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Abstract 

The development of next generation non-steroidal anti-inflammatory drugs (NSAIDs) 
is one active area of research as inflammatory diseases continue to afflict over 1.5 billion 
people worldwide. The publicly available and computationally accessible chemical and 
biological data provide a wellspring of information for any research pursuit that could 
expedite the discovery of new anti-inflammatory drugs. Computational statistics is a 
handy tool in establishing quantitative relationship between the anti-inflammatory 
activity and the key molecular features that determine the compound’s medicinal 
property. In this work, Multiple Logistic Regression (MLogR) was employed to develop 
a mathematical model of the inhibitory activity of a compound on cyclooxygenase-2 
(COX-2), an enzyme that facilitates the production of inflammatory prostanoids. The best 
model with hit ratio of 94% and 91% on the train and test set, respectively, was used to 
predict the classification (i.e. active or inactive) of newly designed coxib Derivatives and 
Similars obtained through similarity search. The predicted actives were further screened 
based on their quantitative estimate of druglikeness (QED), synthetic accessibility, and 
ADMETox properties. The selected top 15 hits have superior confidence as actives, are 
highly druglike and easy to synthesize, and generally possess outstanding drug profile.  

Keywords: Molecular descriptors, NSAID, COX-2 inhibitors, and multiple logistic regression 

Area of Interest: In silico drug discovery 

1. Introduction  

Over 1.5 billion people suffer from chronic pain [1, 2]. Rheumatoid arthritis alone, an 
inflammatory disorder, has affected 17.6 million people worldwide, and this can occur at any 
age [2]. The typical signs of inflammation are heat, pain, redness, swelling, and loss of function 
[3]. The causes of inflammation can be physical (e.g. burns, injury, trauma, etc.), biological 
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(i.e. infection by pathogens, immune reaction due to hypersensitivity, stress), chemical (e.g. 
chemical irritants, toxins, alcohol, etc.), and psychological (e.g. excitement) [4–6]. Chronic 
inflammation can be a contributing factor in the pathology of many chronic diseases including 
cardiovascular diseases, respiratory diseases, autoimmune diseases, diabetes, and cancer [7–
10]. Aside from societal and economic burdens, these adverse conditions have consequential 
effects on the quality of life as chronic pain has profound impact on the mood, sleep, ability to 
work, and overall enjoyment of life of 60% of sufferers [11, 12].  

While there are different mechanisms of action for the anti-inflammatory therapies, this 
work focused on one of the anti-inflammatory drug targets that control the mechanism of 
arachidonic acid metabolism. In particular, it deals with compounds that act on 
cyclooxygenase-2 (COX-2), an enzyme responsible for the conversion of arachidonic acid to 
prostanoids including thromboxanes and prostaglandins [13]. COX has three isoforms namely 
COX-1, COX-2, and COX-3 [14, 15]. Unlike COX-2 that is only found in cells where there is 
inflammation, COX-1 is expressed in many tissues and is responsible for the production of 
natural mucus lining, which protects the inner stomach and controls acid secretion and pepsin 
content [16, 17]. Inhibition of COX-1 reduces the production of cytoprotective prostaglandins 
in the stomach that may result in gastric ulceration. Thus, those drugs that would spare COX-
1 and target only COX-2 are expected to show fewer side effects associated with COX-1 
inhibition [18]. Meanwhile, COX-3 is a splice variant of COX-1 and has no apparent role in 
prostaglandin-mediated processes [15, 16]. 

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that work by 
inhibiting the activity of cyclooxygenase (COX-1 and/or COX-2) enzymes thereby reducing 
pain, fever, and inflammation. Newer NSAIDs are mostly selective COX-2 inhibitors 
belonging to a class of molecules called “coxibs” such as Celecoxib (Celebrex) [19], 
Etoricoxib (Arcoxia) [20], Parecoxib (Dynastat) [21], Valdecoxib (Bextra) [22], and 
Rofecoxib (Vioxx) [23]. Like the last two of the coxibs that were later withdrawn from the 
market due to serious adverse side effects [24], a range of other anti-inflammatory compounds 
available for diverse inflammatory conditions cause a wide array of unfavorable side effects 
including increased risk of gastrointestinal ulcers, bleeding, cardiovascular, and kidney 
diseases [25, 26]. Thus, despite the scores of NSAIDs that are available in the market, the 
discovery of new classes of anti-inflammatory compounds with safer drug profile is still an 
active area of research.  

A practical approach in drug discovery is designing new chemical structures based on 
existing medicinal compounds and involves development of mathematical models that 
establish the quantitative relationship of the biological activity and the molecular properties. In 
this work, quantitative models that relate COX-2 inhibitory activity with structure-based 
molecular properties called descriptors were generated. Specifically, Multiple Logistic 
Regression (MLogR) models were developed to predict the COX-2 inhibitory activity (i.e. 
active or inactive) of a compound. MLogR uses a logit function to model a categorical response 
variable alongside the identification of the explanatory variables that are important in the 
prediction of the outcome [27, 28]. This is a technique suitable for this work as this has also 
already been used in various fields including drug discovery [29–31]. The best model was 
validated on experimentally tested compounds and then applied to a set of newly designed 
compounds called Derivatives (of coxibs) and to another set of structurally related compounds 
called Similars obtained through similarity search.  
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2. Materials and Methods 

Sample Collection and Preparation, and Descriptor Calculations 
 
The compounds included in the study were obtained from articles published during the 

period from 1997 to 2019 at the websites of leading journal publishers (ACS, Elsevier, and 
RSC). The articles were found using search keywords such as “COX inhibitors”, 
“cyclooxygenase inhibitors”, “COX1/COX2 compounds”, and the like. However, only those 
that used the same methods of experimental measurement [32] of COX-2 activity were 
considered.    

The collected compounds were grouped as COX-2 inactive labeled “0”, and COX-2 active 
labeled “1”, based on their experimental bioactivity, i.e., IC50, the concentration of the 
compound that reduces the enzyme activity to half. Those with IC50 values ≤ 10 µM were 
classified as active while those with IC50 > 10 µM were classified as inactive. 

The chemical structures of the compounds were generated and then the molecular 
properties calculated using a personal computer running on Microsoft Windows 7 Professional 
64-bit Operating System with a 3.50-GHz Intel Core i7-4770K processor, and 8.00-GB 
random access memory (RAM). ChemDraw Professional 16.0 (www.cambridgesoft.com) was 
used to draw the 2D chemical structures, which were individually saved as structure-data files 
(.sdf). The files were combined as a single file, which served as input in descriptor calculations 
in Discovery Studio (DS) version 4.5 (Biovia, Inc.) and Spartan 16 (Wavefunction, Inc.), which 
are both available in our laboratory. In DS, the 2D structures were converted into 3D and 
optimized at molecular mechanics level using the Dreiding force field [33]. In Spartan, the best 
conformer of each compound was obtained first by performing a conformational search, and 
then followed by geometry optimization using MMFF94 [34] forcefield. The structures were 
further optimized at semi-empirical level using the PM3 [35] method. All molecular descriptors 
were subsequently calculated based on the optimized molecular structures. 

Data Management and Preprocessing 

The data management and preprocessing were performed in a machine with MacOS 
Catalina operating system, 3.1-GHz Dual-Core Intel Core i7 processor, and 16-GB RAM using 
the application software MS Excel and SPSS (www.ibm.com). The dataset was cleaned by 
removing molecular properties that have numerous NAN (not a number) or predominantly 
invariant entries, and checked for multivariate outliers [36].  The final dataset included 184 
molecular descriptors on 1381 compounds of which 930 (67%) are actives and 451 (33%) are 
inactives. 

 

Model Building and Validation  

The data was partitioned into train and test sets applying 80–20 split, i.e., 1105 compounds 
were randomly assigned to the train set (Actives = 74 and Inactives = 361) and the remaining 
276 compounds (Actives=186 and Inactives=90) comprised the test set. Multiple Logistic 
Regression (MLogR) in SPSS and RapidMiner Studio 9.7.001 (www.rapidminer.com) was 
implemented on the train set to construct the models. The test set was used to validate the 
identified best model.  

The following model goodness-of-fit and performance metrics were used:  1) Accuracy, 
the percentage of correctly classified compounds; 2) Specificity, the proportion of correctly 
predicted inactive compounds; 3) Positive Predictive Value (PPV) [37], the percentage of 

http://www.ibm.com/
http://www.rapidminer.com/
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predicted actives that are true active compounds; 4) Nagelkerke pseudo-R2 [38], the proportion 
of the variance of the dependent variable that is explained by the model; 5) Hosmer-Lemeshow 
Test (HLT) [39], a measure of agreement between the observed and the expected frequencies 
of the compound classes at the different parts of the data; and 6) Matthews Correlation 
Coefficient (MCC) [40],  a measure of agreement between the observed and the predicted 
frequencies of all the cells in the classification table. MCC summarizes the confusion matrix, 
that together with Accuracy, provides a measure of the overall prediction accuracy or how well 
the models predict the compound classes. Specificity, which shows the ability of the models in 
identifying inactive compounds, and PPV, which reflects how likely correct the model is in 
indicating that a compound is active, together show the meticulousness of the model in 
screening out false positives. HLT and R2 provide measures of how well the models fit the data.  

  

Derivatives and Similars 

The MLogR model was applied to two sets of as yet untested compounds, i.e. Derivatives 
and Similars. The Derivatives consists of 1100 newly designed compounds generated by 
performing substitutions with bioisosteric groups [41] at three crucial positions in each of the 
5 selected scaffolds representing the 5 families with the most number of compounds in the 
dataset.  The Similars of 600 compounds is the collection of the top 10 most similar compounds, 
obtained through SwissSimilarity (www.swisssimilarity.ch), for each of the 60 families of 
known COX-2 actives, using as query molecule, the most active compound of each family. 
The duplicates that appeared in the top 10 were omitted and only unique compounds down the 
list in every search were taken so that each family was represented by 10 unique SwissSimilar 
compounds. The library of bioactive compounds (i.e. ChEMBL) was the primary search space. 
The ZINC (Druglike) database was explored only when there were no hits from ChEMBL. The 
chemical structures of these compounds were generated and their molecular properties 
calculated as described above.  

Druglikeness Prediction  

The final model was applied to the Derivatives and the Similars to predict their 
classification, active or inactive. For the predicted active compounds, the ADMET (absorption, 
distribution, metabolism, excretion, toxicity) properties were predicted using the ADMET and 
TOPKAT protocols and the QED (Quantitative Estimate of Druglikeness) scores were 
calculated with the Calculate Molecular Properties protocol in DS. In addition, the Synthetic 
Accessibility scores were obtained from SwissADME (http://www.swissadme.ch). The output 
is the set of top 15 hits that are considered potential leads against COX-2.   

The top hits were then optimized at the semi-empirical PM3 level and each structure was 
saved as pdb file. The COX-2 enzyme target (PDB ID: 5IKR) was subjected to 100-ns 
Molecular Dynamics simulations [42] and the equilibrated structure was used in subsequent 
Molecular Docking studies involving the top hits with the use of Autodock Vina [43] in PyRx 
(www.pyrx.sourceforge.io).  

3. Results and Discussion 

Sample Collection and Preparation, and Descriptor Calculations  

The molecular structures used in this study were gathered from 66 papers [19, 22, 44–107] 
from over a hundred articles published in 7 scientific journals. Figure 1 shows the collected 

http://www.swisssimilarity.ch/
http://www.swissadme.ch/
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structures grouped into 60 families of organic compounds. Of the 1381 compounds, 930 (67%) 
were classified as COX-2 active and 451 (33%) were labeled inactive based on their IC50 values. 

 

 
 
  

 
 

  
 

 

 
 
  

 

1,2-Diarylpyrroles 
[44] 

Actives = 23 (1–23) 
Inactives  = 17 (931–947) 

1,2-Diarylimidazoles 
[45] 

Actives = 82 (24–105) 
Inactives = 13 (948–960) 

1,2-Arylhetero-
arylimidazoles [46] 
Actives = 37 (106–142) 

Inactives = 11 (961–971) 

1,2-Diarylcyclopentenes 
[47] 

Actives* = 17 (143–159) 
Inactives = 2 (972–973) 

*2 are standards; not cyclopentenes 

1,2-
Diarylcyclopentenes 

[48] 
Actives = 27 (160–186) 
Inactives = 2 (974–975) 

Terphenyls [49] 
Actives = 42 (187–228) 
Inactives = 7 (976–982) 

   

 

   
1,5-Diarylpyrazoles 

[19] 
Actives = 78 (229–305) 

Inactives = 31 (983–1013) 

Diarylspiro[2.4]alkenes 
[50] 

Actives = 33 (306–338) 
Inactive = 1 (1014) 

4,5-Diarylisoxazoles 
[22,51] 

Actives = 3 (339–341) 
Inactives = 0 

Pyrazoles [52] 
Actives = 12 (342–353) 

Inactives = 0 

Pyrazolopyrimidine 
[53] 

Actives = 18 (354–371) 
Inactives = 0 

Celecoxib-Tolmetin 
hybrids [54] 

Actives = 11 (372–382) 
Inactives = 0 

 
 

  

 

 

 

 
 

  

 
Pyrazole Derivatives 

[55] 
Actives = 11 (383–393) 

Inactives = 9 (1015–1023) 

Tetrazoles [56,57] 
Actives = 4 (394–397) 

Inactives = 17 (1024–1040) 

Cyclic imides [58,59] 
Actives = 16 (398–413) 

Inactives = 45 (1041–1085) 

Dihydropyrazoles [60] 
Actives =20 (414–433) 

Inactives = 7 (1086–1092) 

Pyrazole-Thiadiazole 
hybrids [61] 

Actives =12 (434–445) 
Inactives = 6 (1093–1098) 

Hydrazones, Pyrazoles 
[62] 

Actives =11 (446–456) 
Inactives = 8 (1099–1106) 

  

 

 
  

 

 

   

 

Pyrazoles, 
Salicylamides, 
Pyrazolo[1,2-

a]pyridazines [63] 
Actives =6 (457–462) 

Inactives = 5 (1107–1111) 

Indoles [64] 
Actives = 5 (463–467) 

Inactives = 5 (1112–1116) 

Benzoxazole 
benzamides [65,66] 
Actives = 27 (468–494) 

Inactives = 3 (1117–1119) 

Pyrazolones [67] 
Actives = 11 (495–505) 

Inactives = 0 

Triarylpyrazolines [68] 
Actives = 16 (506–521) 

Inactives = 0 

Quinoline-2-
carboxamides [69] 
Actives = 14 (522–535) 

Inactives = 0 

 

  
 

 

 

Naproxene derivatives 
[70] 

Actives = 14 (536–549) 
Inactives = 0 

Chalcones [71] 
Actives = 12 (550–561) 

Inactives = 0 

Indoles, standards [72] 
Actives = 5 (562–566) 
Inactives = 1 (1120) 

Isoindolines [73] 
Actives = 12 (567–578) 

Inactives = 0 

Pyrazolo[3,4-
b]pyridines [74] 

Actives = 24 (579–602) 
Inactives = 0 

Indole-3-glyoxamides 
[75] 

Actives = 21 (603–623) 
Inactives = 0 



Chem-Bio Informatics Journal, Vol.22, pp.63-87 (2022) 
 

 68 

 
 

 
  

   
Dihydro-pyrazolyl-
thiazolinones [76] 

Actives = 15 (624–638) 
Inactive = 5 (1121–1125) 

1,5-diarylpyrazole-
Chrysin hybrids [77] 

Actives = 30 (639–668) 
Inactives = 0 

2-Imidazolines [78] 
Actives = 15 (669–683) 

Inactives = 15 (1126–1140) 

Tetrahydropyrans [79] 
Actives = 2 (684–685) 

Inactives = 5 (1141–1145) 

Benzenesulfonamides, 
Benzisothiazolones [80] 

Actives = 14 (686–699) 
Inactives = 0 

Pyrazoles [81] 
Actives = 0 

Inactives = 8 (1146–1153) 

 

      

Phenylazobenzenes 
[82] 

Actives = 3 (700–702) 
Inactives = 9 (1154–1162) 

Alkyldiaryl (E)-olefins 
[83] 

Actives = 4 (703–706)  
Inactives = 1 (1163) 

2-
Mercaptobenzothiazole

-oxadiazole hybrids 
[84] 

Actives= 9 (707–715) 
Inactives = 12 (1164–1175) 

Carboximidamides, 
Aryloxadiazoles [85] 
Actives = 12 (716–727) 

Inactives = 0 

Triazine-4-
aminophenyl-

morpholine-3-ones [86] 
Actives = 14 (728–741) 

Inactives = 8 (1176–1183) 

Diarylketones, 
Diarylamines [87] 
Actives = 8 (742–749) 

Inactives = 8 (1184–1191) 

 

 

 
    

 

   

Diarylthiazoles, 
Diarylimidazoles [88] 

Actives = 6 (750–755) 
Inactives = 10 (1192–1201) 

Carprofen derivatives 
[89] 

Actives = 1  (756) 
Inactives = 33 (1202–1233) 

Benzamides [90] 
Actives = 0  

Inactives = 28 (1234–1260) 

Pyran-2-ones [91,92] 
Actives = 36 (757–792) 

Inactives = 20 (1261–1280) 

Tetrahydropyrans [93] 
Actives = 18 (793–810) 

Inactives = 0 

Chrysin-Indole hybrids 
[94] 

Actives = 10 (811–820) 
Inactives = 0 

  

  
   

  

Urea-Pyrazole hybrids 
[95] 

Actives = 13 (821–833) 
Inactives = 7 (1281–1287) 

Nimesulides [96] 
Actives = 15 (834–848) 

Inactives = 11 (1288–1298) 

Phenoxyphenyl 
pyrrolidines [97] 

Actives = 1 (849) 
Inactives = 25 (1299–1323) 

Coxib analogues [98] 
Actives = 6 (850–855) 

Inactives = 0 

Isoxasolines [99,100] 
Actives = 5 (856–863) 

Inactives = 2 (1324–1325) 

Methyl oxazoles [101] 
Actives = 8 (864–871) 

Inactives = 3 (1326–1328) 

 
  

 
 

 
Ethanesulfohydroxami

c acid esters [102] 
Actives = 3 (872–874) 

Inactives = 2 (1329–1330) 

Benzylidenes [103] 
Actives = 11 (875–885) 

Inactives = 11 (1331–1341) 

Thiadiazoles, 
Oxadiazoles [104] 
Actives = 14 (886–899) 

Inactives = 24 (1342–1365) 

Diazenium diolates [105] 
Actives = 0 

Inactives = 6 (1366–1371) 

Indomethacin 
derivatives [106] 

Actives = 15 (900–914) 
Inactives = 1 (1372) 

Propynones [107] 
Actives = 16 (915–930) 

Inactives = 9 (1373–1381) 
 

Figure 1. Compounds with experimental COX-2 inhibitory activity, grouped by 
structural motif, collected from literature published from 1997–2019  
Total actives=930. Total inactives=451.   

Although compounds for which IC50 values have been determined are in principle “active”, 
in this work only those with IC50 ≤ 10 µM were considered active. This arbitrary cut-off value 
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for classification was based on a common practice in drug discovery wherein only hits with 
IC50 values lower than 10 µM are further pursued [108].  

Data Management and Preprocessing 

As shown in Table 1, there were 425 molecular descriptors calculated for each of the 
compound structures using Spartan and Discovery Studio. But the dataset used in the 
subsequent analyses included only 184 molecular descriptors as a result of data cleaning, i.e., 
after removing those with numerous NAN or predominantly invariant entries.  

Table 1. Spartan- and Discovery Studio-Derived Molecular Descriptors*   
Types of Descriptors Number 

I. Spartan-derived descriptors 28 
 Molecule 

QSAR 
Thermodynamics 

9 
14 
5 

II. Discovery Studio-derived descriptors 397 
 2D 333 
  AlogP 

E-State Indices 
Molecular Properties 
Molecular Property Counts 
Surface Area and Volume 
Topological Descriptors 

1 
163 
34 
85 
7 
43 

 3D 64 
  Dipole 

Jurs Descriptors 
Molecular Properties 
Principal Moments of Inertia 
Shadow Indices 
Surface Area and Volume  

4 
30 
12 
4 
10 
4 

TOTAL 425 
 
* Descriptors of compounds with experimental COX-2 inhibitory activity collected from literature published from 1997- 

2019. 

Model Building and Validation 

The forward stepwise automatic procedure of variable selection combined with methodical 
examination of the descriptors for key predictors of the model was performed on the train set. 
This generated several competing models of which the best three are shown in Table 2 for 
careful comparison of their fit indices and performance scores.  
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Table 2. Performance and Goodness-of-fit Indices of the Three Best MLogR Models* of 
Compound Classification as COX-2 Active or Inactive 

Model Specificity PPV Accuracy MCC HLT  
P-value 

Nagelkerke  

R-Square  

Train Set     
    

Model 1 73.7 87.7 85.2 0.657 0.002 0.648  

Model 2 77.6 89.4 87.3 0.708 0.087 0.737  

Model 3 89.2 94.8 93.8 0.859 0.946 0.858  

          
Test Set         

Model 3 85.6 93.1 91.3 0.801      
* Predictors based on Spartan- and Discovery Studio-Derived molecular descriptors of compounds with 

experimental COX-2 inhibitory activity collected from literature published from 1997-2019.                                    
Train Set (80%): n=1105; 744 actives, 361 inactives 
Test Set (20%): n=276; 186 actives, 90 inactives 
Model 1 variables: sz, sxz, dz, abl, neb, pmix 
Model 2 vaiables: sz, sxz, dz, abl, noa, pmix, nac, jx, rpcg, elu, wpsa1, sx 
Model 3 variables: sz, sxz, dz, dene, minlip, chiv2, rpcg, nac, pmiz, sx, sxy, 3dsav, elu, cpka, acca, cddsss, 

sdssc, saasc, nr6, chi1, jx, vdiste, dx, pnsa1, wpsa1 
The object of this work has been to generate a model that would predict compound class, 

i.e., active or inactive, using the molecular properties as explanatory variables. The model is 
intended to serve as a mathematical filter of compounds so that those that would more likely 
be COX-2 inactive will be sifted out of the pool and so avoiding the high attrition rate in the 
advance stages of the drug discovery process, and thereby conserving resources.   Thus, a 
model that will have a small false positive error rate is desired, or one that is able to effectively 
identify the inactives. Consequently, the models were first compared based on their Specificity 
and Positive Predictive Value (PPV). Model 1 with only 6 predictor variables already has good 
performance scores, only that it has not passed the HLT criterion (p-value < 0.01). Model 2, 
having 12 variables, not only bettered the performance scores, but also passed the HLT (p-
value > 0.05) and increased the R2 value. Model 3 emerged superior with Specificity of almost 
90% and PPV of 95%. On top of that, the model has a matchless Hit Ratio of 94% that is 
confirmed with equally high MCC of 0.859. Furthermore, Model 3 also has the finest fit indices, 
i.e., very high values on both HLT p-value (0.946) and the Nagelkerke-R2 (85.8%), signifying 
that the model is excellently suitable for the data.   The score of variables in the model worked 
out favorably in the train dataset of 1105 observations, which is large enough to meet the 10:1 
(i.e., 10 samples per variable) rule-of-thumb in model building. With upper-level Specificity 
and PPV, Model 3 would be successful in minimizing the false positive error rate and thus, in 
screening out the inactive compounds. When the model was validated in the test set, its 
performance scores were still impressively high at 93.1% PPV, 91.3% Hit Ratio, and 85.6% 
Specificity; only lowered by a minimal 2-3 percentage points in these three metrics. Its MCC 
is still high at 0.80 showing an outstanding overall accuracy of the model in classifying 
compounds. Having the hallmark of an excellent classifier, Model 3 was chosen for the final 
multiple logistic regression model of compound classification as COX-2 active or inactive . 
Table 3 shows the 25 predictors of the model that are all significant (p-value < 0.05) 
contributors to compound classification.  
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Table 3. Multiple Logistic Regression Model* of Compound Classification as COX-2 
Active or Inactive  

No. Variables B S.E. P-value  No. Variables B S.E. P-value 
1 sz -2.141 0.427 <.001  14 cpka 0.192 0.036 <.001 
2 sxz -0.415 0.080 <.001  15 acca -0.204 0.024 <.001 
3 dz -0.584 0.066 <.001  16 cddsss -2.220 0.835 0.008 
4 dene 0.065 0.018 <.001  17 sdssc 1.247 0.210 <.001 
5 minlip -0.284 0.058 <.001  18 saasc 0.449 0.142 0.002 
6 chiv2 0.868 0.345 0.012  19 nr6 -0.771 0.369 0.037 
7 rpcg 12.501 2.326 <.001  20 chi1 4.144 0.91 <.001 
8 nac 0.357 0.091 <.001  21 jx 4.540 1.383 0.001 
9 pmiz 0.01 0.002 <.001  22 vdiste -0.007 0.001 <.001 

10 sx 0.866 0.282 0.002  23 dx 0.126 0.048 0.009 
11 sxy 0.242 0.076 0.002  24 pnsa1 -0.050 0.015 0.001 
12 3dsav -0.105 0.022 <.001  25 wpsa1 -0.057 0.019 0.003 
13 elu 1.194 0.507 0.019   Constant 9.753 6.678 0.144 

 

* Predictors based on Spartan- and Discovery Studio-Derived molecular descriptors of compounds with 
experimental COX-2 inhibitory activity collected from literature published from 1997-2019.                                    
Train Set: n=1105; 744 actives, 361 inactives        Test Set: n=276; 186 actives, 90 inactives                                                                                           
HLT p-value=0.946(ns), Nagelkerke R2=0.858   PPV=93.1%, MCC=0.801, Accuracy=91.3%                                                                                 
PPV=94.8%, MCC=0.859, Accuracy=93.8%                               

 
Table 4 gives the description of the variables, the first in the list sz (shadow_zlength) is the 

length of the molecular shadow that is projected along the z axis [109], which is the one that 
has the highest correlation with compound class (rs = -0.48). This variable has inverse 
relationship with logit P as indicated by its negative coefficient consistent with its negative 
correlation with compound class. Thus, compounds with shorter shadow projected along the z 
axis have better chances of being active against COX-2.  This relationship holds true to sxz 
(area of molecular shadow projected onto the xz plane) and dz (z component of dipole moment). 
Dene (or Dreiding Energy), the fourth descriptor in the list, is directly related with logit P so 
that a higher potential energy makes a compound more likely COX-2 active.  
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Table 4. Predictors* in the Multiple Logistic Regression Model for Compound 
Classification as COX-2 Active or Inactive  

 

No. Variable Name Description 

1 sz Shadow_Zlength length of the molecular shadow along the z axis 
2 sxz Shadow_XZ area of the molecular shadow that is projected onto the xz plane 
3 dz Dipole_Z z component of the dipole moment 
4 dene Dreiding_Energy calculated energy using the Dreiding force field 
5 minlip Min_Loc_Ion_Pot minimum local ionization potential 
6 chiv2 Chi_V_2 valence chi connectivity index of order 2 
7 rpcg Jurs RPCG Jurs relative positive charge 
8 nac Num_AtomClasses number of atom classes 
9 pmiz PMI_Z principal moment of inertia based on z rotational axis 
10 sx Shadow_Xlength length of the molecular shadow along the x axis 
11 sxy Shadow_XY area of the molecular shadow that is projected onto the xy plane 
12 3dsav Molecular_3D_SAVol molecular 3D solvent accessible volume 

13 elu E_LUMO 
energy of the lowest unoccupied molecular orbital in electronvolt 
(eV) 

14 cpka CPKArea Corey-Pauling-Koltun area 
15 acca AccArea accessible area of the molecule 
16 cddsss ES_Count_ddssS count of ddssS E-state 
17 sdssc ES_Sum_dssC sum of dssC E-states 
18 saasc ES_Sum_aasC sum of assC E-states 
19 nr6 Num_Rings_6 number of 6-membered rings 
20 chi1 Chi_V_1 chi molecular connectivity index of order 1 

 21 jx JX Balaban modified distance connectivity index based on atomic 
electronegativities 

22 vdiste V_DIST_equ total information content on the distance equality 
23 dx Dipole_X x component of dipole moment 
24 pnsa1 Jurs_PNSA1 Jurs partial negative surface area 
25 wpsa1 Jurs_WPSA1 Jurs surface weighted charged partial positive surface area 

 

* Spartan and Discovery Studio-derived molecular descriptors of compounds with experimental COX-2 
inhibitory activity collected from literature published from 1997-2019. 

Model Application                                                                                                                                                

The MLogR model was applied on the two sets, the Derivatives and the Similars. As shown 
in Figure 2, the set of Derivatives was comprised of 5 families:  A (300 cyclopentenes), B (200 
imidazolyls), C (200 difluorobenzenes), D (200 furanyl/thiophenyls), and E (200 isoxazoles). 
The Similars consisted of 600 compounds obtained from a library of bioactive molecules (i.e. 
ChEMBL) and from a database of druglike compounds (i.e. ZINC Drug-like) with the use of 
the SwissSimilarity tool.  
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Figure 2. Derivatives of representative compounds from the 5 selected families with 
experimental COX-2 inhibitory activity collected from literature published from 
1997–2019 

Upon its implementation, the model identified as inactives a good number of Derivatives 
(mostly difluorobenzenes) and Similars (approximately half), as Figure 3 exhibits. Consistent 
with its high PPV of 95% and 93% in the train and test set, respectively, this model brought 
out a much greater number of supposed false positives compared to the other models. 
Henceforth, the model would serve as an excellent virtual screen for the identification of novel 
compounds with potential inhibitory activity against COX-2, and thus, in the creation of a pool 
of candidates as next generation NSAIDs. 
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Figure 3. Multiple logistic regression model compound class prediction of the Derivatives (n = 
1100) and Similars (n = 600) of compounds with experimental COX-2 inhibitory activity 
collected from literature published in 1997-2019 
The 25 predictors of the model are sz, sxz, dz, dene, minlip, chiv2, rpcg, nac, pmiz, sx, sxy, 
3dsav, elu, cpka, acca, cddsss, sdssc, saasc, nr6, chi1, jx, vdiste, dx, pnsa1, and wpsa. 

 
The predicted active Derivatives and Similars were further evaluated by calculating certain 

measures of druglikeness. Figures 4 and 5 show that nearly all have Quantitative Estimate of 
Druglikeness or QED score [110] above 0.5 (i.e., druglike); all have synthetic accessibility 
score within the 1–6 (blue to red) acceptable range (i.e., relatively easy to synthesize) [111]; 
mostly have low to optimal aqueous solubility or within 2-4 range (orange to red), have good 
to moderate intestinal absorption  or within 0–1 range (blue), and are non-carcinogens; 
although majority are hepatotoxic (blue), just like more than half (53%) of drugs in the market 
[112]. All in the Derivatives group and most of the Similars are non-mutagens (blue) and 
CYP2D6 non-inhibitors, and some in both sets are plasma protein non-binders. 
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Figure 4. Druglikeness profile and synthetic accessibility of MLogR-predicted active 
Derivatives of compounds with experimental COX-2 inhibitory activity 
collected from literature published from 1997–2019 
Probability (Active)=1, most likely active against COX-2 Intestinal Absorption: 0=Good 
absorption, 1=Moderate absorption, 2=Low absorption, 3=Very low absorption. Aqueous 
Solubility: 0=extremely low, 1=very low but possible, 2=Yes but low, 3=Yes and good, 4=Yes 
and optimal, 5=too soluble. QED: 0 = least druglike … 1 = most druglike. SA Score: 1 = very 
easy to synthesize … 10 = very difficult to synthesize. The x-axis of the figures represents the 
compounds used in this study. 
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Figure 5. Druglikeness profile and synthetic accessibility of MLogR-predicted active 
Similars of compounds with experimental COX-2 inhibitory activity collected 
from literature published from 1997–2019.  
Probability (Active)=1, most likely active against COX-2. Intestinal Absorption: 0=Good 
absorption, 1=Moderate absorption, 2=Low absorption, 3=Very low absorption. Aqueous 
Solubility: 0=extremely low, 1=very low but possible, 2=Yes but low, 3=Yes and good, 4=Yes 
and optimal, 5=too soluble. QED: 0 = least druglike … 1 = most druglike. SA Score: 1 = very 
easy to synthesize … 10 = very difficult to synthesize. The x-axis of the figures represents the 
compounds used in this study. 

 
From the predicted active compounds, the top hits were determined based on the following 

criteria: (a) PA ≥ 0.7, (b) QED ≥ 0.9, (c) 1 ≤ SAS ≤ 6, (d) 2 ≤ AS ≤ 4, (e) 0 ≤ IA ≤ 1, (f) Non-
Carcinogen, (g) Non-Mutagen, (h) CYP2D6 Non-inhibitor, and (i) DTP Non-Toxic. At this 
stage, compounds with probability of being active less than 0.7 were eliminated, thus further 
reducing the false positive error rate. Those that remained were sorted according to QED score 
and compounds with lower than 0.9 were removed, and so forth. All compounds that passed 
the 9 criteria were again sorted according to QED score, and then the top 10 were identified. 
Incidentally all came from the group of Derivatives.  To include some Similars in the top hit 
list, the QED score criterion was lowered to 0.8 for this group of compounds. Subsequently, 
the top 5 Similars were picked out and are listed in Table 5 as top 11–15 for the Top 15 Hits, 
i.e., top 10 Derivatives and top 5 Similars. The top Derivatives and top Similars have QED 
scores greater than 0.91 and greater than 0.86, respectively, i.e., close to 1, and thus are very 
highly likely to possess the desirable properties of a drug [110]. These hits are relatively easy 
to prepare in an organic synthetic laboratory, have low to optimal aqueous solubility, and have 
good intestinal absorption. They are all non-carcinogens, non-mutagens, non-CYP2D6 
inhibitors (i.e., can be taken with other drugs), and non-toxic to a developing fetus (i.e., can be 
administered to pregnant women).  
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Table 5. Druglikeness Profile of the Top 15 Hits from the Predicted* Active Derivatives 
and Similars**  

 
ID=Compound Identification: D=Derivative, S=Similar. 
PA=Probability(Active): 1=most likely active. 
QED=Quantitative Estimate of Druglikeness: 1=most druglike. 
SAS=Synthetic Accessibility Score:1=very easy to synthesize … 10=very difficult to synthesize; acceptable 
values=[1,6].  
AS=Aqueous Solubility: 0=extremely low … 5=too soluble; acceptable values={2, 3, 4}. 
IA=Intestinal Absorption: 0=good, 1=moderate, 2=low, 3=very low absorption; acceptable values={0, 1}. 
CG=Carcinogenicity: Non-C=Non-Carcinogen. 
MG=Mutagenicity: Non-M=Non-Mutagen.  
DTP=Developmental Toxicity Potential: Non-T=Non-Toxic.  
CI=CYP2D6 Inhibition: Non-I=Non-inhibitor.  
PPB=Plasma Protein Binding.  
HT=Hepatotoxicity. 
*  Predicted active by the MLogR model with the 25 molecular descriptors: sz, sxz, dz, dene, minlip, 

chiv2, rpcg, nac, pmiz, sx, sxy, 3dsav, elu, cpka, acca, cddsss, sdssc, saasc, nr6, chi1, jx, vdiste, dx, 
pnsa1, and wpsa.). 

** Derivatives and Similars of compounds with experimental COX-2 inhibitory activity collected from 
literature published from 1997-2019.  

 
The molecular structures of these top 15 hits are given in Figure 6. The top 10 hits are 

derivatives of cyclopentenes, although the two of which are actually spiro[2.4]hept-5-enes 
(D251 and D256). For the top 5 Similars, three of the compounds are variants of diphenylamine 
(S265, S269, S499), while the other two (S568 and S35) are derivatives of phenylthiadiazole 
and diphenylcyclobutene, respectively. These different structural motifs may lead to new 
classes of COX-2 acting drugs. 
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Figure 6. Molecular structures of the top 15 hits from the MLogR-predicted active 
Derivatives and Similars of compounds with experimental COX-2 inhibitory 
activity collected from literature published in 1997-2019  

 
Docking studies on these hits were conducted with promising results displayed in Figure 7. 

It is encouraging to note that, compared to Etoricoxib (also known as Arcoxia), a COX-2 
selective drug (BE = –7.8 kcal/mol), the top hits displayed greater binding affinity with the 
target, with the exception of only the 13th and 15th hits whose BE values are slightly smaller 
than that of the control. And compared to Mefenamic acid (BE = –8.6 kcal/mol), which was 
the co-crystallized ligand in complex with COX-2 [113], 9 out of the 15 hits have equal and 
even greater binding energy, topped by the spiroheptene D256 (BE = –10.0 kcal/mol). Finally, 
among the top hits from Similars, the tricyclic S35 displayed greater binding affinity compared 
to Etoricoxib and Mefenamic acid.  
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Control: Mefenamic acid (BE = –8.6 kcal/mol), Etoricoxib (BE = –7.8 kcal/mol); The crystal structure of the COX-2 target used was in complex with Mefenamic acid (PDB ID: 5IKR). 
After removing the ligands and the water molecules the enzyme was subjected to 100 ns Molecular Dynamics simulation and the final equilibrated structure was used in Molecular 
Docking calculations. 

 
 

Figure 7. Binding energy and interaction map of the top 15 hits from the Model 3-predicted 
active Derivatives and Similars of compounds with experimental COX-2 inhibitory 
activity collected from literature published in 1997-2019 

Conclusion 

Multiple Logistic Regression was performed on a dataset consisting of 1381 compounds 
with experimental COX-2 activity and with 184 calculated molecular descriptors in order to 
establish a quantitative relationship between anti-inflammatory activity (active or inactive) 
against the COX-2 enzyme, and the key structural features of the molecules. Among the models 
generated in the train set, the 25-variable model showed superior performance scores and the 
finest fit indices. And upon model validation, it displayed outstanding prediction in the test set  
and thus, was subsequently utilized as a virtual filter of compounds for COX-2 inhibitory 
activity. 

As an upshot of the model application, this work furnishes a new set of potential candidates 
of next generation COX-2 active anti-inflammatory agents with outstanding druglike profile. 
The top Derivatives are variants of cyclopentenes, two of which are actually spiroheptenes 
(D251 and D256). For the top Similars, three are variants of diphenylamine (S265, S269, S499) 
and two (S568 and S35) are derivatives of phenylthiadiazole and diphenylcyclobutene, 
respectively. 

The molecular docking studies showed that the binding energy of the top 15 hits are 
comparable or even better than those of the control drugs.  

These promising results may pave the way for a new generation of more potent and safer 
COX-2 acting NSAIDs. 
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