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Abstract

Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential 

means for improving cancer diagnosis and prognosis. However, an open issue relating to the 

automated processing of WSIs is the identification of biological regions such as tumor, stroma, 

and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel 

tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) 

optimizing tile-level prediction models using nested cross-validation on a small (600 tile) 

manually annotated tile-level training set, and (3) validating the models against a much larger 

(1.7x106 tile) data set for which ground truth was available on the whole-slide level. We calculated 

the predicted prevalence of each tissue region and compared this prevalence to the ground truth 

prevalence for each image in an independent validation set. Results show significant correlation 

between the predicted (using automated system) and reported biological region prevalences with p 

< 0.001 for eight of nine cases considered.

I. Introduction

Histopathology plays a vital support role in oncology. Whole-slide histopathological images 

(WSIs) are digital images of sectioned and stained tissue samples that are scanned and 

digitally recorded at high resolutions. In traditional use, WSIs have enabled (1) more 

streamlined record-keeping, (2) training of laboratory technicians, and (3) offsite 

consultation for diagnoses and prognoses [1, 2]. WSIs have emerged as a growing area of 

interest in image processing and imaging informatics. WSIs have been shown to contain 

significant diagnostic and prognostic data, which can be extracted in reproducible and 

quantitative ways to support fast, accurate decisions [3, 4]. The emergence of large, multi-

modal cancer data repositories, such as The Cancer Genome Atlas (TCGA), has also 

stimulated research in automated informatics methods for WSIs [6].
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Significant computational, experimental, and biological challenges exist when attempting to 

use WSIs for diagnostic or prognostic applications. The size and resolution of the images 

pose computational challenges, with many images having dimensions on the order of 

gigapixels. This has limited many previous studies to relatively small data sets, e.g., on the 

order of dozens of WSIs. Experimentally, WSIs are subject to many of the same image 

artifacts as traditional slides, including tissue folds and non-tissue markings in the image [5]. 

WSIs are very heterogeneous in terms of the types of cells and tissues captured. Thus, a 

major biological challenge is region-of-interest (ROI) selection and classification, which is 

essential for accurate diagnosis. There is a pressing need for automated WSI informatics 

methods for artifact correction, feature extraction, ROI selection, and image classification 

[4].

This paper focuses on a specific biological challenge of ROI classification. Three distinct 

tissue types can appear in any cancer WSI: stroma, tumor tissue, and necrotic tissue. Tumor 

and necrotic tissue each contain distinct diagnostic and prognostic features [7], and it is 

important to exclude connective stroma from consideration with these regions. Here, we 

seek to develop and validate methods for the image-based classification of these tissue 

regions. We examine two types of carcinoma (ovarian serous cystad-enocarcinoma [OV] and 

renal clear cell carcinoma [KIRC]); optimize disease-specific and pooled classification 

models; and illustrate informative imaging markers for classifying biological regions in 

WSIs. Finally, we validate our approach by comparing prediction results to manually 

annotated ground truth data as well as to annotation data reported by TCGA.

II. Methods

A. DATA

WSIs for both OV and KIRC were taken from the TCGA database. The high-resolution 

WSIs are first broken into 512x512-pixel tiles. This serves both to subdivide the 

computationally intensive work of extracting features and to limit those features to 

describing small neighborhoods of cells. Figure 1(b) shows the scope of a single WSI tile. 

We selected 300 high-resolution tiles from each cancer type for the ground truth data to be 

used in training. For each data set, we selected one hundred representative tiles for each 

tissue class considered: stroma, tumor tissue, and necrotic tissue.

B. QUALITY CONTROL

Before extracting features from the tiled WSIs, quality control is performed to isolate the 

tissue from the slide background and remove artifacts such as pen markings and tissue folds. 

Slide background and pen marks are defined by thresholding in the HSV color space [9]. 

Tissue folds are identified using a supervised, connectivity-based soft thresholding method 

called ConnSoftT [5].

Finally, tiles within the tissue region of interest are defined as those tiles with less than 10% 

tissue fold and less than 80% background and pen markings combined. We use these tiles for 

the subsequent feature-extraction step.

Hoffman et al. Page 2

IFMBE Proc. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The full set of 461 features used in this analysis has previously been shown to capture useful 

information about the image. These features fall into one of nine classes: global color, global 

texture, eosinophilic texture, eosinophilic object shape, basophilic texture, basophilic object 

shape, no-stain object shape, nuclear shape, or nuclear topology [8]. The tile is first color-

normalized against a fixed set of reference images to mitigate batch effects due to variation 

in staining and equipment. It is then divided into regions based on the presence of 

hematoxylin or eosin staining. Each of these regions is then processed separately, yielding 

its own shape and texture characteristics. Finally, the nuclear region mask is also processed 

for topological features describing the distribution of the nuclei in the tissue section [10].

C. FEATURE SELECTION AND CLASSIFICATION

We use the minimum redundancy, maximum relevance (mRMR) method to select features 

from among the 461 image features [11]. We apply the mRMR method in two ways: mutual 

information difference (MID) and mutual information quotient (MIQ). We use the linear 

support vector machine (SVM) [13] and various forms of discriminant analysis (DA) for 

classification. We consider four different DA classifiers: linear, diagonal linear, quadratic, 

and diagonal quadratic.

D. MODEL OPTIMIZATION AND VALIDATION

In order to compare the various models of interest and estimate classifier accuracy, we used 

a nested cross-validation scheme. The outer CV loop (10 iterations, 3 fold) randomly splits 

the annotated training set into a test set and a training set. Each training set was fit to a 

model using every permutation of each parameter. SVM cost parameters considered were 

2−5, 2−4, … 210. Feature sizes tested were 5, 10, … 50 for both the MID and MIQ mRMR 

methods. Each of these models were themselves analyzed using a 3-fold, 10 iteration 

internal CV loop. This nested CV structure is necessary to produce unbiased estimates of 

model performance. By subdividing the training set before optimizing the model, a portion 

of unused training tiles remains to test the best model. (Fig. 4)

The best model was defined as the simplest model whose mean internal CV accuracy was 

within one standard deviation of the accuracy of the most accurate model. Smaller feature 

sets were preferred and small costs were preferred, in that order. In DA classification, linear 

classifiers were considered simpler than quadratic, and diagonal methods were considered 

simpler than non-diagonal.

As part of the metadata available for histopathology slides, TCGA provides expert 

annotation of the proportion of each tissue sample that falls into various biological regions. 

The OV data set consisted of 1087 slides with complete metadata. After applying tile-level 

quality control, 861,430 high-resolution tiles remained. For KIRC, 922 slides containing 

802,833 tissue tiles were used. The “WSIs” block shown in Figure 4 refers to this data set.

Tiles for each slide were processed with the trained classifier and estimates of the prevalence 

of each biological region were generated for that slide. We compared these results to TCGA 

reported values and computed the Pearson correlation coefficient.
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III. Results and Discussion

A. INFORMATIVE FEATURES

Using the mRMR method and number of features found to be most robust by the inner 

cross-validation loop, a Fisher’s exact test was performed to determine if any class of 

features was significantly over-represented in the optimized feature spaces. Results are 

shown in Table 1.

Values marked with a (*) are significant with p < 0.05. Color, texture, and shape features 

were each found to be significantly over-represented in at least one classifier. This validates 

the use of a large, varied set of image features over the use of texture-only or color-only 

feature spaces, as are common in prior literature [14, 15].

B. CLASSIFICATION CROSS-VALIDATION

Table 2 shows the outer CV accuracy of SVM classification for each disease and classifier 

model considered. The most likely sources of bias in these results are selection bias in the 

training data set and the possibility of multiple tiles from one WSI spanning the training and 

test sets. While Table 2 may not be an unbiased estimate of external validation accuracy, the 

relative accuracies show which models consistently outperform the others.

Two-tailed t-tests were used to compare models across disease cases and classifier models. 

SVM models were found to perform slightly better for KIRC and OV, however this 

difference was not significant. Pooled DA significantly outperformed the corresponding 

SVM. Pooled models significantly underperformed compared to disease-specific models in 

all cases except OV-DA.

C. EXTERNAL VALIDATION

SVM based predictions of the relative size of biological regions in TCGA WSIs had higher 

correlations than DA counterparts in 8 of 9 cases, as shown in Table 3. Correlation was 

higher for pooled samples than disease-specific classifiers in 5 of 6 cases, and statistically 

significant for all classes. Neither the OV nor KIRC classifiers yielded significant correlation 

in all cases shown in Table 3. Figure 5 shows larger and more intense regions of correlation 

between predicted and reported regions sizes in Pooled results.

The selected SVM classification model for each disease case was trained using the entire 

300 or 600 tile ground truth data set, and then used to predict the class of the corresponding 

large TCGA data set.

In all disease cases, when validating on ground-truth tiles, pooled models underperform as 

compared to disease-specific models. This difference was significant in three of four cases 

but the performance of pooled models was still high. Moreover, pooled models tended to 

perform better on larger datasets in external validation. Hence, pooled models are more 

generalized. This indicates the possibility of developing a generalized tissue-classification 

model for different cancer, subject to further investigation.
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IV. Conclusion

In this paper, we developed and validated an automated system for classifying biological 

regions in WSIs. The proposed system uses a tile-based approach, where each tile is 

represented by a comprehensive set of features and classified into one of the regions using 

pre-optimized classifiers. The overall trend of the external validation shows significant 

correlation between the classifier-predicted values and expert-reported values suggesting 

successful classification of biological regions. In future work, these methods could be 

expanded to include information about a tile’s neighborhood to arrive at more accurate and 

better predictions of biological regions. These methods may also be applicable to other 

cancer types and biological regions.
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Fig. 1. 
(A) A typical whole-slide image. (B) A 512x512 high-resolution WSI tile showing stroma. 

(C) A typical necrotic tissue tile. (D) A tile containing typical tumor tissue.
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Fig. 2. 
Two typical WSIs with the ROI tiles after quality control outlined in green.
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Fig. 3. 
(A) A portion of a high-resolution WSI tile. (B) The tile is color-normalized. (C) 

Thresholding is used to segment stain regions (light pink = eosinophilic, dark purple = 

basophilic). (D) A nuclear mask of the tile.
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Fig. 4. 
The nested cross-validation flow chart. The “tile-level ground truth” data set consisted of 

600 expert-annotated high-resolution tile. The “WSIs” data set consisted of 1.7X 106 tiles. 

These tiles were grouped into their constituent WSIs and analyzed together for normalized 

region sizes, as slide-level metadata is what is available from TCGA.
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Fig. 5. 
External Validation. Each scatterplot shows the classifier predicted biological region size 

versus the TCGA reported biological region size.
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Table 2

Cross-validation accuracy of each classification model

SVM DA

OV 97.6±1.59* 97.5±1.46

KIRC 98.7±0.76 † 98.4±1.22 ‡

Pooled 95.9±1.14 * † ◦ 96.8±1.29 ‡ ◦

Models marked with a symbol are significantly different from models marked with the same symbol by a two-tailed Student’s t-test with p<0.05.

Values are given as mean ± one standard deviation.
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