nonlin-

ear dependency by defining the coherence at a set of quantile levels based on trigonometric

quantile regression. This paper introduces a new estimation technique for quantile coherence.

The proposed method is semi-parametric, which uses the parametric form of the spectrum

of a vector autoregressive (VAR) model to approximate the quantile coherence, combined

with nonparametric smoothing across quantiles. At a given quantile level, we compute the

quantile autocovariance function (QACF) by performing the Fourier inverse transform of the

quantile periodograms. Subsequently, we utilize the multivariate Durbin-Levinson algorithm

to estimate the VAR parameters and derive the estimate of the quantile coherence. Finally,

we smooth the preliminary estimate of quantile coherence across quantiles using a nonpara-

metric smoother. Numerical results show that the proposed estimation method outperforms

nonparametric methods. We show that quantile coherence-based bivariate time series clus-

tering has advantages over the ordinary VAR coherence. For applications, the identified

clusters of financial stocks by quantile coherence with a market benchmark are shown to

have an intriguing and more informative structure of diversified investment portfolios that

may be used by investors to make better decisions.
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Quantile spectral analysis, VAR approximation.
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1 Introduction

For univariate time series, motivated by the least-squares interpretation of the ordinary

periodogram (OP), Li (2012) proposed the quantile periodogram (QPER) based on trigono-

metric quantile regression. The QPER, like the ordinary periodogram, has an asymptotic

exponential distribution where the mean function, known as the quantile spectrum, is a

scaled version of the ordinary spectrum of the level-crossing process. In Li (2012) the QPER

is shown to be resistant to nonlinear data distortion in the sense that any nonlinear memo-

ryless transformation only affects the scaling constant in the asymptotic distribution in the

given quantile. Wise et al. (1977) shows that OP is not resistant to such nonlinear data

transformations as the power spectrum is distorted.

The QPER can be extended to multivariate time series, and in particular, the quantile

coherence quantifies the nonlinear dependency across time series by defining coherence as a

function of quantile levels as well as frequencies. The quantile coherence has an advantage

over its ordinary coherence counterpart as its asymptotic distribution relies on the level-

crossing cross-spectrum, which, like QPER, is resistant to nonlinear data distortion due to

the robustness of quantile regression (Li, 2013). Even though quantile coherence is a more

effective tool, how to estimate it remains an interesting question.

Periodogram smoothing is the first that comes to mind. In time series analysis, many

methods exist to smooth periodograms for univariate time series. For instance, Shumway

and Stoffer (2017) presented several nonparametric periodogram smoothing approaches that

can be used across frequencies, such as moving-average smoothing. The optimally smoothed

spline (OSS) estimator by Wahba (1980) selects the smoothing parameter by minimizing the

expected integrated mean square error. Some other common spectral estimations are based

on the likelihood. For instance, Capon (1983) used a high-resolution estimation method,
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known as the maximum-likelihood method (MLM). MLM filters the time series to produce

the minimum-variance unbiased estimator of the spectrum. For bivariate time series data,

Pawitan and O’Sullivan (1994) estimated the spectrum by means of the penalized Whittle

likelihood. In terms of parametric estimators, Burg (1975) presented the maximum entropy

type of estimators, which in the univariate case results in the autoregressive (AR) spectral

approximation. Dette et al. (2015) demonstrated that a window smoother of the quantile

periodogram may consistently estimate the quantile spectrum across frequencies. Chen et al.

(2021) employed a semi-parametric estimation of the quantile spectrum by using the approx-

imation capability of the AR model. A nonparametric smoother is proposed to smooth both

quantile levels and AR coefficients in the partial autocorrelation function (PACF) domain.

Baruńık and Kley (2019) introduced a nonparametric quantile coherency estimator based on

the level-crossing process; in addition, to achieve consistency of the estimator, they proposed

smoothing the proposed copula cross-periodogram across frequencies based on the results for

the univariate case, initially introduced by Kley et al. (2016) (Proposition 3.4).

In this paper, we introduce an alternative technique for estimating quantile coherence.

Our proposed method is semi-parametric. It combines the parametric version of the (VAR)

spectrum with nonparametric smoothing across quantile levels to estimate the quantile coher-

ence. Our estimator is based on the assumption that true quantile coherence, as a bivariate

function of frequencies and quantiles, exhibits smoothness across quantile levels.

A key distinction between our approach and the method introduced by Baruńık and

Kley (2019) lies in the nature of the estimated quantile coherence. Our estimator considers

both frequencies and quantile levels as bivariate inputs, encompassing a range of quantile

values in the interval (0,1) rather than a fixed level. Furthermore, the estimator proposed by

Baruńık and Kley (2019) employs kernel smoothing across frequencies, requiring the precise

selection of a bandwidth parameter and the type of kernel for consistency. In contrast, our
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semi-parametric approach utilizes the VAR representation of the quantile spectra at each

quantile level. The order of the VAR can be determined using an automatic selection method

such as AIC, which simplifies the process compared to optimal bandwidth selection.

The concept of employing a parametric autoregressive (AR) model for spectrum estima-

tion has been advocated by researchers such as Akaike (1969); Parzen (1983); Newton and

Pagano (1981). Additionally, the maximum entropy framework has been used to character-

ize autoregressive spectral densities as models for the spectral density of a stationary time

series (Burg, 1975; Choi, 1993; Parzen, 1982). In the univariate case, the spectral density

function of a stationary process can be approximated by the spectral density function of an

autoregressive (AR) process Shumway and Stoffer (2017) (Property 4.7, see Appendix C.6

for more details). This property also holds for other time series representations, such as

the moving average (MA) process or the autoregressive moving average (ARMA) process.

For multivariate time series, Wiener and Masani (1957) (Theorem 7.13) demonstrates that

a given non-negative Hermitian matrix-valued function can be factorized into the product of

two functions defined over the complex plane. Wiener and Masani (1958) (Section 2) intro-

duces the vector autoregressive (VAR) as a means of determining the matrix coefficients of

the generating functions in the factorization representation. While we have not conducted a

thorough analysis of the theoretical properties of our proposed estimator, empirical studies

indicate its effectiveness in practical applications. We acknowledge that further theoretical

development is a potential avenue for future research.

Our proposed parametric approach for estimating quantile coherence is a three-step pro-

cess. Firstly, we derive the quantile autocovariance function (QACF) from the quantile

periodograms at fixed quantile levels. Secondly, we compute the VAR parameters based on

the QACF using the Durbin-Levinson algorithm. The order of the VAR approximation for

all quantile levels is automatically selected using the AIC criterion (Akaike, 1974). Thirdly,
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we obtain the initial estimate of quantile coherence using the VAR models. Finally, we

employ a nonparametric smoother to refine the initial estimate of quantile coherence along

quantile levels for each frequency. Under the assumption that the degree of smoothness

across quantiles does not change dramatically at different frequencies, we introduce a cross-

validation criterion to select the common tuning parameter for all frequencies. To evaluate

the performance of our estimation method, we provide some empirical evidence through a

simulation study.

Spectral features, including spectral coherence, have been used as input for many ap-

plications in time series classification and clustering (Euán et al., 2019; Chen et al., 2021).

Maadooliat et al. (2018) applied their proposed spectral density estimation methods for

brain signal clustering. Euán et al. (2019) developed a coherence-based hierarchical cluster-

ing method with application to brain connectivity. The quantile frequency analysis (QFA)

(see, e.g., Li, 2020, 2021) uses a two-dimensional function of the quantile spectral estimate by

varying the quantile level as well as the trigonometric frequency parameter. The QFAmethod

has been used in two ways in classification. The first method treats quantile periodograms as

images that can be directly fed into a deep-learning image classifier like convolutional neural

networks (CNN). The second method employs dimension-reduction techniques and feeds the

resulting features into a general-purpose classifier such as the support vector machine (Hastie

et al., 2017). Chen et al. (2021) used the former approach to classify earthquake waves. Li

(2020) used the latter approach to classify real-world ultrasound signals for nondestructive

evaluation of the structural integrity of aircraft panels.

Financial time series clustering was examined by Bishnoi and Ravishanar (2018) using

a quantile periodogram approach with stock price data from various sectors. In the realm

of risk analysis, Baruńık and Nevrla (2022) introduced the concept of quantile spectral beta

(QSB) to represent risk, leveraging the quantile cross-spectral densities proposed by Baruńık
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and Kley (2019) to capture tail and spectral risks at a specific quantile level.

In the application section, we investigate the problem of clustering 52 stocks based on

their quantile coherence with the S&P 500 (SPX) index at specific quantile regions. For

each stock, the daily log returns are coupled with the corresponding values from the S&P

500 closing prices to a 2D vector time series from which the quantile coherence is computed.

The quantile coherence takes into account both frequencies and quantile levels and serves

as an input for hierarchical clustering. To evaluate the clusters produced using quantile

coherence, we compare them with the clusters generated using the ordinary coherence equiv-

alent. Furthermore, we analyze the behavior of the clusters obtained through the standard

time domain approach, which uses the beta coefficient in the Capital Asset Pricing Model

(CAPM). Our analyses reveal that quantile coherence not only provides additional valuable

information but also tends to produce more meaningful clusters.

The rest of the paper is organized as follows. In Section 2, we introduce the quantile

coherence and the proposed estimation procedure. The simulation study is presented in

Section 3, and the application to financial time series clustering is described in Section 4.

We conclude and discuss the paper in Section 5.

2 Methodology

In this section, we first introduce the quantile spectrum, the quantile periodogram, and the

quantile coherence in Section 2.1. In Section 2.2, we present the VAR spectral model and its

estimation. The VAR representation of the estimated quantile spectral matrix is presented

in Section 2.3. Finally, in Section 2.4, we present the proposed smoothing procedure for the

VAR spectrum.
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2.1 Quantile spectrum and quantile coherence

Assume Yt,j (j = 1, . . . , k) are k jointly stationary random processes. Let Fj(u) denote the

CDF of Yt,j which is a continuous function with the derivative Ḟj(u) > 0. Let λj,α denote the

α quantile of Yt,j for α ∈ (0, 1). Finally, let γτ,j,j′(α) := P{(Yt+τ,j − λj,α)(Yt,j′ − λj′,α) < 0}

denote the lag-τ level-crossing rate of Yt,j and Yt,j′ . Then, according to Li (2012, 2013), the

quantile cross-spectrum is defined as

sj,j′(ω, α) = ηj,αηj′,αfj,j′(ω, α),

where

fj,j′(ω, α) =
∞∑

τ=−∞

{
1− 1

2α(1− α)
γτ,j,j′(α)

}
exp(i2πωτ), i =

√
−1,

is called the level-crossing spectrum, and the scaling constants are defined as ηj,α :=√
α(1− α)/Ḟj(λj,α) and ηj′,α :=

√
α(1− α)/Ḟj′(λj′,α).

Given the observations Yt,j(t = 1, . . . , n) and quantile level α ∈ (0, 1), consider the

following quantile regression problem

β̂n,j(ω, α) := argmin
λj,α∈R,βj∈R2

n∑
t=1

ρα(Yt,j − λj − x⊤
t (ω)βj), (1)

where ρα(u) := u(α− I(u < 0)) and xt(ω) := [cos(2πωt), sin(2πωt)]⊤ for ω ∈ (0, 1/2).

Let β̂n,j(ω, α) := [Ân,j(ω, α), B̂n,j(ω, α)]
⊤ denote the quantile regression solution given

by Eq. (1), then, the quantile cross-periodogram between Yt,j and Yt,j′ is defined as

qj,j′,n(ω, α) = nzj(ω, α)z
∗
j′(ω, α), j, j′ = 1, . . . , k, (2)

where zj(ω, α) := 1
2

√
nÂn,j(ω, α)− iB̂n,j(ω, α). Notice that when j = j′ in Eq. (2), it
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becomes the quantile periodogram of the first kind as in Li (2012). In addition, with α = 0.5

it is the Laplace periodogram by Li (2008) as a special case.

Li (2013) provided the asymptotic properties of the quantile cross-spectrum for the

multivariate time series problem. A connection between the quantile periodogram/cross-

periodogram and the quantile spectra/cross-spectra was established in Li (2013) (Theo-

rem 11.3), which states that under suitable conditions, the quantile periodogram matrix

Qn(ω, α) := [qj,j′;n(ω, α)] is asymptotically distributed as ζζH, where ζ ∼ Nc(0,S(ω, α)),

with S(ω, α) := [sj,j′(ω, α)].

The (squared) quantile coherence between Yt,j and Yt,j′ is defined as

cj,j′(ω, α) =
|sj,j′(ω, α)|2

sj,j(ω, α)sj′,j′(ω, α)
. (3)

It takes values between 0 and 1.

2.2 VAR Spectral Model

The VAR spectral model of order p takes the form

SVAR(ω) = U−1
p (ω) Vp U−H

p (ω), (4)

where

Up(ω) = I−
p∑

r=1

Φ(r)e−i2πrω.

The model in (4), is the spectral matrix of the VAR process {Yt} which satisfies (Priestley,

1981)

Yt +Φ1Yt−1 + . . .+ΦpYt−p = ϵt, (5)

where Yt is a k-dimensional vector and Φ1, . . . ,Φp are k× k matrices, and ϵt is a multi-
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variate zero mean white noise process. Each of the components of the vector ϵt is a univariate

white noise process, uncorrelated with each other at different time points but possibly cross-

correlated at common time points.

Assuming stationarity on the VAR model, we can obtain the multivariate Yule-Walker

equations by multiplying both sides of Eq. (5) by Y⊤
t−h and taking expectations. Denote the

covariance matrix for Yt of nonzero lag h by Γ(h), this gives,

Γ(h) +Φ1Γ(h− 1) + . . .+ΦpΓ(h− p) = 0,

In matrix form, this can be written as

−[Γ(1)Γ(2) . . .Γ(p)] = [Φ1Φ2 . . .Φp]Γ̃, (6)

where

Γ̃ =


Γ(0) Γ(1) . . . Γ(p− 1)

Γ(1)⊤ Γ(0) . . . Γ(p− 2)
...

...
...

...

Γ(p− 1)⊤ Γ(p− 2)⊤ . . . Γ(0)


The Yule-Walker equations in (6) must be solved forΦr, r = 1, . . . , p. A brute-force approach

requires the inversion of kp× kp matrices. The multivariate version of the Durbin-Levinson

algorithm (see Appendix A.1) can be used to speed up the computation. From the VAR

spectral model of order p in (4), we can compute the ordinary VAR coherence by,

cj,j′(ω) =
|sj,j′(ω)|2

sj,j(ω)sj′,j′(ω)
.
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2.3 VAR estimator of quantile coherence

The ordinary periodogram matrix In(ω) for any frequency ω ∈ [0, 1) is defined by

In(ω) = J(ω)J∗(ω),

where J(ω) = n−1/2
∑n

t=1

(
Yt −Y

)
e−i2πωt and ∗ denotes the complex conjugate transpose.

It is easy to show that

In(ω) =
∑
|h|<n

Γ̂(h)e−ih2πω, (7)

where Γ̂(h) = n−1
∑n−h

t=1 (Yt+h −Y)(Yt −Y)⊤, h ≥ 0, and Γ̂(h) = Γ̂⊤(−h), h < 0. By the

2n-point inverse discrete Fourier transform, the sample autocovariance function (ACF) Γ̂(h)

can be recovered from the periodogram, as follows,

Γ̂(h) = (2n)−1

2n−1∑
l=0

In(ωl)e
ih2πωl , (8)

where ωl = l/2n. (See the Appendix A.2 for the mathematical proof). This relationship

motivates our VAR spectral estimator.

To estimate the quantile coherence, our approach involves utilizing a parametric VAR

(Vector Autoregressive) spectrum of order p to approximate the quantile spectral matrix

S(ω, αm) for a given set of equally spaced quantile levels αm,m = 1, . . . , nq within the interval

(0, 1). We obtain the raw extended quantile periodogram matrix Qn(ωl, αm) from the time

series, where ωl = l/2n and it is the quantile counterpart of the ordinary periodogram matrix

defined in Equation (7). The Fourier frequencies are computed in the first half and extended

symmetrically. By applying the 2n-point inverse Fourier transform to Q(ωl, αm), we obtain

the Quantile Autocovariance Function (QACF), following a similar procedure as described

in Equation (8). The QACF is computed as,
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Γ̂(h, αm) = (2n)−1

2n−1∑
l=0

Qn(ωl, αm)e
i2πωlh, h = 0, 1, . . . , n− 1. (9)

We use the multivariate Durbin-Levinson algorithm to solve the multivariate Yule-Walker

equations in (6) formed by Γ̂(h, αm) in Eq. (9) for each fixed αm. This algorithm produces

the VAR coefficients Φ̂(1, αm), . . . , Φ̂(p, αm) and the residual covariance matrix V̂p(αm) (see

Appendix A.1). The quantile VAR spectrum of order p can be expressed as

ŜQVAR(ω, αm) = Û−1
p (ω, αm) V̂p(αm) Û

−H
p (ω, αm), (10)

where,

Ûp(ω, αm) = I−
p∑

r=1

Φ̂(r, αm)e
−i2πrω.

We propose to choose the order of the VAR model by minimizing the Akaike information

criterion (AIC) (Akaike, 1974), i.e.,

p̂ = argmin
p∈{0,1,...,pmax}

{
1

nq

nq∑
m=1

n log |V̂p(αm)|+ 2k2p

}
,

where n is the length of the time series, k is the number of time series (Lütkepohl, 2005).

Some other order selection criterion includes the Bayesian information criterion (BIC) by

Schwarz (1978) and the corrected AIC (AICc) by Hurvich and Tsai (1989).

Let the j, j′-th entry of Ŝ(ω, αm) in (10) be denoted by ŝj,j′(ω, αm). Then, our preliminary

parametric estimate of the quantile coherence ĉj,j′(ω, αm) in (1) is defined as

ĉj,j′(ω, αm) =
|ŝj,j′(ω, αm)|2

ŝj,j(ω, αm)ŝj′,j′(ω, αm)
. (11)
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2.4 Smoothing spline procedure

Based on the underlying assumption that the true quantile coherence exhibits smoothness

across quantiles, we propose an improvement to the parametric estimator of quantile co-

herence outlined in equation (11). Our approach involves smoothing the estimates across

different quantile levels using smoothing splines for each frequency, while utilizing a shared

tuning parameter.

Let the preliminary parametric quantile coherence estimate in (11) be evaluated at nq

quantile levels αm(m = 1, . . . , nq). At each frequency ωl, we have a one-dimensional sequence

ĉj,j′(ωl, αm) : m = 1, . . . , nq which we would like to smooth by smoothing splines. A simple

way of doing so is to apply a standard smoothing spline procedure such as the smooth.spline

function in R to each of these sequences independently and let the smoothing parameters be

selected by the standard leave-one-out cross-validation technique. There are two potential

problems with this simple method. First, using different smoothing parameters for different

frequencies may introduce undesirable artifacts of discontinuity across frequencies; moreover,

the standard leave-one-out cross-validation criterion is known to be ineffective for dealing

with positive correlations (Altman, 1990; Wang, 1998) which we observed in the prelimi-

nary coherence estimate across quantile levels. To overcome these difficulties, we propose a

smoothing procedure that employs a common λ for all frequencies, so that the final quantile

coherence estimate can be expressed as

c̃(ωl, ·) := argmin
c(ωl,·)

{
nq∑

m=1

[ĉ(ωl, αm)−c(ωl, αm)]
2+λ

∫ 1

0

[
∂2c(ωl, α)

∂α2

]2
dα

}
, l = 1, . . . , nf . (12)

To select the common smoothing parameter λ, we propose a special K-fold cross-

validation procedure. At each frequency ωl the sequence ĉj,j′(ωl, αm) : m = 1, . . . , nq is ran-
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domly split into K (approximately) equal-size groups. At each κ = 1, . . . ,K, one of the

groups is reserved for testing, and the remaining K − 1 groups for training. Unlike typical

K-fold cross-validation procedure, we use the mean value of the coherence estimates in the

training set denoted as cpred,κ(ωl), to predict the mean value of the coherence estimates in

the testing set, denoted as ctest,κ(ωl). The smoothing parameter λ is chosen as the minimizer

of the following CV criterion

CV(λ) =
K∑

κ=1

{
nf∑
l=1

[cpred,κ(ωl)− ctest,κ(ωl)]
2

}
. (13)

The proposed CV criterion in (13) uses the mean value prediction to deal with the

correlation of the sequences across quantile levels. The standard K-fold cross-validation

criterion predicts individual values in the test set. Because the residuals are positively

correlated, the resulting tuning parameter tends to be very small for all frequencies and the

level of smoothing tends to be minimal.

3 Simulation Study

In this section, we present the results of a simulation study where the proposed method

is compared with some alternatives in estimating the quantile coherence of simulated time

series and the results of clustering bivariate time series based on both the quantile and the

ordinary coherence.

3.1 Simulation setup

The models considered in this simulation setting are
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1. VAR(2) model: Zt = A1Zt−1 +A2Zt−2 +Wt, Wt ∼ N (0,Σ),

A1 =

1.5 −0.6

0.3 0.2

 A2 =

−0.5 0.3

0.7 −0.2

 Σ =

4 1

1 2


2. VARMA(2,1) model: Zt = A1Zt−1 +A2Zt−2 +Wt −B1Wt−1, Wt ∼ N (0,Σ)

A1 =

 0.816 −0.623

−1.116 1.074

 A2 =

−0.643 0.592

0.615 −0.133



B1 =

 0 −1.248

−0.801 0

 Σ =

4 2

2 5


3. Mixture model highly coherent at lower quantiles: the vector time series, Zt = (Zt,1, Zt,2)

⊤

is a nonlinear mixture of three components given by

ξ1 := W1(Ut,1)Ut,2 + (1−W1(Ut,1))Ut,1

Zt,1 := W2(ξ1)Ut,3 + (1−W2(ξ1))ξ1,

where Ut,1, Ut,2, and Ut,3 are AR processes of mean zero and variance 1, satisfying

Ut,1 = 0.8Ut−1,1 + wt,1

Ut,2 = −0.7Ut−1,2 + wt,2

Ut,3 = 0.55Ut−1,1 − 0.81Ut−2,3 + wt,3,

where wt,1, wt,2, and wt,3 are mutually independent Gaussian white noise. The mixing
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functions W1(x) and W2(x) are defined as follows

W1(x) =

0.1 if x < −0.8

0.8 if x > 0.8

W2(x) =

0.5 if x < −0.4

0 if x > 0.4
,

where W1(x) is linear between −0.8 and 0.8; W2(x) is linear between −0.4 and 0.4. The

first component Ut,1 has a lowpass spectrum, Ut,2 has a highpass spectrum, and Ut,3 has

a bandpass spectrum with a bandwidth of an AR(2) model with frequency at 0.20. The

second component Zt,2 of the vector time series Zt, is a delayed copy of Zt,1 by 10 time

units.

4. Mixture model highly coherent at higher quantiles: the vector time series Zt = (Zt,1, Zt,2)
⊤

is a nonlinear mixture of three components designed in a similar way as the previous mix-

ture model. To obtain highly coherent higher quantiles, we just use another weighting

function, W2(x), which is defined as

W2(x) =

 0 if x < −0.4

0.5 if x > 0.4
,

where W2(x) is linear between −0.4 and 0.4.

In the simulation study, we consider two lengths of n = 500, 1000 for the VAR, VARMA,

and nonlinear mixtures models. For each model and length, we treat the average of 5000

raw quantile periodogram matrix as the quantile spectral matrix from which we get the true

quantile coherence. Figure 1 shows the true quantile coherence (C(ω, α) := [c(ωl, αm)] , l =

1, . . . , nf ,m = 1, . . . , nq) for the VAR and VARMA models (top) and the mixture mod-

els (bottom) with n = 500. We compute the quantile coherence at 93 quantile levels,
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0.04, 0.05, . . . , 0.96. We exclude extreme quantiles where the estimators may not have ap-

propriate behaviors.

Frequency

Q
ua

nt
ile

 le
ve

l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VAR

Frequency

Q
ua

nt
ile

 le
ve

l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

VARMA

Frequency

Q
ua

nt
ile

 le
ve

l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mixture 1

Frequency

Q
ua

nt
ile

 le
ve

l

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

Mixture 2

Figure 1: The true quantile coherence of the 4 considered models with n = 500 for both
VAR and VARMA models (top), Mixture 1, and Mixture 2 (bottom).

3.2 Alternative Methods

We compare our proposed estimation method for quantile coherence to three alternative

methods.

(a) The nonparametric estimator proposed by Baruńık and Kley (2019): we computed the

quantile coherency by utilizing the matrix of smoothed rank-based copula periodograms

(CCR-periodograms) across frequencies for each fixed quantile level. The implemen-

tation of this estimator is available in the R package quantspec with the function

smoothedPG (Kley, 2016). In particular, when smoothing across frequencies, Baruńık

and Kley (2019) uses a kernel of order p, where the optimal bandwidth is obtained ap-
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proximately as bn ≈ n−1/(2p+1)). For instance, in our implementations, we used the default

Epanechnikov kernel, which is a kernel of order p = 2 with an optimal bandwidth of ap-

proximately bn ≈ n−1/5. It’s important to emphasize three key distinctions between our

approach and the approach presented in the study by Baruńık and Kley (2019). Firstly,

their estimator fixes the quantile level, whereas our estimator considers the quantile level

as a continuous variable within the interval (0, 1). Secondly, they utilize rank-based cop-

ula periodograms, while our estimator is based on quantile periodograms obtained from

trigonometric quantile regression. Lastly, their estimator relies on the selection of both

kernel type and bandwidth to smooth across frequencies and does not smooth across quan-

tiles. In contrast, our semi-parametric estimator incorporates smoothing across quantile

levels by jointly selecting a common smoothing parameter.

(b)The 1D smoothing spline method: we smooth the raw quantile periodogram matrix using

smoothing splines, first across frequencies for each fixed quantile level, and then across

quantile levels for each fixed frequency; the quantile coherence is computed based on the

resulting smoothed quantile periodogram matrix.

(c) The 2D kernel smoothing method: we apply 2D smoothing to the raw quantile peri-

odograms as bivariate functions of frequency and quantile level and compute the quantile

coherence from the resulting smoothed quantile periodogram matrix.

In addition, we also demonstrate the effectiveness of the smoothing across quantiles by

comparing the final estimates in (12) which will be labeled as semi-parametric, with the

preliminary estimates in (11) which will be labeled as parametric.

We use the following root mean squared error (RMSE) between the estimated quantile
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coherence and the true quantile coherence to measure the performance of an estimator:

DRMSE{C, C̃} =

√√√√ 1

nfnq

nf∑
l=1

nq∑
m=1

[c(ωl, αm)− c̃(ωl, αm)]2.

The performance assessment of different cases is presented in Table 1, where the average

root mean squared error (RMSE) is calculated based on 200 simulation runs. The estimation

methods are labeled as follows: Semi-Param: Parametric estimator with smoothing across

quantiles in (12). The smoothing parameter is selected using a five-fold cross-validation

procedure, as described in Section 2.4. Parametric: VAR estimator of quantile coherence

without smoothing in (11). BK (2019): Nonparametric estimator proposed by Baruńık

and Kley (2019). S.spline: 1D smoothing spline. 2D Kernel: 2D kernel smoothing. From

the results in Table 1, it is evident that the proposed semi-parametric estimator, which

incorporates smoothing across quantiles, consistently outperforms all other methods. The

additional smoothing significantly improves the estimation of quantile coherence overall.

Moreover, even without smoothing, the parametric estimator itself demonstrates superior

performance compared to its competitors. Notably, it produces better simulation results

than the nonparametric estimator proposed by Baruńık and Kley (2019). Furthermore, we

observe a decreasing trend in both the RMSE and standard error as the sample size (n)

increases. This suggests that the accuracy of the estimators improves with larger sample

sizes.

3.3 Clustering simulation

In this section, we consider the problem of clustering bivariate (k = 2) time series based on

the similarities of their quantile coherence. We compare this method with an alternative that

employs the ordinary coherence derived from the VAR model of the bivariate time series.
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Table 1: This table presents the average root mean squared error (RMSE) of the quantile
coherence estimates obtained from 200 simulation runs. The minimum value in each row
for each of the five estimation methods is highlighted in bold. The standard error is also
provided in parentheses.

Model n Semi-Param Parametric BK(2019) S.spline 2D Kernel
VAR(2) 500 0.069 (0.010) 0.089 (0.008) 0.114 (0.004) 0.451 (0.017) 0.451 (0.017)
VAR(2) 1000 0.054 (0.006) 0.066 (0.006) 0.104 (0.003) 0.459 (0.014) 0.460 (0.014)

VARMA(2,1) 500 0.079 (0.011) 0.089 (0.010) 0.121 (0.009) 0.389 (0.069) 0.384 (0.058)
VARMA(2,1) 1000 0.059 (0.009) 0.065 (0.008) 0.118 (0.006) 0.383 (0.048) 0.380 (0.046)

Mixture 1 500 0.077 (0.010) 0.088 (0.009) 0.145 (0.013) 0.445 (0.077) 0.455 (0.062)
Mixture 1 1000 0.057 (0.007) 0.064 (0.006) 0.146 (0.010) 0.454 (0.067) 0.464 (0.046)
Mixture 2 500 0.065 (0.010) 0.067 (0.011) 0.078 (0.007) 0.490 (0.138) 0.531 (0.078)
Mixture 2 1000 0.045 (0.010) 0.047 (0.009) 0.075 (0.006) 0.466 (0.115) 0.490 (0.072)

To derive the ordinary coherence, we first fit a VAR model to a bivariate time series and

then compute the spectral matrix using the parameters from the fitted VAR model. The

ordinary coherence is defined by the VAR spectral matrix in a way similar to (4). Through

the simulation study, we would like to show the potential benefit of the quantile coherence

for such a problem over the ordinary coherence.

The clustering simulation starts by considering the four models described in Section 3.1 as

the true clusters. We simulate 200 bivariate time series from each of the four models, and then

compute their quantile coherence and ordinary coherence. Both the quantile coherence and

the ordinary coherence serve as dissimilarity measures for a hierarchical clustering procedure.

For each time series, a feature vector is created by collecting the quantile coherence

c1,2(ωl, αm) for l = 1, . . . , nf and m = 1, . . . , nq. The dissimilarity measure for a pair of time

series is defined as the Euclidean distance between the corresponding quantile-coherence-

based feature vectors. A similar method is used to define the dissimilarity measure based on

ordinary coherence.

Computing the dissimilarity measure for all pairs allows us to set a pairwise distance

matrix, which is used as input for hierarchical clustering. The optimal number of clusters is

chosen based on the so-called ”elbow rule” (Yuan and Yang, 2019). This rule uses the total
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within-cluster sum of squares (WSS) as a function of the number of clusters.

From the right panel of Figure 2, we can clearly state that the optimal number of clusters

for the quantile coherence equals 4. On the other hand, the left panel of Figure 2 indicates

that the optimal number of clusters for the ordinary coherence lies between 3 and 4. In a

first exploratory exercise, we assumed that the number of clusters acquired by the quantile

coherence, 4, was identical to the number of clusters formed from the ordinary coherence in

order to evaluate the findings in terms of the allocation of members in each cluster.
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Figure 2: The total within-cluster sum of squares (WSS) as a function of the number of
clusters. Based on the ordinary coherence (left), based on the quantile coherence (right).

Although the optimal number of clusters is the same in this case, the allocation results

differ substantially. The ordinary coherence assigns the first cluster to the 200 bivariate series

acquired by model 1, likewise for the second cluster with model 2. Finally, the remaining 400

bivariate series generated by the mixture models are assigned to the third (196 members) and

fourth (204 members) clusters. The third cluster contains mostly simulated bivariate time

series obtained from model 3 only one case from model 4, while the fourth cluster contains

members obtained mostly from model 4 and only a few cases from model 3.

In a second exercise, we chose 3 clusters as the optimal number from the ordinary coher-

ence. The new results show that, as in the previous example, the first two clusters maintain

the assignment of the bivariate series that were generated from models 1 and 2, respectively.
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The difference now lies in the third cluster, which contains the 400 bivariate series obtained

from the mixture models 3 and 4. By using three clusters, the ordinary coherence is not

able to differentiate between the two mixture models. In any of the above cases, either

when selecting 3 or 4 clusters, ordinary coherence is not able to correctly assign the 3 and

4 mixture models. On the contrary, the quantile coherence allows placing each of the 200

bivariate time series in a specific cluster, allowing a perfect separation of the four simulation

models.

To show some detail, we simulate the true ordinary coherence for models 3 and 4, which

correspond to the mixture models. For each model, we treat the average of 5000 raw VAR

periodogram matrix as the VAR spectral matrix from which we get the true ordinary coher-

ence. In both cases, these models present a peak of coherence around frequency 0.20 as can

be seen in Figure 3. Comparing the results of Figure 3 with those of Figure 1, we can see

that the difference lies in the fact that model 3 presents a peak of coherence at frequency

0.20, but this is at low and intermediate quantile levels. On the contrary, model 4, although

it presents the peak at the same frequency, is found at intermediate and high quantile levels.

Compared to the ordinary coherence, the quantile coherence offers more accurate clustering

since it contains additional information about quantile levels that can be used to assign

bivariate series, especially with mixture models appropriately.

4 Financial time series clustering

In this section, our goal is to explore the advantages of clustering the time series of stock

prices based on their quantile coherence with a benchmark. The objective of this experiment

is to determine if meaningful clusters can be identified among these stocks by considering

their co-variability with respect to the benchmark across different quantile regions. We
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Figure 3: The true ordinary coherence of the 2 mixture models (models 3 and 4), with
n = 500.

selected 52 stocks from the S&P 500 (SPX) to evaluate the estimation method for quantile

coherence and its effectiveness for clustering purposes.

The 52 selected stocks represent different market sectors such as Health Care, Technology,

Materials, Consumer Staples, Industrials, Consumer Discretionary, Commodities, Entertain-

ment, Energy, Agricultural Products, Communications Services, Utilities, and Restaurants.

Furthermore, the study period is 2010 to 2019, corresponding to a period free of large oscil-

lations like the ”Great Recession” and the COVID-19 pandemic.

In this experiment, the time series data consists of the daily log returns of the closing

prices of specific companies within the SPX index. Each individual series is represented by

a feature vector that incorporates the quantile coherence between the series and the SPX

index. This quantile coherence is evaluated at Fourier frequencies ranging from 0 to 1/2.

Additionally, the feature vector includes quantile regions, which are subsets of the range

from 0.04 to 0.90, totaling 90 quantile levels. To quantify the dissimilarity between these

series, a dissimilarity matrix is constructed. This matrix is based on the pairwise Euclidean

distances calculated from the feature vectors derived from quantile coherence.

The proposed approach provides a notable advantage in accurately capturing the com-
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Quantiles Clusters Stock Members

Lower
Cluster 1

ADI AFL AIG ALL AON APD C CSCO DIS DOV EMN
IBM JPM LOW MMC MMM MSFT SBUX WFC

Cluster 2
AAPL ABT ADM AES AEE AEP AMZN CMCSA CSCO CVX F
KMB KO M MCD MMM MSFT PEP PFP T TM WEN WMT XOM

Cluster 3 CPB ENB GIS MO NEM

Middle
Cluster 1

AFL ADBE ADI AIG ALL APD AON C CSCO CVX DIS
DOV EMN IBM JPM MMM MMC MSFT SBUX WFC XOM

Cluster 2
AAPL ABT ADM AES AMGN AMZN BSX CL CMCSA
F GD KMB KO LOW M MCD PEP PFP PG T TGT TM WMT

Cluster 3 AEE AEP CPB ENB GIS MO NEM WEN

Upper
Cluster 1

ADBE AFL AIG APD C CSCO CMCSA DIS DOV EMN
IBM JPM MMC MMM MSFT WFC

Cluster 2
AAPL ABT ADM AES AON AMGN AMZN BSX CL CVX F GD
KO LOW M MCD PEP PFP PG SBUX T TGT TM WMT XOM

Cluster 3 AEE AEP CPB ENB GIS KMB MO NEM WEN

Table 2: Stock assignment in hierarchical clustering based on specific quantile regions

bined behavior of log returns with the SPX index. This emphasizes the significance of inte-

grating information about the quantile-dependence characteristics of the data, which holds

valuable insights for risk analysis and portfolio construction. In practice, portfolio managers

commonly prioritize a fixed quantile level, usually below 10%, as it offers a simplified imple-

mentation compared to using a range of quantiles. Specifically, our analysis focuses on three

quantile regions: the lower quantile region (quantiles from 4% to 10%), the middle quantile

region (quantiles ranging from 40% to 55%), and the upper quantile region (quantiles from

70% to 96%). The results of the cluster assignments obtained from the hierarchical clustering

procedure are presented in Table 2, while the corresponding dendrograms can be found in

Appendix A.3.

As mentioned in Section 3.3, we determine the optimal number of clusters from the

dendrogram using the ”elbow rule” (Yuan and Yang, 2019). The within-cluster sum of

squares (WSS) is depicted in Figure 4, with the top panel representing lower quantiles,
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the center panel representing middle quantiles, and the bottom panel representing upper

quantiles. In all cases, the optimal number of clusters is determined to be 3.

To provide a concise summary of the information contained within each of the three

clusters within each quantile region, we calculate the centroids of each cluster by averaging

their members. The centroids of the three clusters for each specific quantile region are

visualized in Figure 5. The top panel displays the formation of three clusters based on upper

quantiles, the center panel illustrates clusters formed using middle quantiles, and the bottom

panel showcases the corresponding clusters formed based on lower quantiles.

It is observed that the overall cluster formation follows a consistent pattern in terms

of the distribution of quantile coherence across quantile regions. In particular, Cluster 1

is composed of stocks exhibiting the highest quantile coherence with the SPX. Cluster 2

comprises stocks with intermediate quantile coherence with the SPX, while Cluster 3 consists

of stocks with the lowest quantile coherence with the SPX. It is worth noting that for the

clusters formed based on the middle quantile regions, the level of quantile coherence is

considerably lower compared to the other quantile regions across all clusters.

Cluster 1, depicted in the left column of Figure 5, exhibited high quantile coherence with

the SPX index at low frequencies. Interestingly, this cluster also demonstrated significant

quantile coherence in the mid-range and high-frequency regions. Notably, among the three

clusters, only Cluster 1 displayed such a level of quantile coherence in the middle and high-

frequency regions. Further analysis revealed that Cluster 1, based on both lower and upper

quantile regions, exhibited the highest level of quantile coherence compared to the middle

quantile levels. These findings evidence the importance of quantile dependence in the data.

Cluster 2, illustrated in the center column of Figure 5, consisted of stocks that exhibited

a moderate level of quantile coherence with the SPX index in the lower frequency regions

within both the lower and upper quantile regions. The quantile coherence in Cluster 2 was
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Figure 4: The total within-cluster sum of squares (WSS) as a function of the number of
clusters. (Top) clusters formed using quantile coherence for lower quantile levels. (center)
clusters based on quantile coherence for middle quantile levels. (Bottom) clusters based on
quantile coherence for upper quantile levels.

stronger than that observed in Cluster 3 but not as high as in Cluster 1. Cluster 2 also

contained the largest number of stocks among all quantile regions. Similar to Cluster 3, it

lacked significant quantile coherence in other frequency ranges; however, the level of quantile

coherence in Cluster 2 was notably higher than in Cluster 3.

Finally, in Cluster 3, displayed in the right column of Figure 5, stocks in this cluster

showed a low level of quantile coherence with the SPX index around low-frequency regions

in both the lower and upper quantile regions. However, the quantile coherence observed in
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Figure 5: The quantile coherence spectra for the centroids in each of the 3 clusters with the
SPX index. For upper quantiles (first row). For middle quantiles ( second row). For lower
quantiles (third row).

Cluster 3 was not as strong as that seen in Clusters 1 and 2. Additionally, no significant

quantile coherence activity was observed in other frequency regions. Notably, Cluster 3,

based on middle quantiles, demonstrated a very low level of quantile coherence across all

frequency regions.

4.1 Capital Asset Pricing Model (CAPM)

The beta coefficient in the Capital Asset Pricing Model (CAPM), a time domain approach,

is a standard method of quantifying the systematic risk of equities in the financial industry

(Sharpe, 1964; Lintner, 1965; Mossin, 1966). The CAPM methodology distinguishes the

stocks that are more sensitive to market movements and those that are less sensitive to such

changes. Given that no shocks or other factors caused substantial volatility throughout the

period studied, the beta coefficients do not have large values. Stocks with betas above 1 will

tend to move with more momentum than the S&P; Stocks with betas less than 1 with less
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momentum.

The application of the quantile coherence approach reveals clusters that display a certain

level of connection with the beta distribution. However, due to their coherence-quantile

relationship, the quantile coherence method offers additional insights into their associations

with the SPX. As evident from Table 3, we can observe two distinct groups of clusters in

terms of the beta distribution across all quantile regions. The first group is Cluster 1 which

clearly shows the presence mostly of stocks with high betas (higher than 1). The second

group is the one formed with Clusters 2 and 3 which represent stocks with betas on average

less than 1. Clusters 2 and 3 are difficult to distinguish from the beta distribution since

their beta-value distributions overlap. Using the quantile coherence, these two clusters are

distinguished based on their activity connected with specific quantile areas (See Figure 5).

Table 3: Summary statistics for the beta values obtained for each of the three clusters
obtained through quantile coherence

Quantiles Clusters Min Max Mean Sd

Lower
Cluster 1 0.8563 1.5826 1.1079 0.1907

Cluster 2 0.4821 1.2146 0.8070 0.2368

Cluster 3 0.4360 0.7903 0.5489 0.1421

Middle
Cluster 1 0.8563 1.5826 1.1420 0.1890

Cluster 2 0.5070 1.2146 0.8247 0.2392

Cluster 3 0.4360 0.8427 0.5779 0.1535

Upper
Cluster 1 0.8563 1.5826 1.1410 0.1873

Cluster 2 0.5194 1.2146 0.8524 0.2179

Cluster 3 0.4360 0.8427 0.5700 0.1455

4.2 Comparison with ordinary VAR coherence

For comparison, we repeat the hierarchical clustering procedure using the ordinary VAR

coherence. The resulting dendrogram is shown in Figure 6. To select the optimal number
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Figure 6: Dendrogram for the hierarchical clustering of 52 stocks in SPX based on the
ordinary coherence with the index.

of clusters in this case, similar to the quantile coherence case, the elbow plot is in Figure 7.

From Figure 7 we can see, that determining an optimal number of clusters is difficult because

no clear turning point can be identified. With the sole purpose of making a fair comparison

between the quantile coherence and the ordinary coherence when doing clustering, we use

the same number of clusters for the ordinary coherence.

The analysis of the ordinary coherence reveals distinct behaviors within the three clusters,

as depicted by the centroids in Figure 8. Cluster 1 exhibits high coherence, Cluster 2

demonstrates moderate coherence, and Cluster 3 displays very low coherence. The stock

assignment based on ordinary coherence can be found in Table 4.

Clusters Stock Members

Cluster 1 APD C DIS DOV EMN JPM MMM MSFT

Cluster 2
AAPL ADBE AEE AEP AES AFL AIG ALL AMGN AMZN APD BSX C
CVX CSCO DIS DOV EMN ENB F GD IBM KO LOW M MCD MMC
MMM MSFT PEP PFP SBUX T TGT TM WFC WMT XOM

Cluster 3 CL CPB GIS KMB MO NEM PG WEN

Table 4: Stock assignment in hierarchical clustering based on ordinary coherence

The main differences compared to quantile coherence can be observed in Cluster 2, which
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Figure 7: The total within-cluster sum of Squares (WSS) as a function of the number of
clusters.

contains the largest number of stocks. Cluster 1, characterized by quantile coherence, is a

more compact cluster that enables a clear distinction between high and moderate quantile

coherence, particularly at higher and lower quantile regions. In contrast, when considering

ordinary coherence, many stocks initially assigned to Cluster 1 by quantile coherence now

belong to Cluster 2.

By examining the centroid of Cluster 2 using quantile coherence, specifically at higher

quantile regions (refer to Figure 5), it becomes apparent that these stocks are expected to

exhibit substantial coherence around the zero frequency region, similar to Cluster 1. Addi-

tionally, there is observable activity in the middle and higher frequency regions. However,

the level of quantile coherence in the zero-frequency zone is not as pronounced as that of

Cluster 1.

Finally, we have chosen two examples to illustrate the enhanced characteristics of hierar-

chical clustering when utilizing quantile coherence at specific quantile regions. Furthermore,

we have also included an example that compares quantile coherence and ordinary coherence

when clustering. In Figure 9, we provide an analysis of the quantile coherence for the stock
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Figure 8: The ordinary coherence spectra for the centroids in each of the 3 clusters with
SPX.

”CVX” in relation to the SPX, focusing on different quantile regions. The top panel displays

the quantile coherence at lower and upper quantile levels, while the bottom panel represents

the coherence at the middle quantile level.

When clustering ”CVX” based on both upper and lower quantile levels, it is assigned to

cluster 2, which corresponds to a cluster exhibiting a moderate or middle level of quantile

coherence. However, when clustering is performed using the middle quantile levels, ”CVX”

is assigned to cluster 1. According to the general behavior, stocks in cluster 1 are expected to

demonstrate the highest level of quantile coherence, particularly around the zero frequency

region. However, in the case of ”CVX,” we observe that at the middle quantile levels, it does

not exhibit a sufficiently high level of quantile coherence to be assigned to Cluster 1.

Figure 10 illustrates the comparison between quantile coherence (left panel) and ordinary

coherence (right panel) for the stock ”ENB” in relation to SPX. It is evident that ”ENB”

exhibits generally low values of quantile coherence across all quantile levels. Consequently,

when considering each of the three quantile regions, ”ENB” is assigned to Cluster 3, which

is characterized by a low level of quantile coherence. However, when examining the ordinary
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Figure 9: quantile coherence with SPX for the stock CVX. Top left panel lower quantiles.
Top right panel upper quantiles. Bottom panel middle quantiles.

coherence, ”ENB” demonstrates a moderate level of coherence. As a result, it is assigned

to Cluster 2 based on the ordinary coherence criterion as it does not consider the quantile

information.

FREQUENCY

Q
U

A
N

T
IL

E
 L

E
V

E
L

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ENB: Quantile coherence with SPX

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ENB: Ordinary coherence with SPX

frequency

C
oh

er
en

ce

Figure 10: Left panel: quantile coherence with SPX for the stock ENB. Right panel:
ordinary coherence with SPX for the stock ENB.
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5 Discussion

We developed a new semi-parametric method for estimating the quantile coherence derived

from trigonometric quantile regression. The proposed method employs the parametric form

of the VAR approximation in conjunction with a nonparametric smoothing technique. The

parametric VAR spectrum estimates the multivariate quantile spectral matrix at each quan-

tile. The VAR model is obtained by solving the multivariate Yule-Walker equations formed

by the quantile autocovariance function which is defined as the inverse Fourier transform

of quantile periodograms. The AIC criterion, which balances the goodness of fit and the

model complexity is used to determine the VAR order. The resulting preliminary estimate

of the quantile coherence is further smoothed across quantiles by smoothing splines where

the smoothing parameter is selected jointly across frequencies. For selecting the tuning pa-

rameter, a K-fold cross-validation technique is employed to cope with the correlation found

in the estimated quantile coherence across quantiles.

Similarly to the quantile periodogram maps previously described in the literature (Li,

2012, 2020), the 2D representation of the quantile coherence provides more information than

the ordinary coherence and can be used as images to analyze multivariate time series data.

We also presented the result of an application of quantile coherence to financial time

series. In this application, the daily closing prices of 52 stocks are grouped by their behavior

against the SPX index as measured by the quantile coherence. The three clusters are dis-

tinguished largely by the coherence patterns in the low-frequency region at high and/or low

quantiles. A better cluster formation is obtained by focusing on specific quantile regions.

The quantile-dependent nature enhances cluster formation.
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A Appendix

A.1 Multivariate Durbin-Levinson Algorithm and the standard

partial autocorrelation function

Whittle (1963) proposed the multivariate version of the Durbin-Levinson recursions, which

solve the Yule-Walker equations in (6) with a total of 2p inversions of k × k matrices. (see

also proposition 11.4.1 Brockwell and Davis, 1991).

Degerine (1990) proposed a way of defining the partial autocorrelation function for mul-

tivariate stationary time series through the canonical analysis of the forward and backward

innovations. It is proved that there is a one-to-one correspondence between the resulting

PACF and the autocovariance function.

Based on Whittle (1963) and the canonical approach defined by Degerine (1990), we em-

ploy the following algorithm to compute the VAR parameters recursively. Given a sequences

of covariance matrices Γ(0),Γ(1), . . .Γ(p),

0. Compute V0 = Ṽ0 = Γ(0) and ∆0 = Γ(1).

1. For r = 1, . . . , p, compute the PACF Ψr = V
−1/2
r−1 ∆r−1Ṽ

−1/2
r−1 .

2. Compute

Φr,r = V
1/2
r−1ΨrṼ

2
r−1

Φ̃r,r = Ṽ
1/2
r−1Ψ

⊤
r V

1/2
r−1.

3. For p ≥ 2, compute

Φr,r′ = Φr−1,r′ −Φr,rΦ̃r−1,r−r′ , r′ = 1, . . . r − 1

Φ̃r,r′ = Φ̃r−1,r′ − Φ̃r,rΦr−1,r−r′ , r′ = 1, . . . r − 1.
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4. Compute

Vr = V
1/2
r−1[I−ΨrΨ

⊤
r ]V

1/2⊤
r−1

Ṽr = Ṽ
1/2
r−1[I−Ψ⊤

r Ψr]Ṽ
1/2⊤
r−1

∆r = Γ(r + 1)−Φr,1Γ(r)− . . .−Φr,rΓ(1).

For the VAR model to be stable, the singular values of the PACF (Ψr) must be less

than 1 in magnitude. Morf et al. (1978) proposed the orthogonalization procedure based

on a Gramm-Schmidt process to compute the PACF and the resulting Durbin-Levinson

recursion.

A.2 Proof of Equation (8)

By the 2n-point inverse discrete Fourier transform, the estimated autocovariance function

Γ̂(h) : |h| < n can be recovered from Equation (7), as follows:

Multiplying both sides of Equation (7) by ei2πlk/2n and summing over l : 0 ≤ l ≤ 2n− 1,

(2n)−1

2n−1∑
l=0

In(ωl)e
i2πlk/2n = (2n)−1

2n−1∑
l=0

∑
|h|<n

Γ̂(h)e−i2πlk/2nei2πlh/2n

= (2n)−1
∑
|h|<n

Γ̂(h)

[
2n−1∑
l=0

ei2π(h−k)l/2n

]
,

with h = k,

= Γ̂(h), h = 0, 1, · · · , n− 1
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A.3 Hierarchical clustering based on specific quantile regions
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Figure 11: Dendrogram for the hierarchical clustering of 52 stocks in SPX based on the
quantile coherence of their daily log returns with the index SPX. The top panel displays
clusters formed using quantile coherence for lower quantile levels. The center panel depicts
clusters based on quantile coherence for middle quantile levels. The bottom panel represents
clusters based on quantile coherence for upper quantile levels.
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