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Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering
the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses.
Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare
loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic
diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA
sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated
from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation
revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ
upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also
identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was
performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], has rapidly
developed into a global pandemic of enormous consequences.
COVID-19 is characterized by a broad spectrum of clinical
manifestations in humans, ranging from asymptomatic to mild
symptomatic to severe pneumonia accompanied by multiorgan
failure [2]. Older age, male sex, hypertension, diabetes, and obesity
are all indicators identified as risk factors predisposing to severe
disease [2]. In addition, and perhaps underlying some of these
indicators, specific genetic factors may more precisely explain the
predisposition of some individuals to develop severe disease
requiring hospitalization and even admission to intensive care
units [2]. Increasing evidence suggests that defects in responsive-
ness to type I interferons (IFN-I) are of prime importance. Indeed,
genetic variants that decrease IFN-I production and the develop-
ment of anti-IFN-I autoantibodies have been associated with more
severe COVID-19 [3–7]. Recently, two studies in young men with
severe COVID-19 and no history of major chronic diseases

identified rare loss-of-function (LOF) variants in X-chromosomal
TLR7 that were associated with impaired TLR7 signaling as well as
type I and II IFN responses [4, 5]. Another study revealed that at
least 3.5% of patients with life-threatening COVID-19 pneumonia
had genetic mutations at candidate loci known to be involved in
TLR3- and IRF7-dependent induction and amplification of IFN-I [7].
Interferons are rapidly produced following viral infection and

induce potent first-line defense mechanisms against viruses that
are key in host–virus standoff [8]. The initial sensing of pathogens
is mediated by innate pattern recognition receptors that include
Toll-like receptors (TLRs). The intracellular signaling cascades
triggered by TLRs lead to the transcriptional expression of
inflammatory mediators that coordinate the elimination of
pathogens and infected cells. Interestingly, among the different
TLRs, TLR7 binds to single-stranded RNA viruses, such as influenza
A virus, HIV-1, hepatitis C virus, HBV RNA intermediates, and SARS-
CoV-2 as well as binding to synthetic guanine-rich RNA sequence
analogs such as imiquimod (IMQ) [9–13]. Upon virus infection or
agonist stimulation, TLR7 dimerizes in the endosome to initiate
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TLR7-mediated MyD88 signal transduction, resulting in the
activation of mitogen-activated protein kinase cascades and NF-
κB [14]. Signaling in human immune cells by TLR7 has been
documented to trigger production of pro-inflammatory cytokines,
including tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1β,
and IL-12 as well as IFN-I. IFN-I regulates a range of immune
responses through the IFN-I receptor, resulting in the transcription
of hundreds of IFN-stimulated genes (ISGs) whose joint action
leads to the generation of an “antiviral state” [8, 14].
To gain insight into TLR7-linked mechanisms of severe COVID-

19, we performed RNA sequencing (RNA-Seq) to carefully
characterize transcriptome variations following IMQ stimulation
of peripheral blood mononuclear cells (PBMC) isolated from
patients carrying previously identified LOF TLR7 variants [5]. In
addition, we found new TLR7 variants in severely affected males
for which functional characterization of the pathway was also
performed.

RESULTS AND DISCUSSION
To study more deeply the functional effects of TLR7 variants, after
TLR7 stimulation with IMQ in comparison with unstimulated cells,
we performed RNA-Seq experiments on PBMC from healthy
donors (HDs) and from patients carrying the functionally
hypomorphic variants Ala288Val and Ala448Val, the hypofunc-
tional variant Val219Ile, and the LOF variants Ala1032Thr and
Ser301Pro. As shown in Fig. 1A, B, we observed several
differentially expressed genes (DEGs) in the HDs as well as in
the patients carrying hypomorphic and hypofunctional variants. In
contrast, when LOF variants were analyzed, no DEGs were found
(Fig. 1C). Specifically, TLR7 stimulation induced a strong response
in HDs with 211 genes significantly upregulated (log2 fold change
(FC) ≥ 1.5; adjusted p value ≤ 0.05) and 19 downregulated genes
(log2FC ≤−1.5; adjusted p value ≤ 0.05) compared with

unstimulated PBMC. The genes displaying the top 50 absolute
FC are listed in Fig. 1A. We used the Gene Ontology (GO) database
to perform GO-biological process enrichment analysis of DEGs.
Cytokine-mediated signaling and cellular response to interferons
were upregulated pathways in HDs (Fig. 1A, lower panel). Patients
carrying hypomorphic or hypofunctional variants displayed 108
upregulated genes (log2FC ≥ 1.5; adjusted p value ≤ 0.05) and 5
downregulated genes (log2FC ≤−1.5; adjusted p value ≤ 0.05),
most of which were the same observed in HDs (Fig. 1B). The GO-
biological process enrichment analysis identified the same
upregulated pathways (Fig. 1B, lower panel). Interestingly, RNA-
seq analysis in patients carrying LOF variants showed that none
had genes with an adjusted p value ≤ 0.05 (Fig. 1C), suggesting a
profound impairment of the TLR7 pathway. As shown in the heat
map (Fig. 1D), for most of the 50 genes with the highest FC in HDs
after IMQ stimulation we noticed a significant upregulation in
patients carrying hypomorphic and hypofunctional variants but
not in patients with LOF variants. A notable exception was IFNγ for
which a failure to induce upregulation following stimulation was
also observed in cells harboring the hypofunctional and hypo-
morphic variants. It has been shown that at around day 10 in
subjects with COVID-19, IFN-I decreased while IFNγ remained
stable [15], promoting the resolution of lung inflammation.
Therefore, administration of IFN-I might be considered a
therapeutic option for TLR7 mutated patients. The efficacy of
IFN-I therapy would depend on whether it is administered early in
the course of the disease. Patients with a severe course of COVID-
19 are usually admitted to the hospital after a few days at home
making it difficult to identify those in need of IFN-I treatment.
Indeed, inappropriate administration of IFN-I to the wrong
patients or at the wrong time point could be counterproductive
by triggering the cytokine storm. A more attractive therapeutic
option would be IFNγ, which is not only useful in patients with
hypomorphic mutations but, in addition, can stabilize the

Fig. 1 DEGs in PBMC from HDs and patients carrying TLR7 variants stimulated with IMQ. A–C Volcano plots showing DEGs. Red dots show
upregulated genes (log2FC ≥ 1.5 with adjusted p value ≤ 0.05) and blue dots represent downregulated genes (log2FC ≤−1,5; adjusted p
value ≤ 0.05). The DEGs with the top 50 absolute FC are reported. A Three healthy donors. B Patients (n= 3) carrying the Ala288Val, Ala488Val,
and Val219 Ile variants. C Patients carrying Ala1032Thr (n= 1) and Ser301Pro (n= 1) variants. Gene Ontology biological process terms
significantly overrepresented among the genes increased by IMQ are shown in the lower panel in (A, B, D). Heatmap of logCPM values for the
top DEGs in HDs and patients carrying TLR7 variants after IMQ stimulation. IMQ imiquimod, NS non stimulated.
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inflammatory response and does not require timely
administration.
As shown in Fig. 1, in HDs and in patients carrying hypomorphic

and hypofunctional variants, but not in patients carrying LOF
variants, TLR7 engagement triggered an antiviral response
upregulating typical antiviral ISGs (RSAD2, APOBEC3A, HERC5,
OASs, MXs, IFITs, and IFITMs family genes) as well as proinflamma-
tory cytokine and chemokine genes (IL6, CXCL10, CXCL11, CCL8,
CCL2, CCL7) [8]. Interestingly, IL6 and CXCL10 were found to be
involved in the mechanisms sustaining the cytokine-storm, a
peculiar aspect of SARS-COV-2 infection which, at least in severe
cases, is responsible for diffuse alveolar damage and multi-organ
failure [16]. Furthermore, IFITMs inhibit cellular entry of SARS-CoV
and MERS-CoV [17]. We also observed upregulation of CCL2 and
CCL7, two pivotal chemokines for monocyte recruitment, both of
which were found enriched in bronchoalveolar fluid (BALF) from
patients with severe COVID-19 [18, 19]. Moreover, the TNFSF10
gene (TRAIL), an apoptosis-related gene that was previously found
to be upregulated in BALF and PBMC from COVID-19 patients [20],
was also upregulated after IMQ stimulation in HD and in patients
carrying hypomorphic and hypofunctional variants. Meanwhile,
we observed a marked induction of negative regulators (such as
USP18, IL1RN, and ACOD1), suggesting stimulation of negative
feedback loops. The functional status of the cells was evaluated by
stimulating PBMC from patients and HDs with the TLR4 agonist
lipopolysaccharide (LPS). Intracellular production of IL6 was
evaluated in monocytes (as shown in Supplementary Fig. 1). The
frequencies of CD3−CD14+IL6+ cells were comparable in patients
and HDs, indicating that cells from patients harboring TLR7
variants were functionally active. IFNα and IFNγ protein produc-
tion was evaluated in the supernatant of PBMC from HDs and from
a small number of patients after TLR7 engagement. The data
showed a trend toward a lower production of IFNα as well as IFNγ
proteins in patients carrying LOF TLR7 variants. The patient

carrying the hypomorphic variant Ala288Val showed a reduced,
though not statistically significant, production of IFNα protein
after TLR7 engagement (Supplementary Fig. 2). Overall, the
transcriptomic profile of cells harboring LOF TLR7 variants showed
a wide deficiency of ISGs while both hypomorphic and LOF
mutations displayed a reduction of IFNγ transcription.
We next extended the analysis to two additional rare TLR7

variants: the already reported Arg920Lys variant (P6) [5], and the
new Asp41Glu (P10) variant predicted to be deleterious from in
silico analysis (Fig. 2A). The two variants were identified in two
severely affected male patients aged 49 and 79 years, one in each.
In order to functionally characterize the TLR7 pathway, we
performed a gene expression profile analysis of PBMC from
patient P6 and from two relatives of patient P10 following
stimulation with IMQ. We found a statistically significant decrease
in mRNA levels for IFNα and IFNγ genes in P6, P10-II-I, and P10-II-III
compared with HDs (Fig. 2B, C). We further analyzed some of the
genes showing the highest FC in the HDs transcriptomic profile
and observed a significant decrease of mRNAs encoding for
RSAD2, ACOD1, and IFIT2 genes in P6, demonstrating a profound
impairment of the TLR7 signaling pathway in response to
TLR7 stimulation (Fig. 2D–F). Of note, it was reported that RSAD2,
in addition to the role of direct suppressor of viral replication,
promotes TLR7- and TLR9-mediated production of IFNα. [21].
Moreover, we observed that CXCL10 mRNA was markedly reduced
in P6, P10-II-I, and P10-II-III compared with HDs (Fig. 2G). Overall,
our data expand previous findings on the TLR7 role in rare
Mendelian forms of COVID-19 and provide further insights into the
altered pathways that might contribute to disease severity.

MATERIALS AND METHODS
Male COVID-19 patients were selected from the Italian GEN-COVID cohort
[5]. Cases were selected according to the following inclusion criteria: (i)
male gender; (ii) young age (<60 years); and (iii) detection of rare variants

Fig. 2 Gene expression analysis in PBMC of patients carrying TLR7 variants stimulated with IMQ. A Pedigree of P6 (A upper panel) and P10
(A lower panel) shows the segregation of the variant within the family. Squares represent male family members; circles, females. Black symbols
indicate individuals harboring the TLR7 variant. Individuals infected by SARS-CoV-2 are indicated by a virus symbol () close to the individual
symbol. B–G PBMC from COVID-19 patients and four unaffected male controls (HDs) were stimulated with IMQ at 5 μg/mL or cell culture
medium. A quantitative PCR assay was performed and 2−ΔΔCt was calculated using HPRT1 as the housekeeping gene. Fold change in mRNA
expression of genes induced by IMQ with respect to cell culture medium was calculated: *p < 0.05; **p < 0.01; ***p < 0.001.
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in TLR7. Exclusion criteria were: (i) SARS-CoV-2 infection not confirmed by
PCR. Relatives of patients 6 and 10 were contacted to obtain a blood
sample. Segregation analysis of the variants was performed with Sanger
sequencing on an ABI3130 Genetic Analyzer. PBMC isolation, IMQ
stimulation, and qPCR were performed as previously described [5]. The
primers used are listed in Supplementary Table 1. Supernatants of PBMCs
stimulated with IMQ, LPS, or medium alone were measured for IFNα
(Invitrogen) and IFNγ production (Bio-Techne) according to the manufac-
turer’s instructions. PBMC were stimulated in vitro with LPS at 1 µg/ml for
4 h, then IL6 production was examined in CD3− CD14+ cells by flow
cytometry. Briefly, 3 × 105 PBMC were stained with anti-CD3 BV605 and
anti-CD14 BB700 mAbs, fixed and permeabilized with the BD Cytofix/
Cytoperm kit in the presence of anti-IL6 BV421 (Becton Dickinson)
according to the manufacturer’s instructions. RNA quality was assessed
by Fragment Bioanalyzer (Agilent); all samples exhibited RNA quality
numbers greater than 8. The libraries for RNA-seq were performed
according to the Illumina TruSeq Stranded mRNA Library preparation
protocol and sequenced in multiplex with HiSeq 2500 platform (Illumina)
in 50 nucleotides, paired-end read configuration. Sequencing data were
analyzed using the BioJupies platform [22].
WES and Genotype (GWAS) data were generated within the GEN-COVID

Data Repository (GCGDR). In order to be able to store and analyze the
massive amount of genomic data generated with the analysis of the entire
cohort of samples populating the biobank, we relied on the NIG. External
users can upload and analyze data using the NIG pipeline by registering
and creating a specific project. A section dedicated to COVID-19 samples
has been created within the NIG database (http://nigdb.cineca.it/) that
provides variant frequencies as a free tool for both clinicians and
researchers.
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