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Based on the analysis of conditions for a good distance function we found four rules that should be fulilled. Then we introduce

two new distance functions, a metric and a pseudometric one. We have tested how they it for distance-based classiiers,

especially for the IINC classiier. We rank distance functions according to several criteria and tests. Rankings depend not only

on criteria or nature of the statistical test, but also whether it takes into account diferent diiculties of tasks or whether it

considers all tasks as equally diicult. We have found that the new distance functions introduced belong among the four or

ive best out of 23 distance functions. We have tested them on 24 diferent tasks, using the mean, the median, the Friedman

aligned test and the Quade test. Our results show that a suitable distance function can improve behavior of distance-based

classiication rules.
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statistics.
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1 INTRODUCTION

In this work we deal with distances in a multidimensional space. Especially, we deal with the distance from
the given point (the query point x) in multidimensional space Rd . In this way, the d-dimensional information
is simpliied to one-dimensional information, the distance. This is the cost we pay for this simpliication. We
show that this cost is not too high. The nearest neighbor method [5] remains popular and surprisingly efective
and fairly often used up till now [1], [20], [22], [24], [30], [36], [38]. There is a lot of methods of classiication
based on the nearest neighbors [33]. The methods estimate the probability density at point x of the data space
by ratio i/Vi of number i of points of a given class in a suitable ball of volume Vi with its center at point x [11].
These methods often optimize the best size of the neighborhood, i.e. the number i of points in the neighborhood
of the point x or size of volume Vi . Nearest neighbors methods use various means to enhance the classiication
quality. One of them is setting up weights of individual features via learning, e.g. [9], [26], [32], [34], [35]. Li,
Chen and Chen [21] search for local probability centers rather than for local class density. There are techniques
for improving the speed of nearest neighbors search, see [37], [31], techniques for dealing with high dimensional
data [25], techniques for dealing with missing feature values [3], techniques for dealing with uncertain data [2].
In [24] a guideline how to apply k-NN for classiication tasks with the use of software package are given. Also, a
proper selection of k is shortly discussed.
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Here we use the Inverted Indexes of Neighbors Classiier (IINC) [17], see Chap. 2.4. It belongs among simple
classiiers (data separators), eventually regressors, like the nearest neighbor rules 1-NN and k-NN or the naive
Bayes classiier. The IINC method is distance-based as 1-NN and k-NN. Thus, distance plays a crucial role and is
given by a distance function, mostly metric in the Rd . Another crucial role is played by the efective dimension
of the data space. This is unknown for the 1-NN and k-NN methods. The IINC estimates probability of a class
of a pattern or sample (a query point) according to a proper sum of reciprocals of indexes of neighbors of this
sample; the nearest neighbor has index 1, the second nearest has index 2 etc. It can be shown that with the use
of reciprocals of indexes we model scaling features of data and, at the same time, we correct errors caused by
random placement of neighbors close to the query point. The ranking brings a similar advantage that has ranking
statistics over standard statistics. Small variations are hidden in the same rank and eventually large changes
inluence the rank. Thus, there is a kind of robustness that brings also low classiication error. The complexity of
this method for large data set is given by N logN , where N is the size of the learning set.

The behavior of the method depends on the distance function, usually a metric in the Rd . It appears that rather
uncommon metrics are the best. In study [38], the six distance metrics are considered. An interesting inding is
that for k ≥ 6 the diferences was essentially negligible for particular task of mapping of species-level biomass.
For smaller k the diferences among distance functions are important. It can be found that an L1 (taxicab or
Manhattan) metric is very good. The Euclidean metric L2 can be considered acceptable. On the other hand, for a
particular task the IINC or the k-NN, with a distance function that generally (say, on average) is not good enough
may work best. It was shown [1], [38] that an uncommon metric is much better than the L1 and L2 metrics. It
applies to the 1-NN as well as the IINC rules. A distance function may be dependent on rotation. The only rule
that does not depend on rotational position of the coordinate system is the Euclidean metric. Another uncommon
thing is that in some metrics a ball (or circle in R2) with a inite radius r need not have a inite volume at least for
some values of r . Also, the distance function need not be a metric. A pseudo-metric that does not conform to the
triangle inequality is suicient.

1.1 Problem formulation

There is a crucial fact that behavior of k-NN classiiers, i.e. in the end the classiication error, is inluenced by the
concept of the classiier and by a distance function, usually the metric used. Recently the Hassanat metric was
published in the Journal of American Science (Marsland Press) [13]. It can be shown that it is one of the best
distance functions for distance-based classiiers. The other factor is the design of the nearest neighbor scheme.
This is often limited to proper selection of k in k-NN classiier, but more sophisticated schemes were published.
One of them was published by Samworth in The Annals of Statistics (IMS) [32], the other is called the IINC and
was published in the Journal of Classiication (Springer) [17].

It was found that the use of the Hassanat metric with the IINC rule gives very good results compared with
other distance functions and other nearest neighbor rules [13]. A question arises if there is another distance
function giving generally better results. This question leads to another question, what are the conditions or rules
for a "good" distance function.
It can be found (see [7] and [8]) that the various distance functions have been designed according to certain

speciic needs, but none of them in terms of classiication accuracy.
We present here a systematic analysis conductive to the conditions that the distance function should meet in

order to be a generally optimal distance function for distance-based classiiers. However, this requirement leads
to a condition that cannot be fully met. It can only be partially accomplished. Therefore, this condition should
include that the classiication error must be minimal at least close to the threshold between classes. At the same
time, this condition can be found too broad. Then the distance function should follow major features, which have
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1. The Distance Function Optimization for the Near Neighbors-based Classifiers • 3

known distance functions that provide the best classiication error. We are, therefore, looking for the conditions
that the new distance function shoud have.

This is derived in Chaps. 2.5 and 2.6 and summarized in Chap. 2.7. Suggestions for two new distance functions
are given in Section 3.

We concentrate here on distance functions and the IINC rule, as this rule was found to be the best among the
other k-NN rules [1], [14].

At the same time, these references show that the distance functions have the same relative efect on the quality
of classiication for IINC and for k-NN.
Our experience with practical tasks also leads to this. We use it without considering any data preprocesing,

features or class weighting often used to get better results with a given rule and a distance function, usually the
Euclidean metric. Of course, the techniques mentioned can be applied with success.
Based on considerations above we present here two new distance functions. We prove that the irst one is a

metric one and the other is a pseudometric one. We show some of their features, especially we show the fact that
a ball in Rd (a circle) has a very uncommon form and its volume can be ininite. Then we explain the IINC method
for classiication. Using the IINC method and 23 diferent distance functions, we analyze how the classiication
error depends on the distance function used. For this purpose we have tested the classiier on a set of 24 tasks.
Having amassed enough data, we use simple comparisons like mean and median and the Friedman aligned
test and the Quade test [6] for multiple comparisons. Finally we rank the distance functions according to these
criteria and tests getting a set of four or ive best distance functions. The set includes also new distance functions
introduced here.

2 ANALYSIS

2.1 The data sets

Data set is usually represented as a real matrix with d+1 columns and N rows. Each of columns 1 till d corresponds
to a feature, the column No. d + 1 contains a class mark. Each row corresponds to one sample, point, pattern,
eventually event that consists of values of d features and a class mark. Generally, there is no ordering of rows, i.e.
of samples; they follow one after another randomly and are indexed 1, 2, ...N . Samples are often called points as
each sample can be viewed as a point in a d-dimensional space. The learning set U has total N = N (U ) samples.
With classes the set U is decomposed into disjoint sets Uc ;U = ∪Cc=1Uc ,Uc ∩Ub = é; c,b ∈ 1, 2, ...,C; c , b, C is

the number of classes. Let the cardinality of setUc be Nc ;
∑C
c=1 Nc = N . Moreover, there is a testing set V such

thatU ∩V =é.

2.1.1 Learning and testing set. There is a diferent terminology used in literature. Here we speak about the
learning set used for setting up the classiier, and the testing set (checking set) "never seen before" for evaluation
of true classiication capability. The learning set can be divided into the training set really used in setting up the
classiier and validating set for validation of the previous setting cycle. We do not use this option here.

2.1.2 Indexing data and neighbors’ distances. As we need to express which sample is closer or further from
some given sample x , we can rank samples of the learning set according to distance ri of sample xi from sample
x . Therefore, let samples of U be indexed (ranked) so that for any two samples xi ,x j ∈ U there is i < j if
ri < r j ; i, j = 1, 2, ...N , and classUc = {xi ∈ U |T (xi ) = c}. Of course, ranking depends on sample x and eventually

metrics in Rd .
From now on we use numbering of samples according to their order as neighbors of sample x ; xi being the

i-th nearest neighbor of sample x .
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2.2 Metrics in Rd

A natural metric in Rd is the Euclidean metric and (Rd , ρE ) is a metric space. At the same time one uses another
metric ρx . This metric we use for stating distances between points in Rd , for stating ranks of neighbors, and for
deining geometrical objects. Their areas and volumes are computed in a standard way. For example, in (R2,L1),
i.e. in a two-dimensional space with Manhattan or taxicab metric, a "circle" with unit radius has the form of a

diamond with edge
√
2. Its area computed in a standard way is equal to 2, whereas a circle in (R2,L2) with unit

radius has an area equal to π .

2.3 Measure-dependency

Metric as well as semimetric can be measure-dependent and then values of coordinates should be normalized.
Normalization (sometimes called standardization) means transforming each feature, taken as a random variable,
into a new variable with zero mean and unit standard deviation. Thus, individual features are comparable.
Normalization is a practical issue; in analysis it is usually supposed that all features are of the same nature.

2.4 IINC rules

A basic notion of the IINC rules is the distribution mapping exponent q. Suppose a ixed point x and its distance
to its nearest neighbor, the second nearest neighbor etc. The distribution of individual points is given by the
probability distribution of points in space Rd . Imagine a graph where the order number of a neighbor as a function
of distance from point x is depicted. We call this dependence the distribution mapping function. If logarithmic
scales on both coordinates are used, points are arranged approximately along a straight line. The slope of this
straight line is called the distribution mapping exponent q. It is, in fact, the scaling exponent in the sense of the
theory of fractals [23]. It can be proved that the average of all distribution mapping functions formed for all points
of a set, is the correlation integral [12] and mean of distribution mapping exponents is close to the correlation
dimension. It is clear that the distributon mapping exponent q describes behavior of data locally around point x
and the correlation dimension ν globally for the whole set considered. This is the basis for the IINC rules.
The local method (the L-rule) [15] is given by formula for probability that point x is of class c

for x , x1 (x1 is the irst nearest neighbor of x )

p̂ (c |x ) =
∑

i :xi ∈Uc r
−q
i

∑

i :xi ∈U r
−q
i

(1)

and for x = x1 there is

c (x ) = c (x1). (2)

Here the two-class problem with the same a priori probabilities of both classes is considered. In this formula the
sum in the numerator goes over points of class c (setUc ), and the sum in the denominator goes over all points of
the learning setU .
The global method (G-rule) [16] is given by a similar formula with correlation dimension ν instead of the

distribution mapping exponent q.
The IINC rule uses the order numbers of neighbors (ranks) instead of rq . It holds [17]

for x , x1

p̂ (c |x ) =
∑

i :xi ∈Uc 1/i
∑

i :xi ∈U 1/i
, (3)

and for x = x1 there is

c (x ) = c (x1). (4)
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Note. Equation (3) can be written in form

p̂ (c |x ) = Sc

Sc + Sc̄
=

Sc

HN
, (5)

where

Sc =
∑

i :xi ∈Uc

1/i

and HN is the N -th harmonic number.
We consider the same a priori probability of both classes here. It means, in practice, the same number of

patterns of all classes in the learning set. If it is not so, the imbalance problem arises. This problem can be solved
using łrecomputation to one pattern”, i.e. by dividing individual Sc ’s by the number of patterns Nc of this class.
In this way, we get formula for any number of classes numbered 0, 1, ...C − 1, where C is the number of classes

p̂ (c |x ) =
1
Nc

Sc
∑C−1

i=0
1
Ni
Si
. (6)

Bear in mind that the denominator is not a harmonic number here.
It can be proven that the IINC represents the best neighbor class weighting scheme among all the k-NN rules.

The proof shows that any deviation of weight of the k-th neighbor leads to an enlargement of the classiication
error. Representation of rank of a neighbor by the sum of the Heaviside step functions of diferences of neighbors
distances is used in the proof. For the Heaviside step function a smooth approximation is used. Then a formula
for the classiication error of the IINC rule and the rule with slightly modiied weight are compared. From this
comparison it follows that any change of weight of a neighbor - positive or negative - leads to an enlargement of
the classiication error.

2.5 The distance function and conditions for optimization

For optimization of the distance function we use the standard procedure of setting up the irst derivative of the
function minimized, the error function, to zero. Naturally, unless the assumption of continuous second partial
derivatives and concave form in the neighborhood of the minimum, i.e. positive second derivative.

The classiication error can be deined as

Ec =
1

| |V | |

∫

x ∈V

[

h(p̂ (c |x ) − 1/2) − cx
]2

f (x )dV , (7)

where h(.) is the Heaviside step function, cx is the class of pattern x , and p (c |x ) is the classiier’s estimate of the
probability that pattern x is of class cx ; we write p̂ for short later. This is a functional over the function that gives
an error of one query pattern times local density f (x ),

L = [h(p̂ − 1/2) − cx ]2 f (x ). (8)

In the following we omit the local density. The Heaviside step function can be approximated by

h(x ) =
1

2

(

1 +
x

√
ϵ2 + x2

)

, (9)

where ϵ is the smoothing factor. The derivative is

∂h

∂x
=

ϵ2
√

(ϵ2 + x2)3
= ϵ2D, (10)
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where

D =
1

√

(ϵ2 + x2)3
. (11)

We also write

Sc =
∑

k :xk ∈Uc

1

rk
, (12)

where rk is the rank of the pattern No. k from the query point x and it holds

rk =
∑

j :x j ∈U
h[ρ (x ,xk ) − ρ (x ,x j )]. (13)

(To get rank of xk we sum out all points xi that are closer to point x than is the xk . Then the distance ρ (x ,x j ) <
ρ (x ,xk ) and the Heaviside step function is equal to one, otherwise zero.)

With the use of substitutionswe get functionL as a function of vectorsxk = {1xk ,2 xk , ...dxk },xl = {1xl ,2 xl , ...dxl },
i.e. function of 2d scalar variables. These variables afect the classiication error via the distance function ρ (., .).
Depending on xk or xl we have łtwo” distance functions ρk = ρ (x ,xk ) and ρl = ρ (x ,xl ) that we have to
diferentiate. We will need some derivatives

∂p̂

∂ rxk
=

1

HN
.
∂Sc

∂ rxk
, (14)

∂Sc

∂ rxk
=

∑

k :xk ∈U

−1
r 2
k

.
∂rk

∂ rxk
, (15)

at the same time
∂Sc

∂ rx j
=

∑

k :xk ∈U

−1
r 2
k

.
∂rk

∂ rx j
, (16)

because rk is function of xk as well as x j . Now we need the derivative of the rk wrt. rxk . There is

∂rk

∂ rxk
=

ϵ2

2

∑

j :x j ∈U
D.(ρk − ρ j ).

∂ρk

∂ rxk
, (17)

where

D =
1

√

[ϵ2 + (ρk − ρ j )2]3
. (18)

Similarly,
∂rk

∂ rxk
=

ϵ2

2
D.(ρk − ρ j ).

∂ρ j

∂ rx j
, (19)

where there is no sum. Now we can write the derivative of L by rxk and rx j :

∂L

∂ rxk
=

−ϵ2

2HN r
2
k

∑

j :x j ∈U
D.(ρk − ρ j ).

∂L

∂p
.
∂ρk

∂ rxk
. (20)

Here we have one ixed k and one ixed index r , and j is such that x j runs over the whole learning setU . In the
following:

∂L

∂ rx j
=

ϵ2

2HN

∑

k :xk ∈Uc

D.(ρk − ρ j )
r 2
k

.
∂L

∂p
.
∂ρ j

∂ rx j
(21)

there j and index r are ixed, and k is such that xk runs over setUc of all patterns of class c from the learning set
U .
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2.6 Conditions for a good distance function

Equation (21) should be fulilled for any pattern x . Unfortunately, only the constant function can have zero
derivatives anywhere. We must limit ourselves to situations of most probable error. One can suppose that it arises
where the class probability estimation p̂ (c |x ) is close to the decision threshold θ , usually θ = 1/2 in two class
problems. This conjecture can be veriied by comparison of distribution functions of classiier’s output before
thresholding. The distribution functions for badly recognized patterns lie below the distribution function for well
recognized ones. For badly recognized patterns the mean is close to 0.5 whereas the mean for well recognized
patterns is substantially larger. It holds also for multiclass problems. Then p̂ (c |x ) − 1/2 = 0 characterizes where

we need to minimize the number of errors and then zero derivatives. So we have to discuss
∂ρk
∂r r

k

= 0 and
∂ρ j
∂r rj
= 0.

From (20) and (21) it follows
−ϵ2

2HN r
2
k

∑

j :x j ∈U
D.(ρk − ρ j ).

∂ρk

∂ rxk
= 0 (22)

and also
ϵ2

2HN

∑

k :xk ∈Uc

D.(ρk − ρ j )
r 2
k

.
∂ρ j

∂ rx j
= 0. (23)

for k : xk ∈ Uc , j : x j ∈ U , and index r = 1, 2, ...,d . Then there are ∀k and ∀j total 2d expressions. TermD.(ρk −ρ j )
is never zero, then there must be

∂ρ j
∂ r x j

= 0 and
∂ρk
∂ r xk

= 0, i.e. ∇ρ j = 0,∇ρk = 0 .

2.7 Other findings

It can be found that some distance functions behave better than the L2 metric. We study here the Pearson,
Hassanat, and Orloci distance functions.

The Pearson distance function (a covariance dissimilarity) is given by

ρP =
1

d

d
∑

i=1

(xi − x̄ ) (yi − ȳ). (24)

It is nearly a metric. When testing with random points, one can ind less than 10% violations of the triangle
inequality. In the Pearson distance ρP = 0 if x1 = x2 = ... = xd or y1 = y2 = ... = yd even if x , y, i.e. the distance
of a point to the point that has all coordinates the same is equal to zero. In two dimensions a "circle" with center
at 0 has form of hyperbolas y = ±2r/x , where r is the radius. The area of a circle is ininite.

The Hassanat metric [13] is deined as follows. LetMi =max (xi ,yi ) andmi =min(xi ,yi ). The metric is given
by the formula

ρH =

d
∑

j=1

di (25)

where

di = 1 − 1 +mi

1 +Mi

formi >= 0, and

di = 1 − 1 +mi + |mi |
1 +Mi + |mi |

that is also

di = 1 − 1

1 +Mi + |mi |
formi < 0.
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It has been proved to be a metric on Rd . The value of a distance is limited to d . If average is used instead of the
sum in (25), then the distance is limited to 1. A "circle" with radius r in two dimensions has the form of hyperbolas
as shown in Fig. 1. This Figure shows łcircles” with radii 0.4, 0.5, 0.8, 0.9, and 1.0. At the top right one hyperbolic
branch of a circle with radius 0.5 is depicted as a bold dashed line. Horizontal and vertical dashed lines indicate its
asymptotes. It can be seen that "circles" with small radii have a inite area, while for large radii the area is ininite.
For small radii the form reminds of the circles in the Manhattan metric, where the four edges are straight lines. A
question arises as to what the ball looks like in multidimensional space. Fig. 1 leads us to compare it to the sphere
in the Manhattan metric. In the Manhattan metric a d-dimensional sphere is actually a cube łstanding on one
corner”. This means that each of the d main diagonals is parallel to one coordinate axis. The ball in the Hassanat
metric can be compared with a ball in the L1 metric. The diference lies in the fact that ball in the Hassanat metric
has all the edges and all the planes bent in a hyperbolic way. The larger the radius of the sphere, the greater the
delection.

Fig. 1. Twodimensional balls (circles) in the Hassanat metric. Radii of balls from smallest to largest are 0.4, 0.5, 0.8, 0.9, and
1.0. At the top right one hyperbolic branch of a circle with radius 0.5 is depicted as a bold dashed line. Horizontal and vertical
dashed lines indicate its asymptotes.
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The Orloci metric (chord distance) is given by

ρO =

√

2

(

1 −
(x .y)

| |x | |2 | |y | |2

)

, (26)

where (x ,y) is the scalar product and | |.| |2 denotes the L2 norm. In the Orloci metric the value of distance is

limited to
√
2. It also holds ρO (x ,y) = 0 if x1 = x2 = ... = xd and y1 = y2 = ... = yd even if x , y. Moreover in

two dimensions a "circle" has the form of two straight lines that cross each other at point 0.
It is also remarkable that distance functions that have a limited value to a margin have smaller errors than

distance functions where the value of distance is unlimited, typically Lp metrics. Note that the larger p the worse;
the preferable one is the L1 metric. This hypothesis leads to the łbounded Lp” distance functions, especially
bouded L1 and bounded L2 distance functions given by:

L1 (x ,y) =

d
∑

j=1

Aj , where Ar =

{

|x j − yj | for |x j − yj | < 1
1 + α |x j − yj | for |x j − yj | ≥ 1

(27)

and

L2 (x ,y) =

√
√

√

d
∑

j=1

Aj , where Ar =

{

(x j − yj )2 for (x j − yj )2 < 1
1 + α (x j − yj )2 for (x j − yj )2 ≥ 1

(28)

The terms with α (≈ 0.0001) serve for diferentiation of distances of points with very large coordinate diferences
|x j − yj |. Otherwise, all such points would appear to be at the same distance. These distance functions are not
metrics, but there is a small percentage of the triangle inequality violations. It can be found that the classiication
results with bounded distance functions are better than with original ones, i.e. the Lp metrics.

In summary, there are conditions and indings

(1) ∇ρ j = 0,∇ρk = 0 for x for which p̂ (c |x ) − 1/2 = 0 holds.
(2) The distance function should be a metric or nearly a metric, i.e. with small probability of the triangle

inequality violations.
(3) The distance function should be limited to a (relatively) ixed value.
(4) A "circle" in two dimensions can have ininite area and should have the form as discussed above.

3 RESULTS

3.1 New distance functions

A metric can be derived in the following way. In a vector space there is a relation between norm and metric. It
holds that if (X ,p) is a normed vector space with norm p then ρ : X ∗ X → R deined by ρ (x ,y) = | |x − y | | is a
metric on X . Moreover, a metric associated with a norm has additional properties, the translation invariance and
homogeneity. The Hassanat metric on Rd is not absolutely homogenous, then we cannot use construction above
to derive a norm. Proceeding purely formally, we get formula as follows (a simpliied Hassanat metric; we call it
h2 metric.)

ρh2 (x ,y) =

d
∑

j=1

(1 − 1

1 + |xi − yi |
). (29)

Note. It can be easily seen that due to the use of the absolute value in this formula there is no zero partial
derivative according to any of coordinates x j , yj , j = 1, 2, ...d if x j = yj = 0. On the other hand, any łtrick” to
smooth the break of the absolute value will lead to zero derivative at the minimum. Thus, this condition can be
easily fulilled.
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3.2 Features of the h2 metric

3.2.1 Metric.

Theorem 3.1. Function (29) is a metric in Rd .

Proof. First, to prove the nonnegativity it is suicient to prove the nonnegativity of each summand. If

1 − 1

1 + |x j − yj |
≥ 0

then

|x j − yj | ≥ 0.

Second, ρ (x ,y) = 0 <=> x = y. In our case from

1 − 1

1 + |x j − yj |
= 0 (30)

it follows |x j −yj | = 0 and then x j = yj for every i = 1, 2, ...d . And from x j = yj it directly follows that (30) holds.
Third, the symmetry is apparent.
Fourth, the triangle unequality has the form

1

d

d
∑

j=1

(1 − 1

1 + |x j − zj |
) ≤ 1

d

d
∑

j=1

(1 − 1

1 + |x j − yj |
) +

1

d

d
∑

j=1

(1 − 1

1 + |yj − zj |
).

For short, we use symbol XY for term |x j − yj | and analogously symbols XZ and YZ . The equation above can be
rewritten in the form

d
∑

j=1

((1 − 1

1 + XY
) + (1 − 1

1 + YZ
) + (1 − 1

1 + XZ
)) ≥ 0.

Using a common denominator, there is

d
∑

j=1

XY + YZ − XZ + 2.XY .YZ + XY .XZ .YZ
(1 + XY ).(1 + YZ ).(1 + XZ )

≥ 0. (31)

Now it suices to prove that XY + YZ − XZ ≥ 0 for every j = 1, 2, ...d . Here XY = |x j − yj | = ρ1 (x j ,yj ) and
similarly XZ and YZ , then ρ1 is an L1 metric on R. Then XY + YZ − XZ ≥ 0 and (31) is a triangle unequality.
Thus, (29) is a metric on Rd . □

3.2.2 Continuity. In (29) it is seen that it is continuous in Rd . Due to the absolute value in the denominator
the derivative is discontinuous in set S = {x ,y ∈ Rd : xi = yi , i = 1, 2, ...,d } ⊂ Rd × Rd . In Rd × Rd − S all
derivatives of (29) are continuous. See also Note in Chap. 3.1.

3.2.3 A circle in R2. Let a "ball" (circle) B (0, r ) in R2 be centered at the origin. In the irst quadrant the distance
of a point (x ,y) from point (0, 0) is equal to r and it holds

1

1 + x
+

1

1 + y
= 2(1 − r ), 0 < r < 1.

A ball has the form of four hyperbolas of type y = 1/x with asymptotes parallel with coordinate axes. Due to
symmetry in other quadrants this ball looks similar. It can be also found that hyperbolas have horizontal and
vertical asymptotes parallel to coordinate axes at the distance given by

a =
1

2(1 − r )
− 1 .

ACM Trans. Knowl. Discov. Data.
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Thus, for radius r = 0.5 asymptotes are identical with coordinate axes. For r > 0.5 the distance of asymptotes
is positive and the hyperbola in the irst quadrant is shifted by this value to the right and up. For r < 0.5 the
asymptotes lie by this shift left and below the coordinate axes, and therefore the hyperbola crosses the coordinate
axes in the distance 2r

1−2r from the origin. An equation for a circle B (0, r ), r < 1 in R2 is

y = ± *
,

1

2(1 − r ) − 1
1+ |x |

− 1+
-
. (32)

Such circles for several values of radius are depicted in Fig. 2. For radii r ≥ 0.5 the area (łvolume”) is ininite, for
0 ≤ r ≤ 0.5 the area V is inite and it holds

V = 4

(

ln
|bs + b − 1|
|b − 1|

+

s

b
− s

)

, (33)

where b = 2(1 − r ) and the length of a "ray" of the star is s = 2r
1−2r These data in numbers are shown in Table 1.

Fig. 2. Balls (circles) in R2 with radii 0.25, 0.35, and 0.4; h2 metric.
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Table 1. Volume (area) of a ball in R2 and length of "ray" of the "star" for diferent radii r of a ball; the h2 metric.

r area length of "ray"

0.1 0.107 0.25
0.2 0.596 0.667
0.3 2.026 1.5
0.4 6.275 4
0.45 11.951 9
0.49 26.238 49
0.499 45.535 499
≥ 0.5 ∞ ∞

3.3 A product semimetric

It seems that distance functions in which balls in R2 have the form of hyperbolas gave good results when used in
classiication tasks. The idea behind this distance function is to construct a distance function that would have a
ball in the form of exact hyperbolas. Then we deine a distance function as a product of features diferences.

ρh3 (x ,y) =
*.
,

d
∏

j=1;x j,yj

|x j − yj |+/
-

1/d

(34)

if at least for one j there is x j , yj , and

ρh3 (x ,y) = 0 (35)

otherwise.

3.4 Features of product semimetric

3.4.1 Semimetric. To demonstrate that (34), (35) is a semimetric suice to show that it is, irst, nonnegative,
which is apparent from (34). Second, ρ (x ,y) = 0 <=> x = y according to (35). Third, the symmetry is apparent.
Note that the triangle inequality does not hold but it does not hold in a small percentage of cases.

3.4.2 Continuity. In (34) it is seen that it is continuous in Rd . Due to the absolute value of the coordinates
diferences x j − yj the derivative is discontinuous in set S = {x ,y ∈ Rd : xi = yi , i = 1, 2, ...,d } ⊂ Rd × Rd . In

Rd × Rd − S all derivatives of (34) are continuous. See also Note in Chap. 3.1.

3.4.3 A circle in R2. Let a "ball" (circle) B (0, r ) in R2 be centered at the origin. In the irst quadrant the distance
of a point (x1,x2) from point (0, 0) is equal to r and it holds

r 2 = |x1 |.|x2 |,

eventually, when a point is given as (x ,y)

r 2 = |x |.|y |,

Generally in a d-dimensional space

rd =

d
∏

j=1

|x j |.

ACM Trans. Knowl. Discov. Data.
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Table 2. Table of basic characteristics of tasks from the UCI Machine Learning Repository modified by sources cited.
Abbreviations for sources: P - [28]; P2 - [27]; UCI MLR - [10]. Note (1): Iris data are used without Setoza class, i.e. two classes
Versicolor and Virginica only. The last column gives the application, ev. the scientific field from which the data were derived.

Dataset Dimens. Classes Samples tot. Learn. Test set Cross Source Appl. ield

Australian 42 2 690 551 139 50 P Finance
Balance 4 3 625 499 126 50 P Psychology
Cancer 9 2 683 546 137 50 P Medicin
Diabetes 8 2 768 614 154 50 P Medicin
DNA 180 3 31186 2000 1186 1 P2 Life Sci.
German 24 2 1000 800 200 50 P Finance

Glass 9 6 215 169 46 50 P Forensic
Heart 25 2 270 216 54 50 P Medicin
Ionosphere 34 2 351 280 71 50 P Meteorology
Iris (1) 4 2 (3) 100 (150) 90 10 10 UCI MLR Life Sci.
Led 17 24 10 2000 1595 405 50 P Computer
Letter 16 26 20000 16000 4000 1 UCI MLR Computer

Liver 6 1 345 276 69 50 P Medicin
Monkey1 17 2 556 444 112 50 P Zoology
Phoneme 5 2 5404 4322 1082 50 P Speech R.
Satimage 36 7 6435 4435 2000 1 UCI MLR Geology
Segmen 19 7 2310 1848 462 50 P Image Proc.
Sonar 60 2 208 165 43 50 P Naval-Milit.

Vehicle 18 4 846 675 171 50 P Pattern R.
Vote 16 2 435 347 88 50 P Politics
Vowel 10 11 528 418 110 50 P Speech R.
Waveform21 21 3 5000 3998 1002 50 P Signal Proc.
Waveform40 40 3 5000 3999 1001 50 P Signal Proc.
Wine 13 3 178 141 37 50 P Agriculture

A circle in R2 has the form of four hyperbolas with asymptotes identical with coordinate axes. Equation for a
circle B (0, r ), r < 1 in R2 is

y = ± r
2

|x |
.

The area (łvolume”) is ininite for each radius r .

4 APPLICATION IN CLASSIFICATION PROBLEMS

The inluence of the distance function used is demonstrated in computational experiments employing 24 tasks
from the Machine Learning Repository [10]. Characteristics of these tasks are given in Table 2. The number of
attributes not including the class mark ranges from 4 to 180. There are two to 26 classes. Data originally from
the UCI Machine Learning Repository were gained mostly from [28] (denoted by P in the column Source in the
Table). These data sets are ready for run with a classiier. Most of the tasks consist of 50 pairs of training and
testing sets corresponding to 50-fold cross validation. For the DNA, Letter and Satimage data a single partition
into training and testing sets according to speciication in the UCI MLR was used. We also added the popular Iris
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data set. We use them without Setoza class, i.e. with two classes Versicolor and Virginica only, and the remaining
data were split into 10 pairs for ten-fold cross validation.
New distance functions can be useful for a better functioning of the distance-based classiiers. According to

the study [14], the best results with diferent metrics were reached for the IINC algorithm. Therefore, we present
results for the IINC here.

4.1 Selection of distance functions for comparison

The main source of not too common distance functions is book by E. Deza and M. M. Deza [7], ev. [8]. This
is a great piece of work. Our conditions for selection were irst, if it is applicable to Rd , and second, if it is
computationally simple. It means without integral enumerations, solving equations, taking supremum etc. This
allows (with some licence) to use Cayley-Klein-Hilbert metric or Weierstrass metric ([7], p. 122), but excludes
distance functions of type Harnack metric, Apollonian metric ([7], p. 123) and many others.

Into our selection we included common metrics, Euclidean, Manhattan (L1), L10 that simulates L∞, Mahalanobis
distance and class dependent Mahalanobis distance. The last two are rather common but they do not fulill the
condition of a simple computation. They need evaluation of the inverse covariance matrix, eventually as many
covariance matrices as there are classes. Moreover diiculty arises in high dimensional tasks. To avoid these
problems we use algorithm ainvl adapted from Matlab code according to [4].

Another distance functions sometimes considered in classiication ormachine learning tasks is the Orloci (chord)
distance and very similar angular semimetric. Five distance functions were derived from various correlation
coeicients as 1 − correlation coe f f icient . This way we got Pearson, jacknife, Goodman-Kruskal, Kendall, and
Spearman distances. Remaining eight distance functions were selected from [7] according to criteria mentioned
already.

4.2 Results of tests

Summary of measurements is shown in Table 3. Rows in the table show results for individual tasks, the last
line gives the mean. 23 columns give classiication errors for all the tasks for 23 distance functions, mostly
metrics, with the IINC classiier. These columns are ranked according to the mean classsiication error, the best
leftmost. In each row there is one entry in bold showing the minimal classiication error and the best distance
function for a task. The last column of the Table gives classiication errors for the SVM (support vector machine),
implementation by T. Joachims [19], [18]. Data for other classiiers, the 1-NN and k-NN type with or without
learning can be found e.g. in [29], [14].

Note. In Table 3 one can ind entries larger than 50%. To make it lesser than 50% one could use a complement
to one, that means to interchange classes in the case of two-class problems. Since we think this is unfair we left
things as they are. The cases of such a large classiication error say simply that the task is hard for the classiier
and the distance function used. It can be also found that this does not appear for the left (upper) half of the table,
i.e for distance functions that can be considered "better".

4.3 Statistical evaluation

For evaluation of distance functions we use statistical tests, the Friedman aligned test and the Quade test, and also
simple criteria, such as the mean classiication error and quartiles, esp. median. In statistical tests we follow the
methodology and recommendations according to [6]. That is why we do not describe these methods here. Note
only that in both the Friedman aligned test and the Quade test one ranks all the entries of the table of classiication
errors (Tables 3 and 4). Both tests serve for multiple comparisons. The Friedman aligned test considers all the
tasks equally important, whereas the Quade test takes into account the fact that some tasks are more diicult
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than others. In the Quade test each problem is scaled, depending on the diferences observed in classiication
performances. In this way, the Quade test gives a weighted ranking.
Ranks for each distance function follow from each of the criteria and tests. These ranks are summarized in

Table 5. In this Table the distance functions are arranged in the same order as in Tables 3 and 4, i.e. according to
mean classiication error, the smallest mean error irst.
Table 5 shows how much rankings depend on the criteria chosen. There are six columns showing ranks

according to six methods of evaluation of classiication errors. It is seen here that ranking of distance functions
depends on the criterion to a considerable extent.

ACM Trans. Knowl. Discov. Data.
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Table 3. Classification errors of the IINC classifier with 23 distance functions for 24 tasks - part I. The columns (distance functions) are ranked according
to the mean classification error, the best (with smallest error) first (letmost).

Distance
function

Hassanat h2 L1 h3 Pearson Orloci L2 L10 CD-
Mahal.

Spear-
man

Weier-
strass

Lorentz

Task 1 2 3 4 5 6 7 8 9 10 11 12

australian 12.90% 12.58% 13.31% 12.96% 15.16% 15.17% 14.75% 22.28% 17.96% 12.71% 15.90% 15.09%
balance 31.44% 34.25% 32.55% 31.14% 10.71% 23.71% 30.50% 30.18% 30.01% 26.83% 29.64% 17.61%
cancer 3.25% 3.65% 3.28% 3.98% 6.25% 2.88% 3.48% 3.94% 4.01% 9.87% 4.57% 6.20%
diabetes 27.06% 26.75% 26.21% 25.78% 34.49% 26.83% 25.52% 27.06% 25.97% 35.71% 36.85% 38.80%
DNA 27.49% 27.49% 27.82% 28.25% 16.86% 16.61% 31.03% 34.82% 17.62% 15.26% 30.94% 26.98%
german 29.54% 29.92% 30.91% 30.09% 32.62% 32.69% 31.13% 31.19% 33.38% 31.51% 29.69% 31.26%

glass 30.39% 30.75% 33.01% 34.16% 32.47% 32.48% 35.18% 37.90% 46.93% 31.51% 46.97% 46.22%
heart 17.89% 17.93% 17.96% 17.52% 18.37% 18.48% 17.93% 21.89% 18.67% 18.78% 19.26% 18.78%
ionosphere 8.57% 8.15% 10.82% 10.96% 12.16% 12.39% 14.81% 14.05% 14.81% 11.59% 32.36% 14.24%
iris 7.91% 7.91% 7.91% 5.91% 3.91% 4.91% 4.91% 4.91% 4.00% 32.82% 4.00% 9.91%
led17 0.46% 0.46% 0.46% 0.46% 4.51% 5.08% 0.45% 0.08% 10.43% 17.05% 0.53% 0.76%
letter 5.10% 5.50% 4.85% 5.25% 6.78% 6.33% 4.98% 7.23% 7.15% 12.03% 12.68% 38.90%

liver 36.99% 37.88% 38.29% 40.43% 36.75% 36.70% 39.13% 41.94% 35.74% 37.07% 50.81% 50.52%
monkey1 4.79% 4.81% 4.81% 4.76% 4.88% 6.10% 4.79% 6.39% 9.57% 23.75% 7.99% 4.86%
phoneme 16.73% 16.75% 17.60% 17.37% 19.35% 18.63% 18.06% 18.40% 18.65% 30.10% 32.87% 32.28%
satimage 11.30% 11.45% 11.00% 11.65% 15.70% 11.60% 11.55% 13.45% 13.30% 19.45% 15.95% 35.30%
segmen 3.68% 4.08% 4.12% 4.55% 5.00% 5.72% 5.05% 6.72% 5.05% 7.03% 15.99% 26.45%
sonar 20.94% 20.83% 19.89% 19.56% 23.86% 22.74% 22.85% 29.28% 34.69% 22.71% 22.23% 20.19%

vehicle 28.83% 28.86% 29.40% 29.23% 28.88% 29.68% 29.34% 30.97% 36.51% 29.64% 31.23% 40.43%
vote 8.86% 8.86% 8.52% 8.73% 9.28% 9.65% 8.89% 10.45% 13.85% 9.03% 8.93% 8.84%
vowel 2.84% 2.93% 2.73% 3.31% 3.86% 3.82% 2.74% 4.18% 12.99% 10.41% 17.23% 30.19%
waveform21 16.68% 16.78% 16.15% 16.27% 17.91% 18.26% 16.38% 16.88% 21.00% 17.79% 16.04% 18.18%
waveform40 17.73% 17.89% 17.59% 17.26% 21.15% 21.30% 18.08% 23.38% 22.01% 20.94% 17.56% 17.98%
wine 4.88% 4.04% 4.24% 4.89% 5.52% 6.45% 5.66% 8.29% 6.92% 6.94% 6.22% 5.79%

MEAN 15.68% 15.85% 15.98% 16.02% 16.10% 16.18% 16.55% 18.58% 19.22% 20.44% 21.10% 23.16%
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Table 4. Classification errors of the IINC classifier with 23 distance functions for 24 tasks - part II. The last column shows results obtained using SVM
with best kernel for each task. NA means not available; SVM does not work for this task.

Distance
function

Mahala-
nobis

Canberraelliptic Clark Goodman-
Kruskal

Kendall Bray-
Curtis

hyper-
bolic

Inter-
section

Cayley-
Klein

Jacknife SVM-
best

Task 13 14 15 16 17 18 19 20 21 22 23 ś

australian 31.45% 16.73% 20.49% 44.71% 11.18% 15.45% 39.69% 44.72% 44.90% 46.13% 27.53% 35.99%
balance 30.59% 17.61% 23.63% 41.96% 45.12% 53.02% 15.74% 15.42% 15.56% 24.95% 64.63% 33.17%
cancer 3.98% 5.64% 34.27% 34.85% 43.88% 17.36% 14.07% 34.85% 34.85% 48.29% 3.29% 16.34%
diabetes 28.54% 39.10% 40.13% 49.88% 48.84% 45.87% 46.11% 40.32% 37.60% 47.72% 33.81% 29.64%
DNA 46.88% 26.90% 32.29% 23.61% 8.62% 14.08% 48.40% 49.16% 49.16% 26.56% 51.10% NA
german 36.44% 29.33% 33.53% 36.40% 33.08% 35.26% 44.31% 37.20% 46.22% 36.25% 30.49% 27.25%

glass 65.48% 49.15% 38.75% 13.54% 32.45% 45.89% 37.00% 32.76% 32.76% 24.38% 59.47% 32.63%
heart 35.22% 20.07% 29.52% 47.78% 21.29% 17.48% 41.11% 46.67% 46.70% 48.26% 26.96% 37.22%
ionosphere 14.67% 9.65% 35.81% 35.90% 23.95% 14.92% 43.34% 41.61% 41.61% 36.29% 21.20% 18.52%
iris 4.00% 9.91% 37.64% 22.73% 63.74% 32.91% 27.55% 49.55% 48.55% 44.82% 22.82% 5.55%
led17 0.57% 79.87% 5.48% 10.43% 30.22% 20.85% 6.34% 10.86% 11.87% 10.43% 24.70% 11.52%
letter 7.33% 39.00% 15.15% 3.60% 42.26% 41.50% 3.98% 3.77% 3.77% 12.95% 88.13% 2.68%

liver 38.67% 50.90% 46.35% 49.04% 41.50% 42.26% 48.87% 45.22% 46.35% 43.22% 51.86% 35.54%
monkey1 20.93% 21.42% 2.47% 50.00% 20.85% 30.22% 49.23% 50.00% 49.35% 40.60% 46.71% 2.94%
phoneme 18.15% 32.27% 28.82% 43.32% 32.91% 63.74% 29.36% 29.35% 29.35% 40.92% 42.05% 14.39%
satimage 12.50% 35.40% 26.50% 19.45% 14.92% 23.95% 22.55% 19.85% 12.45% 15.70% 49.35% 24.30%
segmen 5.98% 26.52% 45.33% 14.29% 17.48% 21.29% 20.58% 14.29% 14.29% 29.11% 56.19% 34.27%
sonar 24.69% 35.95% 40.00% 46.63% 45.89% 32.45% 49.26% 46.63% 46.63% 46.63% 44.90% 19.67%

vehicle 44.41% 40.85% 38.16% 24.27% 35.26% 33.08% 28.02% 23.70% 24.01% 23.28% 62.27% 26.23%
vote 14.04% 8.31% 26.04% 39.07% 14.08% 8.62% 48.74% 40.45% 41.98% 45.82% 11.84% 22.64%
vowel 4.31% 30.21% 34.84% 12.61% 45.87% 48.84% 16.18% 9.09% 8.81% 21.14% 74.28% 8.54%
waveform21 20.47% 19.38% 37.69% 33.34% 17.36% 43.88% 33.70% 33.73% 33.78% 32.63% 29.45% 26.34%
waveform40 21.06% 27.80% 40.10% 33.72% 53.02% 45.12% 32.51% 33.23% 32.43% 33.72% 27.84% 32.25%
wine 29.02% 8.13% 33.95% 26.95% 15.45% 11.18% 30.90% 33.15% 33.15% 25.81% 21.25% 27.77%

MEAN 23.31% 28.34% 31.12% 31.59% 31.63% 31.63% 32.40% 32.73% 32.75% 33.57% 40.51% 22.84%
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Table 5. The ranks of 23 distance functions according to six criteria and statistical tests. Rows in this table, i.e. distance
functions, are ranked according to the mean classification error in the same way how they are ranked in Tables 3 and 4.
Individual columns give ranks of distance functions according to six criteria. Note the remarkable similarities between the
columns.

Ranks 1 quartile Mean Median 3 quantile Friedman Quade
Dist.function aligned test test

Hassanat 3 1 4 8 1 2
h2 5 2 2 6 2 3
L1 1 3 3 5 3 4
h3 4 4 1 3 4 5
Pearson 6 5 5 1 5 1
Orloci 7 6 7 2 6 6

L2 2 7 6 4 7 7
L10 8 8 9 9 8 8
CDMahanobis 9 9 10 7 9 9
Spearman 12 10 11 10 10 12
Weierstrass 11 11 8 11 11 10
Lorentz 13 12 12 13 13 13

Mahalanobis 10 13 13 12 12 11
Canberra 14 14 14 14 14 16
ellipt 22 15 18 15 18 19
Clark 18 16 19 16 17 14
Goodm.-Kruskal 15.5 17.5 15.5 17.5 15.5 22
Kendall 15.5 17.5 15.5 17.5 15.5 21

Bray-Curtis 19 19 17 19 19 15
hyperb 20 20 20 20 21 18
Intersection 17 21 21 22 20 17
Cayley-Klein-Hilbert 21 22 22 21 22 20
Jacknife 23 23 23 23 23 23

In Table 5 the L1, Hassanat, h2, and h3 distance functions form a group apparently better than the rest of the
distance functions and the SVM. The leading role of these four distance measures may slightly change according
to the set of tasks used for comparison. In any case, one of these distance functions will appear as best.
On the other hand, this may, but need not, hold for a particular task. The best classiication error and best

distance function for each task are shown in bold in Tables 3 and 4. It is seen here that the irst ive distance
functions are each best for two tasks from the total 24. Also Clark and Goodman-Kruskal distance functions are
the best for the two tasks. At the same time, there are eight bold entries in the second half of the Table. It shows
that a generally not too good distance function may be the best for a particular task. If a "good" distance function
is the best, then the classiication error for a "bad" distance function may be even ten times larger. In contrast to
the best result for a "bad" distance function, results with any "good" distance function are usually only a little
bit worse. One can conclude that if a "good" distance function is used, the "danger" of much better results with
another distance function is very low.
In this work we use rankings based on two thorough statistical methods, the Friedman aligned test and the

Quade test, and rankings according to simple criteria (three quartiles and mean), see Table 5. The mean has a
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known disadvantage in the fact that several large values may shift the mean to a larger value. On the other hand,
quartiles, especially median, are robust estimators. The quartiles have also a simple quantitative interpretation.
The rank in the irst quartile says that a particular distance function is the "rank-best" for 1/4 of tasks. Here with
the L1 metric there are minimal errors in 1/4 of tasks. With the h3 metric there are minimal errors in 50% of tasks.
And with Pearson’s metric there are minimal errors in 3/4, i.e. in 18 from 24 tasks.

Considering the irst and the third quartile as too weak and too tough, the mean and the median remain. In
irst four places the Hassanat and h3 metrics interchange their ranks. According to the mean, the Hassanat metric
is the best, according to the median the h3 pseudometric is the best.
It can also be seen that the ranking according to the Friedman test and according to a simple mean are the

same for distance functions ranked 1 to 11. The rankings 12 to 23 are very similar here.
In contrast to this, there is a large diference between the Quade test and the Friedman aligned test, eventually

the mean. The ranking according to the Quade test is closer to the ranking according to the median, eventually to
the third quartile. Beside the advantages of the Quade test being thoroughly theoretically supported and taking
task diiculties into account, it has a disadvantage in its diicult interpretation of the resulting ranking.

From the point of view of weighting tasks according to their diiculties, the mean and the Friedman aligned test
do not seem to be the best choice. Therefore, a slightly more time-consuming Quade test should be preferred. In
the end, it appears simpler to rank distance functions according to the median that has the simple interpretation
mentioned above.

4.4 Practical example

Data we discuss here describe successes and faults in lending money. Clients are of two types: those to whom the
money was provided and those to whom the loaned money was refused. Error in both case means loss. In the
irst case, money is simply lost; a person never pays or pays too late and does pay in full. In the latter case, the
interest is lost. Moreover, almost certainly the client will not come again. The error in decision thereire has the
same weight in both cases. The simplest criterion to minimize is the classiication error.
The goal of automation is to minimize decision errors with help of machine learning. In this case, it is lazy

learning, taking advantage of the entire learning set and updating immediately or at correct intervals as new
data appears. Speciically, we present results with data where there are 2000 cases used as a learning set, and
31000 cases (samples) form a test set. Each client is characterized by seven parameters (features), e.g. money
amount, city of residence, economic category, years of employment. Fig. 3 shows the comparison of the two
distance-based classiication methods and the ranking of distance measures described here. Distance functions
are sorted by the IINC classiication error. For this reason, the 1 − NN classiication error is not a monotonous
function. On the other hand, there is a match between good and bad distance functions in both methods. As
mentioned, it is a common rule, but it may not be the case. Also in this example, these groups correspond to the
inding given in Chap. 4.3 and shown in Tables 3 and 4.

5 CONCLUSION

The IINC as well as the k-NN are distance-based classiiers. Then, their function depends on the distance function
used. We introduced here two new distance functions, a metric one, denoted as h2 here, and a pseudometric one
that we denote h3.
We tested these distance functions in a set of 23 diferent distance functions, mostly metrics for the IINC

classiication algorithm. Some of the 23 distance functions are little known and look unusually. We mean that
they do not conform to our intuition how a geometric object should look like or what features it should have. For
example, we accept that a ball in L1 metric has the form of a łdiamond” and in the L∞ metric the form of a cube
with edges parallel with coordinate axes. These łballs” have a inite volume. But there are distance functions,
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Fig. 3. Classification error as a function of the distance function. The distance functions are ranked according to the
classification error for the IINC method.

even metrics, where a łball” has ininite volume at least for some inite radii. On the other hand, some of the
uncommon metrics give a very low classiication error in some tasks when used in distance based classiiers.
When using a larger set of tasks, one can summarize classiication errors of the IINC with various distance

functions as shown in Tables 3 and 4. But a detailed inspection of this Table shows that some distance functions
that are by far not the best in any ranking (see Table 5) can be the best for a particular task. Thus, to ind the best
distance function for a particular set of similar tasks one should test all the distance functions. One may doubt if
the best distance function thus found is really the best. Fortunately, the diference in the classiication errors
for the best and the second best, eventually the third best, is usually very low. So the chance that an unknown
distance function would be much better than the best found for a particular task is also very low.

It was shown in [14] that the behavior of other simple nearest neighbor rules (1-NN, k-NN) is very similar to
behavior of the IINC classiier. Then, we can generalize that almost surely the inluence of a distance function to
the classiication error is the same. It means that better distance function for a classiier is very probably a better
distance function for other classiier. Thus, the new distance functions presented here can be used for the k-NN
rules with success.
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