
JFP 32, e2, 6 pages, 2022. c© The Author(s), 2021. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.
doi:10.1017/S0956796821000290

PhD Abstracts

G R A H A M H U T T O N
University of Nottingham, UK

e-mail: graham.hutton@nottingham.ac.uk

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish five abstracts in this round and hope that JFP readers will
find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796821000290
mailto:graham.hutton@nottingham.ac.uk
https://crossmark.crossref.org/dialog?doi=10.1017/S0956796821000290&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core


2 G. Hutton

Algebraic Information Effects

CHAO-HONG CHEN
Indiana University, USA

Date: August 2021; Advisor: Amr Sabry
URL: https://tinyurl.com/3a9tsrpy

From the informational perspective, programs that are usually considered as pure have
effects, for example, the simply typed lambda calculus is considered as a pure language.
However, β–reduction does not preserve information and embodies information effects.
To capture the idea about pure programs in the informational sense, a new model of com-
putation — reversible computation was proposed. This work focuses on type-theoretic
approaches for reversible effect handling. The main idea of this work is inspired by com-
pact closed categories. Compact closed categories are categories equipped with a dual
object for every object. They are well-established as models of linear logic, concurrency,
and quantum computing. This work gives computational interpretations of compact closed
categories for conventional product and sum types, where a negative type represents a
computational effect that “reverses execution flow” and a fractional type represents a
computational effect that “allocates/deallocates space”.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use, available at

https://tinyurl.com/3a9tsrpy
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core


PhD Abstracts 3

Domain-Specific Languages for Ad Hoc Data Processing

JONATHAN DILORENZO
Cornell University, USA

Date: December 2020; Advisor: John Nathan Foster
URL: https://tinyurl.com/2p88kunn

Ad hoc data is everywhere. There are many data formats in use, which, due to the speci-
ficity of their domain, lack the processing tools that we otherwise take for granted. We call
such data formats, and the data that they represent, ad hoc. Ad hoc data is usually stored in
file systems and can be organized into larger structures that we call filestores, collections
of files and folders along with the properties between them. This dissertation supports the
usage of ad hoc filestores. We design domain-specific languages for processing filestores
with increasingly complex requirements, building on previous work on PADS and Forest.
These existing systems accept declarative specifications of ad hoc data formats, as single
files and filestores respectively. From these specifications, they generate tools for load-
ing, storing, and validating the data. Unfortunately, Forest does not adequately deal with
large filestores, or cost control in general. Nor does it offer support for correctly managing
concurrent operations, which are common in file systems. This dissertation offers solu-
tions to these problems. We first introduce Incremental Forest, a domain-specific language
and system that enables incremental processing of filestores. This language offers a new
mechanism, a delay construct, for explicitly controlling the costs of loading and storing
in filestores. Incremental Forest comes with a customizable cost model, which guarantees
that a wide class of costs monotonically decrease as delays increase. Our next system,
Transactional Forest, removes the delays from Incremental Forest, opting to use a new
interface language and abstraction, which offer automatic incrementality. Additionally,
Transactional Forest leverages this abstraction, a zipper, to provide simple, provably cor-
rect serializable transactions using optimistic concurrency control. Finally, the Zipper File
System goes beyond designing a domain-specific language, targeting the file system itself
to provide deeper control with respect to other users. The Zipper File System uses the
ideas from Transactional Forest to provide serializable transactions in a zipper-based file
system. There is a translation from POSIX that theoretically allows standard applications
to be run without modification. Taken together, these systems use domain-specific lan-
guages to enable users to efficiently and correctly manage ad hoc filestores in concurrent
settings.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use, available at

https://tinyurl.com/2p88kunn
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core


4 G. Hutton

Efficient Parsing with Derivatives and Zippers

ROMAIN EDELMANN
École Polytechnique Fédérale de Lausanne, Switzerland

Date: July 2021; Advisor: Viktor Kunŏak
URL: https://tinyurl.com/y5dtdb6f

In this thesis, I present a declarative framework for parsing that explicitly integrates data
elaboration. Within the framework of the thesis, I present parsing algorithms that are based
on the concept of Brzozowski’s derivatives. Derivative-based parsing algorithms present
several advantages: they are elegant, amenable to formal reasoning, and easy to implement.
Unfortunately, the performance of these algorithms in practice is often not competitive
with other approaches. In this thesis, I show a general technique inspired by Huet’s Zipper
to greatly enhance the performance of derivative-based algorithms, and I do so without
compromising their elegance, amenability to formal reasoning, or ease of implementation.
First, I present a technique for building efficient tokenisers that is based on Brzozowski’s
derivatives and Huet’s zipper and that does not require the usual burdensome explicit con-
version to automata. I prove the technique is correct in Coq and present SILEX, a Scala
lexing library based on the technique. I demonstrate that the approach is competitive with
state-of-the-art solutions. Then, I present a characterisation of LL(1) languages based on
the concept of should-not-follow sets. I present an algorithm for parsing LL(1) languages
with derivatives and zippers. I show a formal proof of the algorithm’s correctness and
prove its worst-case linear-time complexity. I show how the LL(1) parsing with deriva-
tives and zippers algorithm corresponds to the traditional LL(1) parsing algorithm. I then
present SCALL1ON, a Scala parsing combinators library for LL(1) languages that incorpo-
rates the LL(1) parsing with derivatives and zippers algorithm. I present an expressive and
familiar combinator-based interface for describing LL(1) languages. I present techniques
that help precisely locate LL(1) conflicts in user code. I discuss several advantages of the
parsing with derivatives approach within the context of a parsing library. I also present
SCALL1ON’s enumeration and pretty-printing features and discuss their implementation.
Through a series of benchmarks, I demonstrate the good performance and practicality of
the approach. Finally, I present how to adapt the LL(1) parsing with derivatives and zippers
algorithm to support arbitrary context-free languages. I show how the adapted algorithm
corresponds to general parsing algorithms, such as Earley’s parsing algorithm.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use, available at

https://tinyurl.com/y5dtdb6f
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core


PhD Abstracts 5

Understanding the Interaction Between Elaboration And Quotation

MATTHEW PICKERING
University of Bristol, UK

Advisor: Nicolas Wu
Date: March 2021; URL: https://tinyurl.com/2p8saaed

Multi-stage programming languages have long promised programmers the means to
program libraries with specific performance guarantees. Despite this, the adoption into
mainstream high-level languages such as Haskell, Scala and OCaml has been very slow.
In particular, our focus, Typed Template Haskell has been implemented for a number of
years but the ecosystem has failed to adopt the multi-stage ideas. The situation hasn’t been
helped by a number of soundness and expressivity issues with the current implementation.

In this thesis we tackle the problem of soundly combining multi-stage features with other
features as commonly found in modern programming languages. The main contribution is
the design and implementation of a language which combines multiple stages with implicit
arguments and an elaboration phase. The goal is to provide a firmer foundation for future
implementations and to enable library writers to use multi-stage features with confidence
in conjunction with the rest of the Haskell language.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use, available at

https://tinyurl.com/2p8saaed
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core


6 G. Hutton

Proving Confidentiality and Its Preservation Under Compilation
for Mixed-Sensitivity Concurrent Programs

ROBERT ABELLA SISON
University of New South Wales, Australia

Date: November 2020; Advisor: Carroll Morgan, Toby Murray and Kai Engelhardt
URL: https://tinyurl.com/2ucyjp4k

Here, I pose the thesis that proving noninterference and its preservation by a com-
piler is feasible for mixed-sensitivity concurrent programs. Software does not always have
the luxury of limiting itself to single-threaded computation with resources statically dedi-
cated to each user to ensure the confidentiality of their data. Prior work therefore presented
formal methods for proving and preserving the strictest kind of confidentiality property,
noninterference, for mixed-sensitivity concurrent programs: a term I coin to describe those
programs that might reuse memory shared between their threads to hold data of differ-
ent sensitivity levels at different times. Although these methods addressed challenges in
formalising the value-dependent coordination of such mixed-sensitivity reuse under the
impact of concurrency, their practicality remained unclear: Could they be used to prove
noninterference for any nontrivial mixed-sensitivity concurrent program in its entirety?
Furthermore, could any compiler be verified to preserve the needed guarantees to the
compiled code?

To support this claim, I prove for the first time both (1) noninterference for a nontrivial
mixed-sensitivity concurrent program, modelling a real-world use case, and (2) its preser-
vation by a compiler down to an assembly-level model. This main result rests on two
major contributions. First, I demonstrate how programming-language designers can make
reasoning on each thread sufficient to prove noninterference for such programs, by supply-
ing synchronisation primitives (here, mutex locks for a generic imperative language) and
proving they maintain as invariant the necessary requirements. Second, I demonstrate how
compiler developers can make confidentiality-preserving refinement a feasible target for
verification, by using a decomposition principle to prove that a compiler (here, from that
imperative language to a generic RISC-style assembly language) establishes it for mixed-
sensitivity concurrent programs. Thus, per-thread reasoning proves noninterference for the
case study, and the verified compiler preserves it to assembly automatically. All my results
are formalised and proved in the Isabelle/HOL interactive proof assistant.

My work paves the way for more fully featured programming languages and their com-
pilers, in replicating these results, to raise the typical level of assurance readily offered by
developers of multithreaded software responsible for data of multiple sensitivity levels.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796821000290
Downloaded from https://www.cambridge.org/core. IP address: 3.88.45.72, on 13 Jan 2022 at 09:50:33, subject to the Cambridge Core terms of use, available at

https://tinyurl.com/2ucyjp4k
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796821000290
https://www.cambridge.org/core

	PhD Abstracts

