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Mathematical modelling approaches became increasingly abundant in cancer research. Tumour
infiltration extent and its spatial organization depend both on the tumour type and stage as well as
on the bio-physicochemical characteristics of the microenvironment. This sets a complex sce-
nario that often requires a multidisciplinary and individually-adjusted approach. The ultimate
goal of this work is to present an experimental/numerical combined approach to develop a three-
dimensional mathematical model able to reproduce the growth and infiltration pattern of a given
avascular microtumour in response to the microenvironmental conditions. The model consists on
a diffusion-convection-reaction equation that considers logistic proliferation, volumetric growth, a
rim of proliferative cells at the tumour surface, and invasion with diffusive and convective compo-
nents. Parameter values of the model were fitted to experimental results while radial velocity and
diffusion coefficients were made spatially variable in a case-specific way through the introduction
of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively,
according to the infiltration pattern observed. The in vitro model consists of multicellular tumour
spheroids (MTS) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel
matrix with standard culture medium ("naive" matrix) or conditioned medium from adipocytes or
preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and
preadipocyte conditioned media are able to change the in vitro infiltration pattern of MTS from
a laminar to an individual and atomized one. Numerical simulations were able to adequately re-
produce qualitatively and quantitatively both kinds of infiltration patterns, which was determined
by area quantification, analysis of fractal dimensions and lacunarity, and a Bland-Altman analy-
sis. These results suggest that the combined approach presented here could be established as
a new framework with interesting potential applications both at the basic and clinical levels of the
oncology area.

Introduction
Cancer invasion is one of the hallmarks of cancer and a prerequi-
site for cancer metastasis. However, the invasion process is very
complex and depends on multiple and correlated intrinsic and
environmental factors. This makes it is difficult to be studied in
a fully controlled way. The re-creation of the tumour microen-
vironment including a three-dimensional structure with tumour-
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stroma interactions, cell-cell adhesion and cellular signalling is
essential for a deeper understanding of the tumour behaviour
in general and the invasion process in particular1. In the con-
text of a breast tumour, mammary fat may affect human breast
cancer development. Recently it has been recognized the pro-
tumourigenic ability of matured adipocytes promoting prolifera-
tion and invasion of tumour cells in vitro and in vivo2. Condi-
tioned medium from adipocytes significantly increases prolifer-
ation and survival of human mammary tumour cells in vitro3.
Preadipocytes are also able to stimulate the growth of mammary
tumour cells in culture4.

Since in vitro models represent an over-simplification of the in
vivo system, in these years it has been attempted to increase the
level of complexity of in vitro assays to create models that could
better mimic the behaviour of cells in vivo. This levels of complex-
ity include, among others, the dimension of the system, moving
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from two-dimensional to three-dimensional models5. Multicellu-
lar tumour spheroids (MTS) has been largely proposed as a pre-
dictive tool in cancer research, as they are physiologically useful
in vitro models of a microtumour in the avascular stage6,7. When
MTS are immersed in a three-dimensional biological matrix, the
system is suited not only for therapeutic screening, but also for
studying the growth and infiltration of the microtumour in re-
sponse to the physico-chemical and biological characteristics of
the microenvironment8,9.

In mathematical oncology, numerical modelling emerged in the
past decades with the intention of predicting the growth and in-
filtration of a tumour and its possible response to a given treat-
ment1,10. So-called in silico trials aimed to predict patient-specific
responses to various dose schedules or treatment combinations
are becoming an invaluable tool to optimize patient care11–13.
Agent-based tumour growth models are commonly used to de-
scribe the behaviour and interaction of individual cells in different
environments14,15. Among continuous models, the use of ordi-
nary differential equations (ODE) is an useful tool to simulate the
evolution of total tumour cell number over time, though it lacks of
spatial considerations16. Nevertheless in cancer, where the infil-
tration of tumour cells into normal tissue and the establishment
of new distant metastasis are such crucial spatial aspects of the
disease, the use of partial differential equations (PDE) are often
more convenient. Relatively simple models based on reaction-
diffusion equations of this kind that describe tumour prolifera-
tion and invasion into peripheral host tissues have proved to be
of clinical relevance17,18.

Computational simulation approaches focused on MTS can ad-
vance our understanding of cancer invasion and treatment19–21.
Nevertheless, taking aside some specific cases22–24, continuum
models related to microtumour invasion have in general centered
in the description of spherical tumour invasion areas. It is neces-
sary at present to develop new strategies to better determine non-
spherical tumour infiltration borders as well as to predict as much
as possible tumour spread characteristics to optimize treatments
such as surgery or radiotherapy. In a recent work, we introduced
a two-dimensional mathematical model of microtumour growth
and invasion in a collagen matrix, considering non-spherical in-
vasion shapes26.

Here we extended this work to a three-dimensional model able
to reproduce, in a case-dependent manner, two very different
infiltration patterns derived from different environmental condi-
tions. In a first step, we tested experimentally the growth and
infiltration pattern of MTS from mammary ephitelial origin with
or without the presence of a conditioned medium from adipocytes
or preadipocytes (fibroblasts) in the microenvironment. We then
simulated the two types of invasion patterns observed in vitro.
The approach presented here is applied in this case to a breast
tumour type but it may be used with other tumour types, es-
pecially those where infiltration is a most important factor, like
glioblastomas. This makes this experimental/numerical approach
a potentially useful complementary clinical tool to help in tumour
prognosis and treatment definition in a patient-specific way.

Methods
1- In vitro model

Adipocyte differentiation and conditioned medium extraction

In this method, described in27, 50.000 cells of the 3T3-L1 cell line
(fibroblasts derived from murine embryonic tissue) were seeded
in Dulbecco’s modified Eagle medium (DMEM, Sigma-Aldrich)
with 10% fetal bovine serum (FBS, Natocor). This line behaves as
preadipocytes as cells can be differentiated to mature adipocytes
in culture. For this, differentiating agents (Sigma-Aldrich) such
as insulin 2 µM, 3-isobutil-1-metilxantine (IBMX) 0.5 µM and
dexametasone 0.1 µM were added to the medium when cells are
at 60-80% of confluence. Two and four days after, the medium
was changed and insulin was renewed. At the sixth day, ap-
proximately 90-100% of the cells were differentiated, changing
from fibroblast to amoeboid shapes and evidencing lipidic intra-
cellular vesicles. Conditioned media were obtained from not-
differentiated and differentiated (preadipocytes and adipocytes,
respectively) cell cultures after three days in DMEM/FBS and
stored at -20◦C until their utilization.

MTS formation

Multicellular tumour spheroids of the LM3 cell line (mouse ep-
ithelial and metastatic mammary tumour cells28), were gener-
ated by the hanging drop method29. This technique has the
advantage of producing homogeneous spheroids and consists on
seeding drops of 20 µl with 1.500 cells each, in the inner surface
of a Petri dish cap. Once seeded, phosphate buffer solution (PBS)
was placed in the base of the dish to maintain humidity and the
cap returns to their natural position. Drops hang from the cap
surface by superficial tension. After four days in culture at 37◦C
and 5% CO2, one spheroid is formed at the bottom of each drop.

MTS seeding

Once formed, spheroids were recovered from the drops and im-
mersed in a collagen I gel30. At this point two different ex-
perimental conditions were tested: spheroids immersed in col-
lagen/DMEM ("naive" collagen) and spheroids immersed in col-
lagen/conditioned medium from mature or immature adipocytes
("conditioned" collagen). For this, a rat tail collagen I (Gibco) so-
lution 2 mg/ml in DMEM with 10% FBS (control group) or condi-
tioned medium (treated groups) was prepared and placed on a six
multi-well plate (0.5 ml/well). Ten spheroids were then placed on
the surface of each well. After half an hour of incubation at 37◦

C, collagen solution becomes a gel and spheroids get immersed
in it. Spheroids begin to invade the surrounding gel a day after
seeding. Photographs were taken daily with an inverted optical
microscope (Olympus) for seven days. Spheroid core and inva-
sion areas were measured from photographs through the ImageJ
software (http://imagej.nih.gov/ij). Experiments were repeated
three independent times.

2- In silico model

The three-dimensional mathematical model represents an invad-
ing microtumour as a composition of two tumour cell populations
with their own phenotype and behaviour: proliferative core cells
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and invasive peripheral cells. This defines two domains under
different mathematical resolution with a moving boundary de-
termined by the core radius (rcore) between them: an inner do-
main corresponding to the growing core (core domain) and an
outer domain corresponding to the infiltration area (infiltration
domain). The model initiates from a single tumour cell and con-
siders two stages: an initial benign stage where only core growth
is considered and a later malignant stage where tumour infiltra-
tion is added to core growth. The benign stage is estimated in
10 days. During this time the spatial domain only consists on
the core subdomain until the simulated microtumour reaches the
radius corresponding to an specific experimental spheroid when
seeded in collagen (invasion radius or rinv). After that moment
the spheroid begins invasion in the gel matrix and both spatial
subdomains are present. This invasion has two components: an
spherical (non-directional) and a radial or planar (directional)
one.

Core subdomain

Core subdomain is an expanding area that describes the growth
of the spheroid core. The inner boundary of this subdomain is
defined by the minimum core radius (rmin). The outer moving
boundary is defined by the core radius (rcore) calculated in spher-
ical coordinates by:

rcore(t) = rmin +Vcore t (1)

being Vcore the core growth velocity and t the time. Tumour
cell concentration C all inside this domain is equal to the tumour
cell carrying capacity of the system Cmax. The spheroid core, at
t = 0, has an r = rmin and a C = Cmax. This corresponds to the
placement of a single cell with a radius of 5 µm in this subdomain.
For both subdomains, φ is the azimuthal angle (0 ≤ φ < 2π) and
θ the polar angle (0 ≤ θ ≤ π).

Infiltration subdomain

In this domain, infiltrative tumour cell concentration follows a
mass balance:

∂C
∂ t

= s−∇ · j (2)

Where s is the reaction term and j is the mass flux. The reaction
term is composed by two components:

s = P C
(

1− C
Cmax

)
+S δ (r− rcore) (3)

The first corresponds to the basal proliferation of the tumour
cell population (logistic law), being P the net proliferation rate.
The second component represents a cell source (S) located at the
spheroid surface (rcore) by the Dirac’s delta function δ , being r
the radius from the spheroid center. This corresponds to an ex-
ternal rim of specially proliferative cells present in this kind of
microtumours.

On the other hand, the mass flux correspondent to tumour cell
invasion is composed by a diffusive and a convective term:

j =−D ∇C+V C (4)

with D being the diffusion coefficient and V the invasion ve-
locity. The diffusive term is based on the Fick’s law and achieves
the spherical non-directional component of the tumour invasion
while the convective term represents the radial or planar (direc-
tional) component. Then the model can be expressed by a three-
dimensional diffusion-convection-reaction equation26:

∂C
∂ t

= ∇ · (D ∇C)−∇ · (V C)+P C
(

1− C
Cmax

)
+S δ (r− rcore) (5)

In spherical coordinates:

∂C
∂ t

=
1
r2

∂

∂ r

(
r2 D

∂C
∂ r

)
+

1
r2 sin(θ)

∂

∂θ

(
sin(θ) D

∂C
∂θ

)

+
1

r2 sin2(θ)

∂

∂φ

(
D

∂C
∂φ

)
− 1

r2
∂

∂ r

(
r2 C Vr

)

− 1
r sin(θ)

∂

∂θ
(sin(θ) C Vθ )−

1
r sin(θ)

∂

∂φ

(
C Vφ

)
+P C

(
1− C

Cmax

)
+S δ (r− rcore) (6)

It is valuable to state that, in the case of simulations of individ-
ual infiltration, the convective term is null as planar invasion is
achieved by the spatial variation of the diffusion coefficient D.

The inner boundary of the infiltration subdomain is rcore(t) and
the outer boundary is rmax. Due to the symmetry of the problem,
in laminar simulations θ varies between 0 and π/2 instead of 0
and π. Vr, Vθ and Vφ are the components of the invasion velocity
but, as the biology of the problem only conserves a radial compo-
nent, Vφ and Vθ are null. The boundary condition at r = rmax is
∂C
∂ r (rmax,φ ,θ) = 0. Initial condition at t = 0 is C(r,φ ,θ) = 0.

Implementation

Main parameter values are presented in table 1. Case-specific val-
ues were obtained from each individual experimental image. In
order to obtain a more realistic description of the infiltration pat-
tern, we made Vr and D spatially variable. In the case of laminar
infiltrations, basal Vr was made variable by the introduction of a
shape function. In the case of individual infiltrations, basal D was
made variable by the introduction of a DLA-derived matrix. Oth-
erwise, all infiltration areas would be spherical. By this way we
make case-specific simulations in relation to core growth rate, in-
filtration pattern (laminar or individual), infiltration velocity and
infiltration shape. The model was solved by finite differences with
standard relaxation techniques and centered discretization with
an order O(h2). It was implemented in C++ and parallelized
through shared memory technology (OpenMP). Simulations were
performed in an Intel(R) Core(TM) i7 processor, 2.2 GHzx8, 5.8
Gb, under Ubuntu Linux 16.04 LTS. In all cases, Paraview was
used for image visualization (http://www.paraview.org/).
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Table 1 In silico model parameters

Parameter Value Parameter Value
Cmax 0.0007 cells/µm3 rmin 5 µm
rinv case-specific rmax 450 µm
Vcore case-specific P 0.03 cells/h
S (laminar) 4e−7 cells/µm3h S (individual) 9e−5 cells/µm3h
D (laminar) 1.7 µm2h−1 D (individual) 70 µm2h−1

Vr (laminar) case-specific

Laminar infiltration pattern simulations

In these simulations, a case-specific basal Vr was made spatially
variable along the azimuthal angle φ depending on a shape
function. The shape function is extracted by image processing
(through a C++ code written for this purpose) from each ex-
perimental image, and describe the invasion area contour of this
tumour case, as it is explained in26. This function assigned
weight along φ in the 360◦ domain based on the distance from
the spheroid center to the external limit of the infiltration. Then
the invasion contour curve is normalized and the correspondent
invasion distance is calculated. Finally, the shape function was
used to feed the main model to reproduce each experimental in-
filtration shape in a case-specific manner. The whole process is
shown in figure 1.

Individual infiltration pattern simulations

This kind of simulation makes use of fractal structures. This was
achieved by making basal D spatially variable by the generation
of a fractal 3D matrix derived from a modification of the DLA
(diffusion limited aggregation) method31,32. Briefly, this method
simulates the location of an original particle in the center of a
three-dimensional box. Then other particles are released succes-
sively from the periphery of the box, move aleatory inside it and
settle nearby another established particle. This finally achieves
aggregated structures with fractal characteristics. Then the bi-
nary 3D fractal matrix determines the points where D will have a
zero or a non-zero value. 1000 different DLA matrices were gen-
erated by this method. This initial pool was used to select from it
the best to fit with each experimental case of individual infiltra-
tion in base on shape similarities. This specific DLA-matrix was
then used to feed the model and run a case-specific simulation.

Fractal characteristics (fractal dimension and lacunarity33,34)
of all images were determined by the box-counting35 and the
glidling-box36 method, respectively. Then, these characteristics
were compared between experimental and simulated images by
a Bland-Altman analysis37,38 in order to determine the accuracy
of the model. The analysis quantifies the level of similarity be-
tween two groups of study through the comparison of their main
parametric statistics. This is achieved by constructing a linear re-
gression curve with the substraction of correspondent statistics.
This regression tends to be non-significant as groups are more
similar between each other.

Results and Discussion
Figure 2 shows two very different infiltration patterns observed
experimentally. In both cases, a clear central spheroid area can
be well differentiated from the peripheral invasion. MTS im-

mersed in "naive" collagen present a collective and laminar in-
vasion pattern, with polyhedric epithelial cells attached between
each other (figure 2, left). On the contrary, the same spheroids
immersed in collagen with adipocyte-conditioned medium ("con-
ditioned" collagen) depict an individual and atomized invasion
pattern, with rounded amoeboid cells separated from each other
(figure 2, right). This was observed both with adipocyte- and
preadipocyte-conditioned medium. It remains to be experimen-
tally determined which specific soluble cell secretions are respon-
sible for the observed effects.

Two main patterns of cancer cell invasion have been described
so far: collective and individual. Among them, each specific pat-
tern depends on the tumour cell type but also on the tumour
microenvironment and stroma organization39,40. Human can-
cer pathology usually shows tumour cells invading collectively
as strands, cords or clusters. In vitro studies display from sin-
gle isolated cells with round or elongated phenotypes (amoeboid
and fibroblast-like shapes, respectively) to loosely streams of cells
or collective migration of cell strands or sheets. Experimental
MTS cultures have revealed that collective epithelial cell invasion
shows a leader-follower behaviour that is accompanied by an ex-
tensive extracellular matrix reorganization involving proteolysis
and matrix alignment41. On the other hand, the passage from a
laminar pattern to one with isolated cells suggests an epithelial-
mesenchymal transition (EMT) of the infiltrating cells. This phe-
nomenon is very common in the initial phases of cancer invasion
and implies a phenotypic change marked by the loss of epithe-
lial characteristics and the acquisition of invasive mesenchymal
properties42. In vivo, both adipocytes and fibroblasts, main cel-
lular components of the breast microenvironment, are known to
secrete factors able to induce the EMT in epithelial mammary tu-
mour cells (leptin and interleukin-6 for instance).

Figure 3 presents some examples of numerical simulations per-
formed by the 3D model correspondent to laminar infiltration
cases (MTS immersed in "naive" collagen), after five days of inva-
sion. All parameter values were kept constant among the different
simulations, except those relative to case-specificity, as Vcore, rinv,
Vr and the shape function. There is good qualitative agreement
between each experimental case and its correspondent numerical
simulation concerning both core growth and tumour infiltration.
A whole simulation video about the first five days of infiltration is
included as additional matherial (Laminar− in f iltration.avi). Ta-
ble 2 presents the quantification of the experimental and simu-
lated image areas both for the MTS core and invasion zone, at the
fifth day of invasion; the difference between them (calculated in
relation to total invasion area); and the average difference. Aver-
aged differences between experimental and simulated images are
12.57 % and 10.37 % for core and infiltrative areas, respectively.
Then, simulations reproduce both qualitatively and quantitatively
well the experimental cases.

Figure 4 shows some examples of numerical simulations per-
formed by the 3D model correspondent to individual infiltra-
tion cases (MTS immersed in "conditioned" collagen), after five
days of invasion. It can be observed a good qualitative corre-
spondence between each experimental case and its correspon-
dent fractal simulation. A whole simulation video about the
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Fig. 1 Image processing – A) Initial experimental image of an MTS invading a collagen matrix (100x). The central tumour core can be well differentiated
from the peripheral invasion area. B) Image binarization and transformation from polar coordinates to Cartesian coordinates. C) Generation of the
shape function (invasion distance vs. azimuthal angle φ ). D) and E) Different views of the final simulation that incorporates data from the shape
function.

Fig. 2 Experimental infiltration patterns – Micrographs of epithelial
mammary MTS immersed in "naive" collagen (left) or in collagen with
adipocyte-conditioned medium (right), both at the fifth day of invasion
(scale bar: 100 µm).

Table 2 Experimental and simulated core and invasion areas (1x104µm2)

with their correspondent differences and final average, for the MTS cases
presented in figure 3.

Case Exp core Sim core Diff (%) Exp inv Sim inv Diff (%)
1 1.329 1.273 4.22 11.461 10.527 8.15
2 1.765 1.737 1.58 5.096 6.127 16.83
3 0.804 0.819 5.26 10.989 11.905 7.69
4 1.858 1.502 19.16 18.745 21.822 14.1
5 1.766 1.474 16.53 5.498 6.316 12.95
6 2.013 1.547 23.13 13.221 14.658 9.81
7 5.404 4.935 8.68 20.972 22.397 6.36
8 3.427 2.674 21.98 28.668 30.687 7.04

Average 12.57 Average 10.37
St. dev. 8.05 St. dev. 3.57

first five days of infiltration is included as additional matherial
(Individual − in f iltration.avi). In order to achieve a more quanti-
tative analysis of these similarities, fractal properties (fractal di-
mension and lacunarity) of both types of images were compared.
These two fractal properties are complementary, as fractal dimen-
sion quantifies how much of the total space is filled out by the
object, while the lacunarity indicates how this space is filled out,
giving an idea about symmetry-homogeneity and inner lacunar
spaces. Laminar infiltration experimental images were also in-
cluded in the comparison, as it is expected that DLA-derived sim-
ulations were more similar to the individual than to the laminar

infiltration experimental cases.
Average fractal dimensions are significantly different among

the three study groups (1.57 +/- 0.04, 1.49 +/- 0.03 and 1.68
+/- 0.07 for simulations of individual (atomized) infiltration, ex-
perimental individual infiltration and experimental laminar infil-
tration, respectively). Although local fractal dimensions (figure
5), determined by the box-count method, show a characteristic
and distinctive pattern for each study group, the pattern pre-
sented by simulations of individual infiltration cases seems to be
more similar to the individual than to the laminar infiltration ex-
perimental one, as expected.

Figure 6 depicts some characteristic lacunarity curves, derived
by the gliding-box method, correspondent to the three types of
images. Each subfigure presents the curve of a given individual
infiltration case along with its correspondent simulation. The av-
erage lacunarity curve for laminar experimental cases was also in-
cluded in all subfigures for comparison. It can be observed great
qualitative similarity between lacunarity of individual infiltration
cases and their corresponding simulations. On the other hand
lacunarity curves from laminar infiltrations are very different.

In order to achieve some quantitative idea about the level of
accuracy between individual infiltration experimental cases and
their corresponding simulations, a Bland-Altman analysis about
lacunarity curve correspondences was performed. A resultant
non-significant linear regression intercept derived from this anal-
ysis is a sign of maximum similarity, while a non-significant re-
gression slope indicates an independence between the similarity
level and the magnitude of the statistic considered.

Figure 7 shows a comparison, by this method, of three lacunar-
ity curve statistics (rank, standard deviation and average) derived
from simulations of individual infiltration patterns with their cor-
respondent experimental cases, on the one hand, and with ex-
perimental cases of laminar infiltration, on the other. It can be
observed that, when comparing simulations with their correspon-
dent experimental cases (first raw), both linear regression inter-
cepts and slopes are non-significant in none of the three statis-
tics considered (significance level at 5%). On the contrary, when
comparing statistics from these simulations with the ones derived
from laminar experimental cases (second raw), the observed dif-
ferences, evidenced by the intercepts, are significant. Neverthe-
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less, as linear regression slopes are not significant, these differ-
ences seem not to be related to the magnitude of the statistic
considered.

These results mean that lacunarity curve statistics (and conse-
quently lacunarity curves) derived from simulations of individual
infiltration are significantly similar to the ones derived from their
correspondent experimental cases and not to the laminar experi-
mental ones. This indicates that the DLA-derived fractal approach
is adequate to reproduce the individual infiltration pattern ob-
served experimentally.

Although present personalized-medicine therapeutics tend to
make increasing usage of in vitro three-dimensional models (in
particular, tumour-derived spheroids) to test chemotherapy op-
tions in a patient-specific way43–45, the in vitro model presented
here does not intend to reproduce the in vivo hystological char-
acteristics of the tumour invasion as it is well known that the
invasion pattern of a given tumour may differ from in vivo to in
vitro conditions. Nevertheless, even in in vitro conditions tumour
cells do conserve much of their physiopathological characteristics
and may give relevant information about tumour subtype and
agressiveness. The approach proposed in this work aims to re-
veal these characteristics (specifically, spheroid growth rate, inva-
sion growth rate and invasion pattern) that could feed a patient-
specific predictive (or at least useful for prognosis estimation)
mathematical model.

Conclusions
Mathematical modelling approaches have become increasingly
abundant in cancer research as they can refine treatment modal-
ities at all phases of research and development, and in routine
patient care. Infiltration issues are specially critical in many tu-
mour types, as their correct determination is often essential to
achieve a good tumour prognosis and/or surgery/radiotherapy
optimization. Infiltration extent and its spatial organization de-
pend both on the tumour type and stage as well as on the bio-
physicochemical characteristics of the stroma it encounters when
spreading. This sets a complex scenario that often requires a mul-
tidisciplinary and individually-adjusted approach.

In a previous work we have proposed a combined method to
study the invasion pattern of MTS immersed in a collagen ma-
trix. Here, we proved that this approach is viable and useful ap-
plied in the context of an epithelial mammary microtumour that
presents two very different infiltration patterns depending on the
microenvironmental conditions. We showed experimentally that
adipocyte and preadipocyte secretions are able to alter this pat-
tern from a laminar and collective to an individual and atomized
one.

We also presented a case-specific, three-dimensional numerical
model based on a system of partial differential equations able
to describe the microtumour growth as well as the two different
infiltration patterns evidenced experimentally, in a more realistic
way than previous models. This is achieved by making the radial
velocity or the diffusion coefficient spatially variable. Numerical
simulations were able to adequately reproduce these empirical
data qualitatively and quantitatively for both infiltration patterns,
as it was revealed by area quantification, fractal analysis (fractal

dimensions and lacunarity), and a Bland-Altman analysis.
The in vitro model of multicellular tumour spheroids, combined

with its correspondent mathematical modelling, has many ex-
perimental as well as clinical interesting potential applications
in oncology. Results presented here suggest that our experi-
mental/numerical approach could be established as a combined
method to study possible invasion patterns that may result from
different tumour types and microenvironmental conditions with
potential usefulness at the moment of estimating clinical progno-
sis and designing tumour-treatment strategies in a context of a
personalized medicine.
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Fig. 3 Laminar infiltration simulations – First and third columns: experimental images of epithelial mammary MTS at the 5th day of laminar infiltration
into a "naive" collagen matrix (100x). Second and fourth columns: Numerical simulations corresponding to each experimental case, also at the 5th day
of invasion (scale bar: 100 µm).

8 | 1–10



Fig. 4 Individual infiltration simulations – First and third columns: experimental images of MTS at the 5th day of individual infiltration into a "conditioned"
collagen matrix (100x). Second and fourth columns: Fractal simulations corresponding to each experimental case, also at the 5th day of invasion (scale
bar: 100 µm).

Fig. 5 Local fractal dimensions – Fractal dimension vs. box size of five example cases for each type of image, with their correspondent average curve.
Left: Curves derived from simulations of individual (atomized) infiltration cases. Center: Curves derived from individual infiltration cases. Right: Curves
derived from laminar infiltration cases. All curves were obtained by the boxcount method.
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Fig. 6 Lacunarity analysis – Lacunarity vs. box size for five examples of individual (atomized) infiltration. Each subfigure compares one experimental
image (atomized exp.) with its correspondent simulation (atomized sim.). The average lacunarity curve resultant from laminar experimental cases was
also included for comparison (laminar exp.). All curves were derived from the gliding-box method.

Fig. 7 Bland-Altman analysis of lacunarity curves – Substraction of the compared statistic vs. its mean, for three statistics (rank, standard deviation and
average) derived from the lacunarity curves considered. First raw: comparison between curves derived from simulations of individual infiltration cases
and their correspondent experimental ones. Rank intercept: -4.49 (p=0.758), slope: 0.374 (p=0.73). Standard deviation intercept: -1.79 (p=0.72),
slope: 0.445 (p=0.67). Average intercept: -5.17 (p=0.318), slope: 1.07 (p=0.269). Second raw: comparison between curves derived from the same
simulations and those derived from laminar experimental ones. Rank intercept: 13.04 (p=0.0328), slope: -0.52 (p=0.34). Standard deviation intercept:
4.96 (p=0.0251), slope: -0.626 (p=0.238). Average intercept: 6.22 (p=0.0241), slope: -0.939 (p=0.0647).
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