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Abstract

We consider the problem of clustering time series which are assumed to possess the long
term memory. We propose an approach based on combining the results obtained by applying
different methods for estimating time-varying Hurst exponent and apply it to Euro exchange
rates. Firstly, we fit AR-GARCH models to every time series to reduce bias of rescaled
range analysis method. We only consider model with residuals, in which no autocorrelation
and ARCH effect is present; among them we choose the model with the lowest value of
the Bayesian information criterion. Afterwards, we estimate the Hurst exponent from the
residuals by means of the rolling window approach using four different estimation methods.
Vectors of Hurst exponents are clustered for each of the four cases and the clusters are
compared in order to obtain the final clustering.
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1. Introduction

Clustering, also known as cluster analysis, is an important tool for analysing data. Clus-
tering methods partition data into several homogeneous groups called clusters. Clusters are
created so that similarity between object within specific cluster is maximized, while at the
same time similarity between objects that do not belong to the same cluster is minimized.
Clustering can be used as a part of exploratory data analysis, as it allows us to gain information
from underlying data without explicit knowledge about relationship between objects within.
It can also provide useful insights on the structure of the data and identification of groups
containing similar observations might be of interest on its own. Usually, information about
objects is given by a vector of features. In many applications a vector of features arises by
observing specific characteristics of an object at different time intervals. Resulting vectors
have therefore the form of time series.

Clustering of time series data found its way into a wide range of areas, such as astronomy,
medicine, environmental analyses, etc. We refer the reader to review paper by Aghabozorgi
et al. (2015) for more applications and concrete references. In finance, where also our dataset
belongs, applications include for example clustering stocks with use in portfolio optimization
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(Han & Ge, 2020; Iorio et al., 2018; Massahi et al., 2020) or clustering aiming to discover the
structure of cryptocurrencies market (Song et al., 2019).

Similarly to general cluster analysis, there is a great number of different methods and
approaches. Time series clustering can be based on clustering the data directly, on extracting
their features or on model which were fit to the data. There are new distance metrics,
proposed specifically for time series. More details can be found for example in survey papers
(Aghabozorgi et al., 2015; Fu, 2011) or in a recent book by Maharaj et al. (2019).

Our approach is based on estimating the Hurst exponent of the time series, which is a
measure of long-range dependence in the time series. Origin of the Hurst exponent dates back
to 1951, when British hydrologist Harold E. Hurst proposed a method to optimize the storage
capacity of reservoirs in an effort to regulate natural contribution of the Nile river, keeping
in mind cyclical trend such as periods of drought and floods. His statistical analysis of the
hydrological data was not in accord with standard models of that time and subsequently lead
to models describing the behaviour that could be characterized as a long-range dependence or
long memory (O’Connell et al., 2016). Applications of the Hurst exponent in finance include
analyses of interest rates (Cajueiro & Tabak, 2009), hedge funds performance (Auer, 2016),
energy futures market (Sensoy & Hacihasanoglu, 2014), cryptocurrencies (Jiang et al., 2018),
efficiency of stock market (Cajueiro & Tabak, 2004) and others.

In the same way as Cajueiro and Tabak (2004), we apply the Hurst exponent estimators to
standardized residuals from AR-GARCH model. It was shown that presence of short memory
could cause bias of estimated value of Hurst exponent and using this procedure we filter out
the short memory information. In this way our analysis of long-range memory is not affected
by short memory effects present in the data. Paper by Lahmiri (2016) used different Hurst
exponent estimators to cluster industrial sectors at Casablanca Stock Exchange. We follow
a similar idea in our approach. However, instead of using a single estimate of the Hurst
exponent for the whole time series, we use the rolling window approach. In other settings it
has been successfully used, among others, in Cajueiro and Tabak (2004), Jiang et al. (2018),
and Sensoy and Hacihasanoglu (2014). We use this approach for subsequently clustering the
time series of Hurst exponent estimates.

Our contribution therefore lies in combining several approaches used in the literature
dealing with financial time series and their Hurst exponents individually, but not in this
combination—using residuals from AR-GARCH models for the estimation of the Hurst
exponent, using rolling window estimates and clustering the time series. Furthermore, we
propose a network based method for clustering, based on the results from an arbitrary number
of clustering algorithms applied to the data. It can be used in a more general setting, not only
our choices of methods for estimating the Hurst exponents and the clustering procedures.

The rest of the paper is organized as follows. In Section 2 we review the notion of the
Hurst exponent and its estimators, which we will use in our analysis. Section 3 presents
our data set and Section 4 summarizes the results of GARCH modelling applied the data.
Section 5 shows the Hurst exponent estimates and their clusterings. In Section 6 we compare
these clusters and suggest the final clustering of the time series. We conclude the paper with
remarks on the methodology, its advantages and shortcomings, and with ideas for future
research in Section 7.

2. Long-range dependence in time-series and estimation of the Hurst exponent

If the dependence between observations of a stationary time series that are far apart from
each other decreases very slowly, as the time distance between them increases, then the
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time-series is said to exhibit long-range dependence or long memory. More specifically, the
autocorrelations ρ(s) =Cor(Xt ,Xt−s) decay to zero so slowly, that they are not absolutely
summable, i.e. ∑

∞
s=0 |ρ(s)| = ∞. This holds in contrast to ARMA models, for which the

autocorrelation function decays exponentially and therefore the sum of its absolute values
is finite. Typical long memory process have ρ(s)∼ |s|−α with α ∈ (0,1), as s → ∞. Other
models of long memory processes include ARFIMA models with fractional differences (in
contrast to integer differences in ARIMA models), they can be characterized via spectrum, or
so called Hurst exponent. A detailed treatment of the long memory processes can be found in
Beran (2017).

Hurst exponent, which we use in our analysis, attains the values from the interval (0,1)
and, if different from 1/2, it is linked to the asymptotic behaviour of the autocorrelation
function by the relation ρ(s) ∼ H(2H − 1)|s|2H−2. The case H = 1/2 corresponds to pro-
cesses with exponentially decaying autocorrelations, i.e. without the long memory. Values
H ∈ (1/2,1) correspond to persistent processes, while values H ∈ (0,1/2) correspond to
anti-persistent processes.

The oldest and probably the best-known method for estimation of the Hurst exponent
is Rescaled range (R/S) analysis, originally proposed by Hurst (1951) himself and further
developed by Mandelbrot and Wallis (1969). We outline this method according to Weron
(2002) and afterwards we explain its modifications which we have used in our analysis, using
their implementation in the R package pracma (Borchers, 2019), in particular the function
hurstexp().

Let {Xt}L
t=1 be stationary time series of length L. The Hurst exponent can be estimated as

follows:
1. Time series of length L is divided into d sub-series of length n.
2. For each sub-series, indexed by m, mean Em and standard deviation Sm are calculated.
3. Data Xi,m are than normalized by subtracting mean Em:

X̂i,m = Xi,m −Em (i = 1, . . . ,n) .

4. Next step is to calculate new time series of deviations from mean value for each
sub-period:

Yi,m =
i

∑
j=1

X̂ j,m (i = 1, . . . ,n) .

5. The range Rm is calculated as

Rm =
{

max{Y1,m, ...,Yn,m}−min{Y1,m, ...,Yn,m}
}
.

6. Each range Rm is then rescaled/normalized by standard deviation for corresponding
sub-period as Rm

Sm
.

7. Finally mean value of the rescaled range for all sub-series of length n is computed

R
S
(n) =

1
d

d

∑
m=1

Rm

Sm

8. The steps above are repeated for the increasing length n. Only the values of n which
include first and last points of time-series are used, so R

S (n) is calculated from the same
number of observations for each n.
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It was shown, (cf. Di Matteo, 2007; Mandelbrot, 1975; Mandelbrot & Wallis, 1969;
Taqqu et al., 1995), that R

S statistics asymptotically follows relation

R
S
(n)∼ cnH .

Taking logarithm leads to

log
(

R
S
(n)

)
∼ H log(n)+ log(c). (2.1)

It means that in order to estimate value of Hurst exponent H it is sufficient to run simple
linear regression over sample of increasing time interval n.

The algorithm above has been modified in several ways in the literature. The simplest
form of the rescaled range analysis would be not to separate original time-series into m
sub-series but rather considered whole time series as suggested originally in Hurst (1951).
This would lead to only one R

S (n) statistics which means taking

log
(

R
S
(n)

)
log(n)

would be sufficient enough to estimate Hurst exponent H. This method is referred to as
simplified rescaled range analysis.

Results of the rescaled range analysis can depend on the choice of the lengths of sub-series
n that are used as input into regression. If the starting value of n is chosen as the length of
the original time series and then progressively halved, then it would possibly mean, if n ̸= 2i

for some i, that last sub-series would be of different length as the all previous. The resulting
statistics will be referred to as corrected rescaled range analysis.

A better way to estimate Hurst exponent H via classical rescaled range analysis would be
to only consider those lengths of sub-series n that the length of the original series is multiple
of n. This statistics will be referred to as empirical rescaled range analysis.

As stated in Annis and Lloyd (1976) and Peters (1994), for small value of n, the deviance
of the slope in the regression (Equation (2.1)) from its true value is significant even in a simple
case, when the underlying process is a Gaussian noise. They approximate the theoretical
values for R

S (n) as

E
(

R
S
(n)

)
=



n− 1
2

n

Γ

(
(n−1)

2

)
√

πΓ(
n
2
)

∑
n−1
i=1

√
n− i

i
for n ≤ 340,

n− 1
2

n
1√
nπ

2

∑
n−1
i=1

√
n− i

i
for n > 340,

where Γ is the Euler function. As pointed in Weron (2002), the Hurst exponent can be esti-
mated more precisely as 0.5 plus the slope from the regression of R

S (n)−E(R
S (n)) regressed

on log(n). This is referred to as corrected empirical rescaled range analysis.
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3. Data

The data used in our analysis are daily Euro foreign exchange rates in 2018–2020. They
are based on a regular daily concertation procedure between central banks across Europe
and available by European Central Bank. In particular, we study the exchange rates for the
following currencies: USD (United States dollar), JPY (Japanese yen), CZK (Czech koruna),
DKK (Danish krone), GBP (Pound sterling), HUF (Hungarian forint), PLN (Polish złoty),
RON (Romanian leu), SEK (Swedish krona), CHF (Swiss franc), ISK (Icelandic króna),
NOK (Norwegian krone), HRK (Croatian kuna), RUB (Russian ruble), TRY (Turkish lira),
AUD (Australian dollar), BRL (Brazilian real), CAD (Canadian dollar), CNY (Chinese yuan
renminbi), HKD (Hong Kong dollar), IDR (Indonesian rupiah), ILS (Isreali shekel), INR
(Indian rupee), KRW (South Korean won), MXN (Mexican peso), MYR (Malaysian ringgit),
NZD (New Zealand dollar), PHP (Philippine peso), SGD (Singapore dollar), THB (Thai
baht), and ZAR (South African rand).

In order to make the time series stationary, we follow a standard procedure of working
with differences of logarithms of the rates. Figure 1 shows a selection of the data. We note
that the volatility of the time series seems to be varying in time, which motivates us to use
GARCH models for their modelling. Finding particular reasons for nonconstant volatility in
the exchange rates data would need a standalone analysis. Here, we only note that this is not
a new phenomenon; it has been studied in many papers (e.g., Feng et al., 2021; Kido, 2016;
Manasseh et al., 2019; You & Liu, 2020; Zhou et al., 2020).

Figure 1: Sample of the data, differences of logarithms of the selected exchange rates

4. GARCH models

Let us recall that a standard autoregressive AR(p) model for stationary time serie xt takes
the form

xt = δ +a1xt−1 + · · ·+apxt−p +ut ,

where the error term u is a white noise. The parameters are required to satisfy certain
condition to ensure stationarity of the process (Kirchgässner et al., 2013). However, in
financial applications it is often the case that the assumption of a constant variance of the
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white noise is not consistent with observed data. The time varying variance of the data can
be captured by GARCH processes, which model the variance σ2

t of the process ut by the
equation

σ
2
t = ω +α1u2

t−1 + · · ·+αpu2
t−p +β1σ

2
t−1 + · · ·+βqσ

2
t−q,

where again the parameters are required to satisfy stationarity conditions. This process is
known as GARCH(p,q) process; we refer the reader to Kirchgässner et al. (2013) for details.

We use garchFit() function from the R package fGarch (Wuertz et al., 2020) to estimate
GARCH models and to obtain results of statistical tests necessary for evaluating the models.
The residuals of the models are tested in order to assess the suitability of the proposed GARCH
models. Following the standard procedures, implemented in the fGarch package, we use
the Ljung-Box test for the residuals and the squared residuals and the heteroscedasticity test.
In the model selection we consider autoregressive AR(p) processes with orders p ≤ 3 with
GARCH(p,q) error term with orders satisfying p+q ≤ 3. From the models with residuals
passing the tests given above on 5 % significance level, we select the model with the lowest
Bayesian information criterion. Exchange rates IDR (Indonesian rupiah) and ILS (Isreali
shekel) were excluded from the data due to fact that none of the model considered was suitable
for them. The resulting models for the remaining exchange rates are given in Table 1.

Table 1: Autoregressive models with GARCH errors

Model Exchange rates

AR(0) + GARCH(1,1) USD, DKK, HUF, JPY, GBP, SEK, RUB,
AUD, CNY, CHF, BRL, HKD, INR, MXN,
NZD, CAD, SGD, THB, ZAR

AR(0) + GARCH(2,1) CZK
AR(0) + GARCH(1,2) NOK, KRW, MYR, PHP
AR(1) + GARCH(1,1) HRK, TRY
AR(2) + GARCH(1,1) PLN
AR(3) + GARCH(1,2) RON

5. Time varying Hurst exponents and their clustering

As outlined in the introduction, we use the approach from Cajueiro and Tabak (2004),
Jiang et al. (2018), and Sensoy and Hacihasanoglu (2014), and we do not represent time
series by a single estimated Hurst exponent. Instead, we represent it by sequence of Hurst
exponents estimated from shorter time windows to capture regime changes within data. The
main reason is that in many financial time series we can observe cycles of irregular length
in which the dynamics varies. It is reasonable to assume that this would be also true even
for Hurst exponent. Another reason for choosing a sequence of Hurst exponents over one
particular Hurst exponent estimate would be that we might be also interested in studying
reaction of exchange rates dynamics during specific time window on information that were
dominating through the specific time.

We choose a rolling window approach to estimate sequence of Hurst exponent for each
exchange rate with window size selected to be 252 days, which is approximately one year of
data (since the data are available only on business days). This means that for each sequence
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{X j}i+w−1
j=i with w being size of window and i = 1, . . . ,n−w+1, we estimated Hi as Hurst

exponent for particular time period. This results in sequence of Hurst exponents {Hi}n−w+1
i=1 .

For determining clusters, hierarchical clustering was employed with Ward’s minimum
variance method using function hclust() from the stats R package. The distance was
chosen as squared Euclidean distance between vectors of time-varying Hurst exponents which
is required due to usage of the Ward’s algorithm. We note that a popular similarity measure
based on correlations is not applicable here. Two evolutions of Hurst exponents, which
differ by a constant, have a perfect correlation. However, they might be on opposite sides
of H = 1/2 and thus exhibiting different characteristics, which we would like to take into
account. To determine the number of clusters, we used silhouette criterion (Rousseeuw, 1987)
using function silhouette() from cluster R package (Maechler et al., 2019).

We employed four different calculations of Hurst exponent, as described in Section 2,
resulting in four different vectors of time-varying Hurst exponent for each exchange rate.
Examples of the time-varying Hurst exponents are shown in Figure 2. As can be seen, time-
varying Hurst exponents for particular exchange rate significantly differs by used estimation
technique so it is meaningful to carry out cluster analysis for every one of them. Thus,
resulting in 4 clusterings of exchange rate market. Dendrograms and the resulting clusters are
presented in Figures 3–5.

Figure 2: Time dependent estimates of the Hurst exponents for selected currencies (bottom
figures), together with the original data (top) and standardized residuals (middle)

6. Comparison of clusterings and final clusters

Clusterings presented in the previous section are not identical; however, in the case of
certain pairs of exchange rates, they were in the same cluster in all four clusterings. We
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Figure 3: Hierarchical clustering of the currencies based on simplified Hurst exponent clus-
tered by Ward’s algorithm using squared Euclidean distance as similarity measure. Optimal
clusters selected via silhouette criterion are visualised by the dashed frames.

Figure 4: Hierarchical clustering of the currencies based on corrected Hurst exponent clus-
tered by Ward’s algorithm using squared Euclidean distance as similarity measure. Optimal
clusters selected via silhouette criterion are visualised by the dashed frames.
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Figure 5: Hierarchical clustering of the currencies based on empirical Hurst exponent clus-
tered by Ward’s algorithm using squared Euclidean distance as similarity measure. Optimal
clusters selected via silhouette criterion are visualised by the dashed frames.

Figure 6: Hierarchical clustering of the currencies based on corrected empirical Hurst
exponent clustered by Ward’s algorithm using squared Euclidean distance as similarity
measure. Optimal clusters selected via silhouette criterion are visualised by the dashed
frames.
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consider this to be a strong indicator that the Hurst exponent has a similar evolution for these
two rates. As the number of such cases decreases, also the similarity can be seen as weaker.
Naturally, in many cases, the given pair of the rates was never in the same cluster.

We associate the clustering results with a network, whose nodes are the exchange rates.
Two nodes are connected by an edge, if they were in the same cluster at least once. The
weight of the edge is given by the number of such clustering. The resulting network is shown
in Figure 7.

If we consider the edges with the weight above a certain threshold, the network splits into
several connected components. The nodes in these components are therefore representing
sets of exchange rates, for which the evolution of the Hurst exponent is similar. Therefore,
we take the connected components as the final clusters of our analysis. The choice of the
threshold is subjective, we base it on visualizing the networks corresponding to different
thresholds. Depending of the data, we might need to find a trade-off between a large number
of small components with strong connections between the nodes, and a small number of large
components with weaker ties. In our particular case we compare the components emerging
from the thresholds 4 (the maximum possible weight of an edge) and 3 (which means that
the exchange rates have to be in the same clusters at least 3 times out of 4, in order to be
connected by an edge in the network). We do not consider lower values for a threshold;
requiring the edge of the weight to be at least 3 means that the nodes connected by an edge
must be in the same cluster in more than half of the cases. The clusters consisting of more
than one node are presented in Tables 2 and 3.

Both clusterings seem reasonable. We can identify nodes in the clusters which can be
expected to be in the same cluster based on the dependence of the economies and financial
markets in the given countries. In the network from the threshold 4, we see a small cluster
containing United States dollar and Hong Kong dollar. A larger cluster, containing six nodes,
includes exchange rates of currencies in countries located in the south, southeast and east Asia
- Indian rupee, South Korean won, Malaysian ringgit, Philippine peso, Singapore dollar, Thai
baht. We note, however, that being in the same cluster does not mean a similar evolution of the
exchange rate itself. Instead, it means a similar evolution of the Hurst exponent. Therefore,
a more detailed interpretation of the clusters would need a more careful on the factors that
might influence this feature of the exchange rates.

Table 2: Final clustering of the exchange rates for the threshold 4—
nontrivial clusters (containing more than one exchange rate)

Cluster Exchange rates

1 USD, HKD
2 JPY, DKK, RON, CHF
3 CZK, NOK, HRK, RUB, AUD
4 GBP, BRL
5 HUF, CNY
6 PLN, SEK
7 INR, KRW, MYR, PHP, SGD, TBH



Time series clustering based on time-varying . . . 83

Figure 7: Network constructed from the clusterings in Figures 3–6 with the vertices corre-
sponding to exchange rates and the weight of the edges corresponding to number of times
each pair of exchange rates ended up together in a cluster. The weight of the edge is visualized
by the width of the line, the type of the line and by its colour (1 = thin, dashed, light-grey, 2 =
thin, solid, grey, 3 = thick, dashed, green, 4 = thick, solid, red).

Table 3: Final clustering of the exchange rates for the threshold 3—
nontrivial clusters (containing more than one exchange rate)

Cluster Exchange rates

1 USD, HUF, CAD, CNY, HKD, INR, KRW, MXN, MYR, PHP,
SGD, THB, ZAR

2 JPY, DKK, RON, CHF
3 CZK, NOK, HRK, RUB, AUD, NZD
4 GBP, BRL
5 PLN, SEK

7. Conclusions

Many financial time series exhibit long-range dependence. We used this property for
clustering the time series based on Hurst exponent which measures this dependence. We
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Figure 8: Network obtained from Figure 7 by only considering edges with weights equal
to 4. The vertices correspond to exchange rates and the weights of the edges correspond to
number of times each pair of exchange rates ended up together in a cluster.

proposed a clustering procedure which uses several different estimates of the Hurst exponent
and clusters their values obtained by a rolling window method. As a final step of our procedure,
clusterings originating from individual methods of the Hurst exponent were compared. In our
example of exchange rates, it turns out that we are able to create final clustering by requiring
that members of each cluster are in the same cluster at least the specified number of times in
the individual clusterings. We expect the same to hold also in the case of other data since
“similar time series” should appear in the same cluster often, when considering different
details of clustering procedure. Therefore, our approach can be directly applied also to other
time series.

The results which we have obtained provide a new application of rolling window approach
to Hurst exponent estimation, used earlier in Cajueiro and Tabak (2004), Jiang et al. (2018),
and Sensoy and Hacihasanoglu (2014). Moreover, they make it possible to extend other
clustering analyses such as Lahmiri (2016), by allowing to use more than one time criterion
(e.g., several estimation methods in our particular case).

The extension of our results can go in two directions. The first one consists of a more
detailed interpretation of the clustering. As we noted, the estimates of the Hurst exponent
provide an information about the underlying time series and we might study the external
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Figure 9: Network obtained from 7 by only considering edges with weights greater than 2.
The vertices correspond to exchange rates and the weights of the edges correspond to number
of times each pair of exchange rates ended up together in a cluster. The weight of the edge is
visualized by the type of the line and by its colour (3 = dashed, green, 4 = solid, red).

factors which lead to this behaviour of the data. This might also give a better understanding
of clusters and why certain exchange rates (or other data considered) appear in the same or in
different clusters, respectively.

The other direction involves using different methods to construct individual clusterings.
The final comparison of clusters does not have any limitation on the number of clusterings
which enter it, neither on methods used to obtain them. There are many methods for estimating
Hurst exponents, other distances between vectors of Hurst exponents may be considered, we
may use different clustering methods. Individual clusterings might get different weights and
instead of counting the number of occurrences in the same cluster, it is possible to weight
them. It might be insightful to see how these different approaches influence the final clusters.

A possible limitation might be the need of finding a suitable trade-off between clearly
distinguished components in the network and the number of isolated nodes, corresponding
to clusters containing one time series. If the condition for the existence of an edge between
nodes is not sufficiently strict, i.e., only a small number of occurrences in the same cluster
is required, the components are often large, which may not be always desirable. On the
other hand, a high threshold often leaves a lot of nodes without an edge, leading to one-
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element clusters. However, we may be interested in finding similar time series to most of
the data, instead of concluding that they form a separate cluster. A possible solution might
be a modification of our final clustering step. Instead of considering the components of
the network, various methods for finding so called communities in connected networks can
be employed. They aim to divide the nodes into communities, which are characterized by
many edges within the nodes in a community and a small number of edges between nodes in
different communities. Reviews of such methods can be found in Fortunato (2010) and Javed
et al. (2018). The proposed method and its possible modifications outlined above provide
a new approach for clustering time series using networks and communities, considered in
Ferreira and Zhao (2015).

To conclude, we note again that the proposed approach can be used to analyze any time
series with long-range dependence, or time series for which their regimes—persistent, anti-
persistent or having quickly decaying correlations—need to be distinguished. Therefore
we consider it to be an interesting addition to the topic of clustering time series with these
properties.
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