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Abstract 

The use of statistical methods in the diagnosis of production processes dates back to the beginning of the 

20th century. Widespread computerization of processes made enterprises face the challenge of processing large 

sets of measurement data. The growing number of sensors on production lines requires the use of faster and 

more effective methods of both process diagnostics and finding connections between individual systems. This 

article is devoted to the use of Python libraries to effectively solve some problems related to the analysis of 

large data sets. The article is based on the experience related to data analysis in a large company in the 

automotive industry, whose annual production reaches 10 million units. The methods described in this 

publication were the basis for the initial analysis of production data in the plant, and the obtained results fed 

the production database and the created automatic anomaly detection system based on artificial intelligence 

algorithms. 
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ZASTOSOWANIE BIBLIOTEK JĘZYKA PYTHON DO ANALIZY WARIANCJI, ROZKŁADU 

NORMALNEGO I ROZKŁADU WEIBULLA W DIAGNOSTYCE I EKSPLOATACJI SYSTEMÓW 

PRODUKCYJNYCH 
  

Streszczenie 

Wykorzystywanie metod statystycznych w diagnostyce procesów produkcyjnych sięga swoimi korzeniami 

początków XX wieku. Powszechna informatyzacja procesów postawiła przedsiębiorstwa przed wyzwaniem 

przetwarzania dużych zbiorów danych pomiarowych. Rosnąca liczba czujników na liniach produkcyjnych 

wymaga stosowania szybszych i skuteczniejszych metod zarówno diagnostyki procesu, jak i znajdowania 

powiązań pomiędzy poszczególnymi systemami. Niniejszy artykuł został poświęcony wykorzystaniu bibliotek 

języka Python do efektywnego rozwiązywania niektórych problemów związanych z analizą dużych zbiorów 

danych pomiarowych. Artykuł powstał na bazie doświadczeń związanych z analizą danych w dużym 

przedsiębiorstwie branży motoryzacyjnej, którego roczna produkcja sięga 10 milionów sztuk. Opisane 

w niniejszej publikacji metody stanowiły podstawę wstępnej analizy danych produkcyjnych we wspomnianym 

zakładzie, a uzyskane wyniki zasiliły bazę danych produkcyjnych oraz tworzony system automatycznego 

wykrywania anomalii oparty na algorytmach sztucznej inteligencji. 

 

Słowa kluczowe: analiza wariancji, rozkład normalny, rozkład Weibulla, analiza statystyczna, python 

 
1. INTRODUCTION 

 

Serial production reaching tens or even hundreds 

of millions of pieces a year is not unusual these days. 

Modern factories full of robots and automation 

continuously produce huge amounts of goods. 

However, the level of automation requires proper 

control of the production processes. It is usually 

connected with the necessity of installation of a large 

number of sensors that record the condition of 

machines and the quality of manufactured products. 

The number of sensors is as high as 103 in the case 

of a medium-sized company, and even 105 in the 

case of very large factories. Therefore, the 

production state at time 𝑡 can be described as series 

of measurement data 𝑆𝑡 = (𝑠1,𝑡 , 𝑠2,𝑡 , … , 𝑠𝑚,𝑡), where 

𝑠𝑖,𝑡 are the measurement results from individual 

sensors. By writing down the state of the company 

in successive moments of time 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑟 we 

obtain a matrix that reflects the changes in the 

production process: 

        (𝑠𝑖,𝑡𝑗
) = (

𝑠1,𝑡1
𝑠2,𝑡1

… 𝑠𝑚,𝑡1

𝑠1,𝑡2
𝑠2,𝑡2

… 𝑠𝑚,𝑡2

⋮ ⋮ ⋱ ⋮
𝑠1,𝑡𝑟

𝑠2,𝑡𝑟
… 𝑠𝑚,𝑡𝑟

).         (1) 

Data from the measurement matrix are analyzed in 

order to detect abnormalities or specific relationships 

between events. Even an apparently small matrix 

becomes computationally very demanding if it is 
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necessary to independently analyze the sub-matrices 

contained in it. Statistical tools are very often used 

to determine interrelationships between events and 

detect irregularities. They allow to automatically 

process the data contained in such a matrix and 

indicate interesting relationships between the 

variables that make up the state of the production 

process. This article presents the basic tools of 

statistical analysis that can be used in detecting 

dependencies and interrelationships between the 

values of the presented matrix. 

The study of the statistical properties of time 

series from the production process is a very common 

method of assessing the quality of this process today. 

Advanced methods of data analysis allow you to 

control the quality of the process, assess the 

reliability or test the resistance of the design. The 

theory of reliability draws a lot from statistical 

methods, as evidenced, inter alia, by the monographs 

of Barlow and Proschan [10], Ansell and Phillips [5], 

Johnson and others [41], Birolini [11], Woo [94], 

Grynchenko and Alfyorov [30]. Her research area is 

the variability of the quality function over time, 

which is very well expressed in terms of the 

probability calculus. Schedules modeling the life 

cycle of machines and devices allow for effective 

management of production lines - their operational 

reliability and quality of manufactured elements. A 

particularly important concept for this field is the 

Weibull distribution [91, 92], whose precursors were 

Frechet [29] and Fisher and Tippett [27]. This 

distribution plays a special role in the theory of 

reliability, as evidenced by, for example, the 

publications of Johnson [40] and Lai [49]. A lot of 

detailed information about it can be found, inter alia, 

in the monographs of Murthy [65], Lai [50] and 

McPherson [61]. The statistical process control [63, 

95, 62] initiated by Shewart [81] is today a highly 

developed method of managing the production 

process. It covers both the analysis of single variable 

functions [63, 95] and the analysis of multivariable 

functions [56, 59]. The robust design methods 

introduced by Taguchi [83] also make significant use 

of a variety of statistical tools. Their use in 

production companies resulted in a two-fold [43], 

and in some cases even a four-fold reduction in the 

variability of the production process [70]. The 

breakthrough achievements in this field include the 

results published by: Kacker [42], Leon et al. [52], 

Box [13], Nair [66] and Tsui [87]. Taguchi's methods 

have also been extended to design resistance based 

on multiple characteristics. These problems are 

raised, inter alia, by: Logothetis and Haigh [55], 

Pignatiello [71], Elsayed and Chen [23] and Tsui 

[88]. The common feature of the issues described 

above is the intensive use of statistical tools on data 

sets from the production process. It should be 

emphasized that as the number of sensors and the 

size of databases increases, more and more emphasis 

is placed on processing efficiency. Therefore, the 

main task of this publication is to show how modern 

IT tools and numerical methods help to deal with 

some problems of data analysis. 

Statistical process control is part of a much wider 

problem of statistical analysis, which is searching for 

various types of anomalies in a time series. This 

problem has been intensively researched over the 

last 20 years. Many algorithms and techniques for 

finding anomalies have been proposed, provided that 

the range of an anomaly is known more or less. 

Examples include the results obtained by Keogh et 

al. [45, 46] and Senin et al. [77]. Nevertheless, it is 

still a huge challenge to search the entire set of 

available data. As an example illustrating the level 

of complexity of the problem, we can use a one-

dimensional sequence 105 of observations of a single 

quantity - it may be, for example, one of the 

dimensions of the manufactured element. Let us 

emphasize that a production run of this size is 

nothing extraordinary and is easily achieved in batch 

production conditions. There are over 1.6 · 1014  

subseries for such a series, which may contain 

various types of anomalies. This example shows how 

complicated the situation is when there is no 

information about the potential location of an 

anomaly. The publication [17] gives some intuitions 

about trying to solve this problem from the 

algorithmic point of view, but it can be said that this 

is only the discovery of the tip of the iceberg. It 

should be emphasized that the level of complexity of 

such problems increases significantly when data 

matrices appear instead of simple sequences/vectors. 

A good example of the complexity of this issue is the 

review article by Ebner and Henze [22], which 

describes the methods and problems of testing 

normality in multidimensional spaces. 

Contemporary methods of finding anomalies in 

time series can be divided into three main groups 

depending on the results they generate. We 

distinguish algorithms for finding anomalies at 

a point, structural anomalies and series anomalies (in 

the case of multiple series). By an anomaly at a point, 

we understand the deviation of the values of a single 

measurement from the values in the series [32, 25]. 

In turn, structural anomalies are such subsets of 

a given series, whose statistical properties differ 

from those determined for the entire series [44, 97, 

77]. In some way, series anomalies are related to this 

issue, which consist in finding deviations between 

entire sequences of measurements [38, 51]. Algo-

rithms using artificial intelligence methods are 

gaining popularity recently. This is undoubtedly 

a future direction of research, as evidenced by, for 

example, Intel's commitment to this area. The 

experience gained by the company in this area was 

published by Wang et al. [90]. Also, the publication 

by Chalapathy and Chawla [15] provides an 

overview of deep machine learning methods for 

detecting anomalies in time series. 

The article [21] introduces the division of 

anomaly detection algorithms in time series accor-

ding to the type of the method used. Ding and others 
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distinguished between the following methods: 

classification, nearest neighborhood, clustering, and 

statistical methods. It should be emphasized that all 

the last three methods are more or less based on 

statistical inference and the calculus of probability. 

Therefore, the rapid determination of statistics is 

a very important issue in the context of the 

performance of anomaly detection systems. 

This publication is divided into two parts. The 

first part presents selected methods of statistical 

analysis from the theoretical point of view, and the 

second part presents a practical approach - the 

implementation of the previously described methods 

in Python. Of course, the approach to big data 

analysis described in the following sections does not 

exhaust the catalog of methods that can be used in 

such a context. Nevertheless, the three issues 

described constitute a kind of basis that can be used 

for more advanced calculations and machine 

learning. 

 

2. THEORETICAL FOUNDATIONS OF 

SELECTED METHODS OF STATISTICAL 

DIAGNOSTICS 

 

In this section, the methods of variance analysis 

and two probability distributions will be considered. 

They play a key role from the point of view of quality 

management and reliability theory. These distri-

butions are the normal (Gaussian) distribution and 

the Weibull distribution. The description of 

individual will be presented with particular emphasis 

on the implementation aspect. The automation of the 

results evaluation and the calculation speed are 

extremely important in the case of processing and 

searching large measurement data sets. At the end of 

the part, the algorithm for processing a large set of 

measurement data is presented. Its task is to 

supplement the database with additional statistics 

that can be used for graphical analysis and machine 

learning. 

 

2.1. Variance analysis 

Variance is a measure of the concentration of 

data around the mean value. The lower the variance, 

the more concentrated the results. On the other hand, 

a high value of the variance indicates the statistical 

dispersion and significant distances between the 

points of the analyzed data set. Under production 

conditions, high process variability may indicate 

quality problems. Therefore, it is worth starting the 

data analysis with the analysis of variance. At this 

point, it should be noted that the process analysis 

cannot assume the study of variance only within 

measurement sequences with a certain length. 

Determining the time window size can give an 

incomplete picture of the process. Therefore, in 

further considerations, a chronologically ordered 

measurements sequence 𝑥1, … , 𝑥𝑛 representing the 

values of one of the random variables defined by the 

production process will be taken into account. 

Suppose that for each element 𝑥𝑖 a sequence of 

variances will be determined that will be computed 

for the surroundings of this element. It means that 

a certain sequence of radii 𝛿1, … , 𝛿𝑚, has been 

established, for which we calculate the variances 

𝜈𝑖,𝑗(𝑥𝑖−𝛿𝑗
, … , 𝑥𝑖+𝛿𝑗

) =
1

𝐷𝑗
∑ 𝑥𝑘

2𝑖+𝛿𝑗

𝑘=𝑖−𝛿𝑗
−

(
1

𝐷𝑗
∑ 𝑥𝑘

𝑖+𝛿𝑗

𝑘=𝑖−𝛿𝑗
)

2

,                                                  (2) 

where 𝐷𝑗 = 2𝛿𝑗 + 1. Note that the biased variance 

estimator was intentionally used in the formula 

above. This is due to the fact that it is more efficient 

to implement, and the transition to the unbiased 

estimator requires only multiplying the obtained 

quantity by 1 + (2𝛿𝑗)−1. Additionally, in this article 

we will assume that successive rays 𝛿𝑗 increase by 

a certain predetermined amount 𝑤. It means that 

𝛿𝑗 = 𝑗 ⋅ 𝑤. For such assumptions, it can be shown 

that the independent determination of all variances 

𝜈𝑖,𝑗 for 𝑖 ∈ {1, … , 𝑛} and 𝑗 ∈ {1, … , 𝑚} requires 

about 𝑚𝑛2/6 operations. If we assume that 𝑚 =
𝑛/𝑤 for some fixed 𝑤, then the computational 

complexity of the algorithm determining the set of 

variances 𝜈𝑖,𝑗 has order 𝑂(𝑛3/𝑤). In practice, it 

means that for a small number of 104 measurements 

and value 𝑤 = 100 it is necessary to perform 1010 

operations. Therefore, to determine the entire set of 

variances, we will use the approach presented in 

Lemma 1 [17]. It will allow to reduce the 

computational complexity of the problem under 

consideration to the level of 𝑂(𝑛2/𝑤), which will 

significantly improve the efficiency of calculations. 

For example, for the aforementioned 104 

measurements, the computation time will be reduced 

10 000 times. 

The Welford formula [93, 14] in the form given 

by Knuth [48] will be used for the effective 

implementation of the algorithm for determining the 

set of variances 𝜈𝑖,𝑗. It assumes that if 𝜇(𝑠), 𝜈(𝑠) are 

the arithmetic mean and variance of the series of 

measurements s, respectively, then for 𝑠 =
(𝑥1, … , 𝑥𝑘) and 𝑠+ = (𝑥1, … , 𝑥𝑘 , 𝑥𝑘+1) the follo-

wing dependencies occur 

𝜇(𝑠+) = 𝜇(𝑠) +
1

𝑘 + 1
(𝑥𝑘+1 − 𝜇(𝑠)), 

𝜈(𝑠+) = 𝜈(𝑠) + (𝑥𝑘+1 − 𝜇(𝑠))(𝑥𝑘+1 − 𝜇(𝑠+)) (3) 

This formula will be used in the initial stage of 

calculations - until the sequence s reaches the size 

2𝛿 + 1. In the next stage, the window method 

presented in [17] will be used. It uses the fact that for 

𝑠 = (𝑥1, … , 𝑥𝑘) and 𝑠′ = (𝑥2, … , 𝑥𝑘+1) the follo-

wing equations are satisfied 

𝜇(𝑠′) = 𝜇(𝑠) +
𝑥𝑘+1 − 𝑥1

𝑘
, 
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𝜈(𝑠′) = 𝜈(𝑠) +
𝑥𝑘+1 − 𝑥1

𝑘
(𝑥1 + 𝑥𝑘+1 − 𝜇(𝑠)      

− 𝜇(𝑠′))                                 (4) 

The above-mentioned relationships allow for the 

definition of a computationally effective algorithm, 

which was presented in [17]. 

  

2.2. Normal distribution 

The normal distribution as a limit distribution for the 

law of large numbers appears very often in the 

practice of quality management. Many models 

assume that the features of a process or a product can 

be modeled by means of a random variable X = µ+Y, 

where µ is a fixed value and the random variable Y 

has a normal distribution. However, this condition is 

not always met. There are moments when a random 

variable ceases to have a normal distribution. 

Detecting such a situation is crucial from the quality 

control point of view, as it may indicate a distur-

bance in the production process. Therefore, methods 

for verifying the normality of decomposition are 

a very important part of the control of the production 

process. 

Testing the normality of a distribution is already 

a classic problem in probability theory and statistics. 

The first analyzes of this issue were already carried 

out by Fisher [26] and Pearson [69] in the interwar 

period. There are many examples of testing a one-

dimensional normal distribution. One of the most 

frequently used tests are the Anderson Darling [4], 

Shapiro-Wilk [79], Shapiro-Francia [78] and 

Kolmogorov-Smirnov [60, 54] tests. On the other 

hand, the analysis of skewness and kurtosis (third 

and fourth moments) was used to construct the first 

normality tests for multivariate distributions [9, 57, 

58]. At the end of the 20th century, Bowman [12] 

proposed a normality test of multidimensional 

distributions based on the smoothness of density. 

Vasicek, in turn, developed a test using the entropy 

of the normal distribution [89]. The literature also 

offers several proposals for tests based on 

characteristic functions, which include [24, 18, 37], 

the BHEP test [8, 36] and energy tests [82]. Testing 

the normality of distribution, especially in the 

multivariate case, is currently a very intensively 

researched issue. This is evidenced by the 

publications of recent years by authors such as Mori 

et al. [64], Henze and Visagie [35], Tenreiro [84], 

Thas and Ottoy [85] and Zhu et al. [98]. Extensive 

reviews of methods for testing normality of 

distribution can be found in the works of Henze [34] 

and Das and Imon [19]. 

Recall that the normal distribution is a two-

parameter distribution denoted as 𝒩(𝜇, 𝜎2), where 

𝜇 is the expected value and 𝜎 is the standard 

deviation. Figure 1 shows the probability density 

plot for the parameters 𝜇 = 0 and 𝜎 = 1 along with 

the marked intervals [−1,1], [−2,2] i [−3,3], the 

integral of which is respectively 0.683, 0.954 and 

0.997. This integral determines the probability with 

which the random variable assumes values from the 

specified interval. The density function for the 

normal distribution is given by the formula 

       𝑓𝜇,𝜎(𝑥) =
1

𝜎√2𝜋
exp (−

(𝑥−𝜇)2

2𝜎2 )                        (5) 

It is not the purpose of this article to present 

a systematic description of all known tests to verify 

the normality of a distribution. The extensive 

literature provided at the beginning of this section 

allows the reader to get acquainted with specific 

methods. Examples of the use of selected methods 

will be presented later in the article as part of the use 

of specific libraries for statistical analysis. However, 

in order to outline the complexity of statistical 

testing, the Shapiro-Wilk test description will be 

presented. This test is today considered to be one of 

the strongest tests of normality. Its main 

disadvantage, however, is numerical limitations that 

make it impossible to test large samples. Currently 

used libraries for statistical analysis allows to carry 

out the test on vectors consisting of about 5000 

samples. Nevertheless, it is recommended to verify 

the maximum number of input data that can be 

properly examined by a given implementation in the 

numeric packet documentation. 

 

Fig. 1. Normal distribution density function 

for parameters 𝜇 = 0 i 𝜎 = 1 

 

The essence of the Shapiro-Wilk test is to 

compare the variance of the sample with the variance 

that should have a normal distribution if the data 

actually came from such a distribution. Thus, this 

test answers the question to what extent the sample 

has a chance to represent a normal distribution. The 

Shapiro-Wilk test statistic is 

                𝑊 =
(∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 )

2

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

,                                     (6) 

where the sequence 𝑥 = (𝑥1, … , 𝑥𝑛) is a sequence of 

positional statistics (the sequence terms are sorted in 

ascending order) and 𝑥 is the average value of the 

given statistics sequence. Generally, the values of 

the W statistics are numbers in the range [0,1]. When 

a sample derived from a normal distribution is 

tested, the test statistic W tends to unity as the sample 

size increases. The biggest problem with this test is 

finding the vector of coefficients a, which the 

equation should satisfy 
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                   𝑎 =
𝑉−1𝑚

(𝑚𝑇𝑉−1𝑉−1𝑚)1/2,                     (7) 

where m is the vector of expected values for the 

sample of positional statistics of size 𝑛, and the 

matrix 𝑉 is the covariance matrix of the position 

statistics from the sample and the vector 𝑚. 

Computational problems related to the determination 

of vector a coefficients are a fairly current topic.  

They were already mentioned by Shapiro and Wilk 

[79], Royston [75, 74, 76] had a large contribution to 

this issue, and recently Gunner and others [31] 

presented a method using the Shapiro-Wilk test in 

fast signal processing. It should be noted that 

operating on vector a approximations is also a fairly 

common approach. One of the most commonly used 

relationships is 

                      𝑎 ≈
𝑚̂

(𝑚̂𝑇𝑚̂)1/2,                                 (8) 

where 𝑚̂𝑖 = 𝛷−1((𝑖 − 0.375)/(𝑛 + 0.25)). 

The abbreviated description of the Shapiro-Wilk 

test presented above is only a sketch of the problems 

related to this test and is only intended to draw the 

reader's attention to the fact that the problem of 

testing the normality of distribution is a very 

extensive topic. Therefore, before using specific 

functions that test normality, it is worth taking the 

time to become familiar with the properties of the 

test you want to use. Particular attention should be 

paid to the limitations of a given method. 

 

2.3. Weibull distribution 

As mentioned in the introduction, the Weibull 

distribution is an example of a distribution that 

models the lifetime of a product. Recent years have 

shown its intensive use in issues related to modeling: 

glass strength [47], progressive pitting corrosion 

[80], adhesive wear of metals [72], failure of 

coatings [3], failure of brittle materials [28], failure 

of composite materials [67], wear of concrete 

elements [53], fatigue life of aluminum alloys [33], 

fatigue life of Al-Si castings [1], strength of 

polyethylene terephthalate fibers [96] or failure rate 

of joints under the influence of shear [7]. This very 

wide range of applications, however, does not 

require automatic processing of large data sets. 

However, it shows how universal the Weibull 

distribution is when it comes to testing the failure 

rate and aging of products. 

The Weibull distribution was treated in 

a completely different way in the publication [16], 

which shows how this distribution can be used to 

optimize operating costs. The generalization of the 

approach presented there, for example for all 

replacement parts used in a large enterprise, is 

already associated with the statistical and 

optimization analysis of a large set of data (in 

general, the number of replacement parts used 

reaches thousands). Another potential application 

may be the optimization of warranty servicing costs 

of cars sold by a given manufacturer. In this context, 

we are dealing with an even larger database, as 

generally a car model is sold in hundreds of 

thousands, and sometimes even millions of copies. 

The probability density of the three-parameter 

Weibull distribution is given by the equation 

        𝑓(𝑡) =
𝛽

𝛼
(

𝑡−𝜏

𝛼
)

𝛽−1

𝑒−((𝑡−𝜏)/𝛼)𝛽
,                     (9) 

where 𝛽 > 0, 𝜏 ≥ 0, 𝑡 ≥ 𝜏. For the adopted nota-

tions, 𝛼 is called the scale parameter, 𝛽 is the shape 

parameter, and 𝜏 is the position parameter. Figure 2 

shows example plots of the probability density 

function 𝑓 for the Weibull distribution. 
An overview of possible methods can be found 

in the publications of Ross [73] and Jacquelin [39]. 

It is worth emphasizing here that the form of the 

Weibull distribution gives the possibility of using 

a substitution that transforms it into a linear 

relationship. Thanks to this, it is very easy to connect 

the methods based on probability plots [86, 6, 20, 68, 

2] with the method of determining parameters using 

linear regression. It can therefore be concluded that 

this distribution fits exceptionally well in the 

automatic analysis of large data sets. 

 

Fig. 2. Sample probability density plots for 

the Weibull distribution for various 

parameters α, β and fixed τ = 0 

 

2.4. Anomaly detection algorithm 

Let us assume that we have the time series 𝐹(𝑡) =
(𝑥1, 𝑥2, … , 𝑥𝑚) defined on the discrete set of 

arguments 𝑡1, 𝑡2, … , 𝑡𝑛. We treat 𝑡𝑖 arguments as the 

moments of time in which the enterprise's operating 

parameters were measured, represented by a tuple 

(𝑥1, 𝑥2, … , 𝑥𝑚). Let us also assume that the search 

for anomalies in the production process is carried out 

based on the time window of the size w. That is, the 

parameters corresponding to the arguments 

𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑖+𝑤 are subjected to statistical ana-

lysis. Of course, the Algorithm 1 presented in this 

section may be applied to multiple time window 

widths as needed. Nevertheless, we present it in the 

version for fixed in. 
Algorithm 1: Anomaly detection data base 

INPUT: w – window size, h – half window size, 

𝑡1, 𝑡2, … , 𝑡𝑛 – discrete time series, 𝐹(𝑡) =
(𝑥1, 𝑥2, … , 𝑥𝑚) – measured parameters function 

represented as matrix (𝑥𝑖,𝑗) where 𝑖 ∈ {1, 2, … , 𝑛} 

and 𝑗 ∈ {1, 2, … , 𝑚}. 
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OUTPUT: 𝑅𝑗(𝑡) = (𝑘1, 𝑘2, 𝑉, 𝑁, 𝑊) – function 

family defined for each 𝑗 ∈ {1, 2, … , 𝑚}, where 𝑘1 is 

number of tests for which 𝑥𝑗 variance was greater 

than given bound value B, 𝑘2 is number of tests for 

witch 𝑥𝑗 does not pass normality test, V is variance 

of window for which 𝑥𝑗 was the center, N is normal 

distribution parameters vector of window for which 

𝑥𝑗 was the center and W is Weibull distribution 

parameters vector of window for which 𝑥𝑗 was the 

center. 

PROCEDURE: 

For 𝑗 ∈ {1, … , 𝑚} and 𝑖 ∈ {1, 2, … , 𝑛} find 𝑅𝑗(𝑡𝑖) =

(𝑘1,𝑖, 𝑘2,𝑖 , 𝑉𝑖 , 𝑁𝑖 , 𝑊𝑖): 

𝑉𝑖 ← 𝑉𝑎𝑟(𝑥𝑖−ℎ , … , 𝑥𝑖+ℎ) 

𝑁𝑖 ← 𝑁𝑜𝑟𝑚𝑃𝑎𝑟𝑎𝑚(𝑥𝑖−ℎ , … , 𝑥𝑖+ℎ) 

𝑊𝑖 ← 𝑊𝑒𝑖𝑏𝑢𝑙𝑙𝑃𝑎𝑟𝑎𝑚(𝑥𝑖−ℎ, … , 𝑥𝑖+ℎ) 

If 𝑉𝑖 > 𝐵 then 

Increase 𝑘1,𝑖 for all 𝑖 ∈ {𝑖 − ℎ, … , 𝑖 + ℎ} 

If 𝑁𝑖 is not Normal then 

Increase 𝑘2,𝑖 for all 𝑖 ∈ {𝑖 − ℎ, … , 𝑖 + ℎ} 

It should be noted that it makes sense to 

determine either the vector of the parameters of the 

normal distribution N or the vector of parameters of 

the Weibull distribution W. It depends on the type of 

measured value 𝑥𝑖 and its nature. Nevertheless, the 

most important quantities in the presented procedure 

are 𝑘1 and 𝑘2, because they show how often a given 

sample behaved abnormally during statistical tests. 

 

3. PYTHON IMPLEMENTATION OF 

SELECTED METHODS OF STATISTICAL 

DIAGNOSTICS 

 

Data analysis methods were implemented in free 

Python language and available statistical tools 

(numpy - basic library for creating and analyzing 

multidimensional arrays; pandas - library for 

reading, creating and manipulating data of various 

types). Using Python with these libraries allows to 

create simple scripts for data analyze and knowledge 

discovery. These tools, along with a wide range of 

libraries for data visualization, create a set of ready-

made tools for preparing analyzes and visualizing 

production processes. The practical implementation 

of statistical research is based on a real log from the 

production machines saved in a CSV file. The 

structure of the log file: Name; Date; Number; Time; 

Type; Time; Machine; Source; User; Par1; Par2; 

Par3; Par4; Par5; Par6; Par7; Par8; Par9; Par10; 

Par11; Par12; Par13; Par14; Par15; Par16; Par17; 

Par18; Par19; Par20, where: 

− name – proces name; 

− date – proces date; 

− number – machine numer; 

− time – proces start time; 

− type – proces type; 

− source – proces source; 

− user – production worker; 

− par1:par20 – numerical parameters of the 

current process.  

Not all parameters from file are analyzed. For this 

reason, in the part devoted to the implementation of 

selected studies, methods of selectively retrieving 

only the columns that will be analyzed will be 

presented. The data in the file was also filtered to 

analyze a certain range. To read data from the log 

file, the reading is the same and is done using the 

read_csv method. The program presented in Listing 

1 (Annex A SOURCE CODES) imports the pandas 

library and reads from the log.csv file to the selected 

columns of the DataFrame object. The columns, 

separated by semicolons, contain the observations. 

The “shape” method in the df object created from the 

DataFrame class was used to display the number of 

cases and the parameters of the set. The last line 

displays the first 10 observations of the set, which 

facilitates the initial evaluation of the analyzed data 

set. This example will be used, with some slight 

modifications, in subsequent descriptions of the 

conducted statistical research. 

 

3.1. Python implementation of variance analysis 

The variance’s implementation, i.e. examining the 

distribution of values in a data set around its mean 

value, can be valuable information while analyzing 

data from production logs. The methods available in 

Python statistics packages provide ready-made tools 

to calculate variance. You can calculate the variance 

of a set by calling the var() method on the DataFrame 

object. The method returns the unencumbered by 

variance against the requested axis, with 0 repre-

senting the rows and 1 representing the columns. The 

algorithm takes an optional “ddof” argument, which 

default’s value  is 1. This parameter indicates the 

degrees of freedom that will be used in the 

calculation. A value of 0 for the “ddof” parameter 

calculates the variance for the population, and 

a value of 1 estimates the population variance from 

the selected sample. The Listing 2 shows the 

variance calculation for all columns in a population. 

Variance calculation applies only to the numeric 

columns. For this reason, only columns containing 

numeric values were loaded into memory. Because 

the variance results are close to zero, they will be 

displayed exponentially. This record may make the 

analysis difficult, therefore the conversion to real 

values was performed with the use of the lambda 

function. Additionally, the number precision para-

meter was modified, narrowing down the result to 8 

decimal places. The result of the program is a list of 

variances: 
 Observations: 38600, parameters: 19 
Par1    0.58692063 

Par2    0.00006758 

Par3    0.00000350 

Par4    0.00000080 

Par5    0.00019867 

Par6    0.00000148 

Par7    0.00000029 

Par8    0.00000011 

Par9    0.00000005 

Par10   0.00000018 
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Par11   0.00003386 

Par12   0.00000003 

Par13   0.00000000 

Par14   0.00000005 

Par15   0.00000035 

Par16   0.00000008 

Par17   0.00000002 

Par18   0.00000351 

Par20   0.58054608 

dtype: float64 

 

Special attention should be paid to the display of 

real numbers. Their display has been truncated to the 

specified precision by the {: .8f} parameter. In some 

cases, this can lead to potential errors because the 

precision is too low. Therefore, the precision should 

always be selected on the basis of the complete 

results. 

Apart from the standard method, the pandas 

package also offers calculation of variance with the 

use of the window method, which is especially 

useful when analyzing large production data sets. 

The calculation of the window variance is available 

in the “rolling” method. The argument in this case is 

the size of the window. In the example of calculating 

the window variance, it was assumed that the 

variance studies will take place in the windows of 

size 4 and 15, and the tested parameters will be 

columns P2, P5 and P7. In the case of window 

variance, it is best to assign the calculation results to 

a new DataFrame object. As a result of the program 

in Listing 3, the variance for the selected series will 

be displayed. 

 
         vP2        vP5        vP7 

0        NaN        NaN        NaN 

1        NaN        NaN        NaN 

2        NaN        NaN        NaN 

3 0.00001125 0.00004869 0.00000001 

4 0.00005850 0.00004525 0.00000002 

5 0.00005069 0.00004550 0.00000001 

6 0.00005550 0.00046869 0.00000019 

7 0.00006019 0.00047825 0.00000033 

8 0.00001225 0.00045819 0.00000045 

9 0.00000819 0.00041050 0.00000046 

 

In the case of a window variance, where window 

size = 4, the rows indexed [0: 3] will not be filled 

with data. The number of blank lines containing NaN 

(not a number) values will increase as the window 

grows. For example, increasing the window size to 

10 will cause the display of the first 10 results to look 

as follows: 
   vP2  vP5  vP7 

0  NaN  NaN  NaN 

1  NaN  NaN  NaN 

2  NaN  NaN  NaN 

3  NaN  NaN  NaN 

4  NaN  NaN  NaN 

5  NaN  NaN  NaN 

6  NaN  NaN  NaN 

7  NaN  NaN  NaN 

8  NaN  NaN  NaN 

9  NaN  NaN  NaN 

 

A simple solution in these types of cases is to 

remove redundant lines containing NaN values with 

an additional line (before the print function): 

dfVar.dropna(axis=0, how='any', inplace=True) 
 
          vP2        vP5        vP7 

3  0.00001125 0.00004869 0.00000001 

4  0.00005850 0.00004525 0.00000002 

5  0.00005069 0.00004550 0.00000001 

6  0.00005550 0.00046869 0.00000019 

7  0.00006019 0.00047825 0.00000033 

8  0.00001225 0.00045819 0.00000045 

9  0.00000819 0.00041050 0.00000046 

10 0.00000225 0.00001225 0.00000010 

11 0.00001850 0.00000919 0.00000019 

12 0.00002319 0.00000875 0.00000018 

 

This time, the listing only contains rows that 

contain numeric values, and the index of the case in 

the object has not changed. 

The Seaborn library was used to visualize the 

results of calculating the variance, which is an 

extension of the Matplotlib library, enriching the 

standard package with additional types of graphs. 

Generating plots for the purpose of visualizing 

variance poses the problem of legibility in the plot of 

a relatively large amount of data. The Figure 3 shows 

a graph of variance for several columns, where time 

covers the entire population. As one can see, the 

chart is not legible, although it allows for 

a preliminary evaluation of the set. 

 

Fig. 3. Plot of variance for entire population 

generated with matplotlib package 

 

A graph will look clearer and provide better 

perception when it is generated with the use of the 

filtering methods available in the pandas package. In 

the example in Listing 4, there are filters that date 

range from 5/1/2020 to 5/2/2020. Filtering before 

performing a statistical analysis is a frequent 

operation, especially in the case of long time series 

analysis, because a sample which is too large is not 

always desirable during numerical calculations, and 

additionally placing too large time period on the 

graph may distort the perception of reception and, 

consequently, interfere with the possibility of 

noticing certain regularities or anomalies. By 

filtering a certain range (sample) of the population, 

the plot must contain a subset that contains only the 

range of the series of interest to be analyzed. The 

example uses date range filtering, but the filter can 

also include the set values specified with extreme 

parameters. The Figure 4 shows a graph presenting 

the variance of the P2 parameter in the separated date 

range. Thanks to the use of filtering, the chart is 
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much more readable and allows the evaluation the 

parameters value from a segment of the production 

process. Additionally, the chart shows the division 

into machines on which the production process took 

place. The size of the points on the chart and the 

colors allow a better perception of reception, and 

thus, an observation of potential disturbances in the 

configuration of the parameters of production 

machines. As one can see in the graph, there are no 

major differences in the variance of a single 

parameter depending on the machine, however, if 

there is an abnormality on one of the machines, it 

will be clearly indicated with a point along with the 

machine number specification.  

 

Fig. 4. Parameter P2 variance plot - date 

range 

 

The filtering capabilities of the DataFrame object 

are much broader. They also allow the use of logical 

operators. Thanks to this, greater filtering precision 

is possible, which is necessary when it is required to 

get rid of anomalies resulting from errors which 

occur while saving or transferring log files. In such 

cases, the erroneous observations should be removed 

during the set cleaning operation. An additional 

protection against the analysis should be the removal 

by filtering of the values exceeding the limit values. 

In this way, you can eliminate invalid lines that 

clearly deviate from the range of minimum and 

maximum production values in the production 

process. Filtering will eliminate potentially false 

anomalies during the analysis. 

 
df = df[(df['P2'] > 9.26) & (df['P2'] < 3.62) & 
(df["Data"].isin(pd.date_range( '2020-05-01', '2020-05-02')))] 
 

The above code is an example of the use of both 

date range and extreme manufacturing process 

filtering. 

The analysis of variance can be freely extended, 

e.g. to search for correlations between the available 

parameters and other non-numeric parameters. As 

a result, you can get a broader picture of the studied 

phenomenon and notice some correlations. For 

example, comparing the variance of the series 

parameters on the graph with the division into 

production machines or the operators who support 

them, it is possible to analyze the differences in the 

configuration of individual machines, or errors made 

by the operators of these machines. The collected 

and processed results can be of great help in 

predicting production processes and allow for 

confirming or rejecting the proposed hypotheses 

concerning disturbances in production processes. 

 

3.2. Python implementation of Normal 

distribution 

When examining data sets, one of the basic princi-

ples is to pre-examine its distribution of features. 

There are many methods in Python statistical 

libraries to test the normality of a distribution. These 

methods return the P-value probability, which is the 

lowest significance level at which the null 

hypothesis for the observed value of the test statistic 

can be rejected (the null hypothesis can be rejected 

when the computed test probability in the p variable 

turns out to be not higher than the adopted 

significance level, which is usually 0.05). In the case 

when the value of p ≤ 0.05, the hypothesis can be 

rejected, and when the value of p > 0.05, probably 

the variable has values derived from the normal 

distribution. The examination of the series for the 

assessment of the normality of the distribution can 

be done in two ways. The first is the graphical test, 

i.e. visualization of the variable distribution using 

one of the available charts. The second method is to 

perform one of a number of statistical tests to obtain 

the P-value. 

The following program serves as an example of 

a graphical test, which generates random values of 

the normal distribution. For this purpose, the 

random.normal method from the numpy library was 

used, which takes the amount of generated data as 

one of the parameters. Generating the series allows 

the visualization of the plot for a normal distribution. 

The result of the program in Listing 5 is a histogram 

presenting the generated values of the data series and 

is shown in the Figure 5. The analysis of the graph 

shows that the series can come from a normal 

distribution. 

 

Fig. 5. Visualization of the normal 

distribution on a graph 

 

Another way to generate a series from the normal 

distribution is to use the norms method from the 

scipy library as is shown in Listing 6. In this case, 

the numpy library was also used to generate the 

series from the normal distribution, but this time the 

linspace method was used to generate the series. The 
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linspace method generates a series of 1000 random 

values from -100 to 100 from the normal distribution 

which is shown in the Figure 6. 

 

Fig. 6. Series generated with the linspace 

method (1000 random values from -100 to 

100 from the normal distribution) 
 

In order to perform a statistical test of the 

normality of the distribution, an actual sample from 

the population was selected (based on a date range), 

and additionally, anomalies that could be clearly 

classified as errors were eliminated from the set. As 

a result, a time series containing only the correct 

values of one of the parameters of the production 

process were obtained – Listing 7.  

Graphical methods for assessing the normality of  

a distribution often use a histogram for a numerical 

parameter. In this type of chart, data is represented 

by a certain number of rectangles with sorted data 

containing the number of observations. Histograms 

divide the values of continuous variables into 

discrete sections and show the number of values in 

each of these ranges as is shown in the Figure 7. 

Additionally, the chart uses the kde = True option to 

generate the chart kernel density estimation to 

calculate the probability density function of a ran-

dom variable. 

 

Fig. 7. Histogram with the generated series of 

data values 
 

A popular type of plot for visualizing and testing  

a distribution is the Q-Q Plot (quantile quantile 

graph). This type of chart makes it easier to evaluate 

the studied distribution of the variable. One can use 

the stats.probplot function to create a chart. The 

program presented in Listing 8 will generate a chart 

of quantiles for the variable on the y axis, compared 

to the theoretical quantiles of the normal distribution. 

The result of the program operation is shown in the 

Figure 8. 

 

Fig. 8. Normal probability plot 
 

The interpretation of the quantile chart is based 

on the observation of the concentration of points 

around the straight line. If a variable is normally 

distributed, its values agree with theoretical 

quantiles. An important information when 

interpreting a Q-Q Plot is the even alternating 

distribution of points close to the straight line, which 

may mean that the data comes from a normal 

distribution. Even if there are slight deviations of a 

few points above and below the line, if the deviations 

are small, the data series may be derived from the 

normal distribution. 

The visual assessment of the graph in terms of 

the normality of the distribution is always associated 

with misinterpretation, therefore statistical tests are 

needed to verify the null hypothesis when examining 

the distribution. To this end, we will introduce 

several series-testing algorithms for distribution that 

are available in the Python statistical package. 

The first test is the Shapiro-Wilk test, which is 

designed to test the normality of distributions in 

collections of up to 5000 samples. It is available in 

the shapiro package, and the test implementation 

looks as is shown in Listing 9. The result of the test 

is the display of the number of observations and the 

results of the statistical test, similar to subsequent 

tests. 

 
Observations: 949, parameters: 2 

0.9902371764183044 6.105211468820926e-06  

 

The Shapiro-Wilk test may yield erroneous 

results when testing larger samples and is the 

preferred way to test the normality of a probability 

distribution due to its strength. 

Another test that will be used is the D'Agostino-

Pearson test, which assumes that the sample size 

should not be smaller than 20 observations. Its 

implementation on an identical row is shown in 

Listing 10. 
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The next test performed is the Kolmogorov-

Smirnov test, which belongs to the non-parametric 

tests for assessing the compatibility of the 

distribution of variables with the normal distribution. 

It is a test used in situations where the mean or 

standard deviation is unknown. The method should 

be used for samples with n > 100. Like other tests, it 

tests the null hypothesis of a distribution close to the 

normal distribution – Listing 11. 

Another test that will be performed is based on 

the Anderson-Darling method and is based on 

statistical tests of the consistency of the distribution 

with a given standard distribution. It tests the null 

hypothesis of a sample from a population with  

a specific distribution. Critical values depend on the 

tested distribution. The method works for normal, 

exponential, logistic, or Gumbel distribution. By 

default, the tested distribution is the normal 

distribution, but it can also take other distributions: 

expon, logistic, gumbel, gumbel_l, gumbel_r, 

extreme1) – Listing 12. The result of the executed 

series testing program using the Anderson-Darling 

test is: 

 
Statistics: 2.104 

Hypothesis rejected: critical value 1.087 

signification level 1.0 

 

The next statistical test available is the chi-square 

test. This method is often used to verify the 

hypothesis whether the observed trait in a commu-

nity has a specific type of distribution – Listing 13. 

The second to last of the presented statistical tests 

is the Lilliefors test. It is a test based on the 

Kolmogornov-Smirnov test, which can be used 

when the mean value and standard deviation are 

unknown. The test implementation is presented in 

Listing 14. 

The last of the tests is the Jarque-Ber distribution 

normality test, which is one of the tests frequently 

used in econometrics due to the uncomplicated form 

of the asymptotic distribution. The construction of 

the test statistic is based on the values of the 

moments of distribution of a random variable 

calculated on the basis of the empirical sample and 

comparing them with the theoretical moments of the 

normal distribution. This test verifies the hypothesis 

of univariate normality of a random variable against 

any other distribution and is presented in Listing 15. 

 

3.3. Python implementation of Weibull 

distribution 

Reliability engineering and survival analysis are 

an important stage of research into the prediction of 

production processes. There are several reliability 

analysis libraries for Python. In this case, the 

Reliability library was used for the research, which 

contains a set of functions useful in this type of 

analysis. The library is an extension of scipy.stats 

and contains additional tools useful in testing 

reliability. 

With the help of the library, you can create 

distribution matches for both complete and 

incomplete data, and the available fit modules are 

named with the number of their parameters. For 

example, Fit Weibull 2P uses α, β and Fit Weibull 3P 

uses α, β, γ. The distributions are fitted using the 

requested function along with the errors passed to it. 

A minimum of 4 samples is recommended as the 

accuracy of the fit depends on this. For the purpose 

of the experiment, the Fit Weibull 2P method was 

used. The program in Listing 16 imports the log from 

the production machine and determines parameter 

errors in the form of an additional logical column. In 

this case, the errors result from exceeding the 

production values. In the next step, the Weibull 

fitting function is called, which displays the results 

of the calculations. 

 
Observations: 289, variables: 2 

False    263 

True      26 

Name: error, dtype: int64 

Results from Fit_Weibull_2P (95% CI): 

Analysis method: Maximum Likelihood 

Estimation (MLE) 

Optimizer: TNC 

Failures/Right censored: 26/0 (0% right 

censored)  

 

Parameter Point Estimate Standard Error       

Lower CI Upper CI 

    Alpha  13096.77421476    148.50853144 

12808.91349390 13391.10416461 

     Beta     18.29210998      2.82802505    

13.51030110    24.76638272  

 

Goodness of fit         Value 

 Log-likelihood -210.75609058 

           AICc  426.03392029 

            BIC  428.02837424 

             AD    1.04087407 

 

By analyzing the result of the program, you can 

read the number of error samples. The output also 

includes confidence intervals and standard error for 

parameter estimates. The probability plot is gene-

rated automatically using the plt.show() method and 

is presented in the Figure 9. 

On the generated graph, you can observe how the 

data is modeled, and the interpretation of the 

visualization consists in analyzing the location of 

points that should be placed on a straight line. In this 

case, however, it is not so. A misalignment occurs 

when a line or curve formed by points deviates 

significantly from a straight line. In the plot 

interpretation, slight deviations from the straight line 

are tolerated at the ends of the distribution, but most 

points should follow the straight line. To display the 

failure points next to PDF, CDF, SF, HF, or CHF 

points without using axis scaling, one can use the 

plot_points function to generate a plot – Listing 17. 

The plot_points function plots the failure points 

based on the position and then generates the points 

similar to the previous case. However, it does not 

scale the axis or fitted distribution. The result of the 
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program is the creation of the Weibull distribution 

graph, shown in the Figure 10. 

 
Fig. 9. Weibull probability plot created with 

the reliability package 

 

Fig. 10. Weibull distribution with control 

points without axis scaling or fitted 

distribution (plot_points method) 

 

4. CONCLUSIONS 

 

Systems for the analysis of big data are playing 

an increasingly important role in industry, and this 

trend applies to all sectors. A strong impulse for the 

development of this field of knowledge is the 

constant increase in the importance of information 

and the need to compete in global markets. 

Exploring the collections in terms of obtaining 

specific knowledge is a way to automate the delivery 

of answers to previously asked questions. The 

information from production systems, analyzed and 

prepared in a human-readable way, can be used for 

faster prediction of failures and component wear or 

process monitoring. 

It is worth using commonly available tools such 

as Python and a number of available libraries for this 

purpose. While only the Python environment was 

used in the research, there are a number of 

convenient dedicated environments, such as Jupyter 

and Spyder. These tools are equipped with 

convenient interfaces and a built-in help system, 

which greatly facilitates and speeds up work on the 

harvest. 

This article presents selected issues of automatic 

analysis of data from production processes. In this 

way, the authors wanted to show how extensive the 

subject is. The second goal was to demonstrate how 

modern programming tools can be used to support 

data analysis in enterprises. The desire to show 

specific possibilities results from the fact that many 

modern IT systems make very little use of these 

modern technologies. 

 

A. SOURCE CODES 
 

Listing 1: Read csv file and get info. 
import pandas as pd 
cols = ["Data", "Machine", "Time", "Machine", "P1", "P2", "P3", 
"P4", "P5"] 
 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
print('Observations: {}, parameters: {}'.format(df.shape[0], 
df.shape[1])) 

 

Listing 2: Set display data format. 
import pandas as pd 
 
cols = ["P1", "P2", "P3", "P4", "P5", "P6"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
print('Observations: {}, parameters: {}'.format(df.shape[0], 
df.shape[1])) 
 
pd.set_option('display.float_format', lambda x: 
f'%.{len(str(x%1))-2}f' % x)  
 
print(df.var()) 

 

Listing 3: Variance analysis of selected numerical 

columns. 
import pandas as pd 
df = pd.read_csv("log.csv", decimal=".", delimiter=";") 
dfVar = pd.DataFrame() 
 
pd.set_option('display.float_format', lambda x: 
f'%.{len(str(x%1))-2}f' % x)  
 
win = 4 # Rolling window size 
dfVar['vP2'] = df.P2.rolling(win).var(ddof=0)  
dfVar['vP5'] = df.P5.rolling(win).var(ddof=0)  
dfVar['vP7'] = df.P7.rolling(win).var(ddof=0)  
dfVar['vP10'] = df.P10.rolling(win).var(ddof=0)  
dfVar['vP17'] = df.P17.rolling(win).var(ddof=0)  
 
print(dfVar.head(10)) 

 

Listing 4: Rolling windows variance of selected 

columns analysis. 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# Load the machine log file to DataFrame object 
df = pd.read_csv("log.csv", decimal=".", delimiter=";") 
 
mask = (df.index >= 10) & (df.index <= 500) 
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df = df.loc[mask] 
 
# Create Dataframe 
dfVar = pd.DataFrame() 
win = 4 
# Variance for P2 parameter 
dfVar['vP2']=df.P2.rolling(win).var(ddof=0)  
 
# Plot variance  
chart = sns.relplot(x=dfVar.index,  
                    y=dfVar.vP2,  
                    size=dfVar.vP2,  
                    sizes=(15, 200),  
                    hue=df.Machine,  
                    data=dfVar) 
 
# Change labels and size settings than are provided by default 
chart.fig.set_figwidth(15) 
chart.fig.set_figheight(8) 
chart.set_ylabels("Variance", size=14)  
chart.set_xlabels("Samples", size=14)  
plt.grid(linestyle='--', linewidth=1) 
plt.xticks(size = 14) 
plt.yticks(size = 14) 
# Show chart 
plt.show() 

 

Listing 5: Example of generating a data series and 

histogram displaying. 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Define mean and standard deviation 
me, sigma = 0, 0.1  
# Generate series 
series = np.random.normal(me, sigma, 6500) 
 
count, bins, ignored = plt.hist(series, 60, density=True) 
 
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins - 
me)**2 / (2 * sigma **2 )), linewidth=3, color='red') 
plt.title("Standard normal distribution") 
plt.xlabel('Values of random variable') 
plt.ylabel('Probability') 
plt.show() 

 

Listing 6: An example of generating a normal 

distribution and displaying a graph. 
from scipy.stats import norm 
import matplotlib.pyplot as plt 
import numpy as np 
 
mu = 5 #mean 
std = 10 #standard deviation 
snd = norm(mu, std) 
x = np.linspace(-100, 100, 1000) 
 
plt.plot(x, snd.pdf(x)) 
plt.title('Normal distribution') 
plt.xlabel('Values of random variable') 
plt.ylabel('Probability') 
plt.show() 

 

Listing 7: Histogram from a real log csv file. 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
cols = ["Data","P1"] 

df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
print('Observations: {}, parameters: {}'.format(df.shape[0], 
df.shape[1])) 
 
# Convert data column to datetime 
df['Data'] = pd.to_datetime(df['Data']) 
 
from_date = '2020-05-01' 
to_date = '2020-05-10' 
df = df[(df['P1'] > 6.0) & (df['P1'] < 8.0) & 
(df['Data'].isin(pd.date_range(from_date, to_date)))] 
 
sns.distplot(df.P1, rug=True, rug_kws = {"color": "b"}, kde_kws 
= {"color": "k"}, 
hist_kws = {"linewidth": 4, "alpha": 1, "color": "b"}) 
plt.show() 

 

Listing 8: Sample Q-Q Plot chart from log csv file. 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import scipy.stats as stats 
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
print('Observations: {}, parameters: {}'.format(df.shape[0], 
df.shape[1])) 
 
# Convert data column to datetime 
df['Data'] = pd.to_datetime(df['Data']) 
 
from_date = '2020-05-01' 
to_date = '2020-05-10' 
df = df[(df['P1'] > 6.0) & (df['P1'] < 8.0) & 
(df['Data'].isin(pd.date_range(from_date, to_date)))] 
 
stats.probplot(df["P1"], dist="norm", plot=plt) 
plt.show() 

 

Listing 9: Statistical test of the normality of 

a distribution using the Shapiro-Wilk method. 
import pandas as pd 
from scipy.stats import shapiro  
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stats, p = shapiro(df.P1)  
print(stats ,p) 
if p>0.05: 
    print ('Normal distribution') 

 

Listing 10: Standard statistical test of the normality. 
import pandas as pd 
from scipy import stats  
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stats, p = stats.normaltest(df.P1)  
print(stats ,p) 
if p>0.05: 
    print ('Normal distribution') 
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Listing 11: Statistical test of the normality of 

a distribution using the Kolmogorov-Smirnov. 
import pandas as pd 
from scipy.stats import kstest  
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stats, p = kstest(df.P1, 'norm') 
print(stats ,p) 
if p>0.05: 
    print ('Normal distribution') 

 

Listing 12: Statistical test of the normality of 

a distribution using the Anderson method. 
import pandas as pd 
from scipy.stats import anderson  
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
result = anderson(df.P1) 
print('Statistics: %.3f' % result.statistic)  
for i in range(len(result.critical_values)): 
    si_lev, cr_val = result.significance_level[i], 
result.critical_values[i]  
if result.statistic < cr_val: 
    print(f'Normal distribution: critical value {cr_val}, signification 
level {si_lev}') 
else: 
    print(f'Hypothesis rejected: critical value {cr_val} signification 
level {si_lev}') 

 

Listing 13: Statistical test of the normality of 

a distribution using the Chi-squared method. 
import pandas as pd 
from scipy.stats import chisquare 
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stat, p = chisquare(df.P1) 
print('Statistics: %.3f, p = %.3f' % (stat, p)) 
if p>0.05: 
    print('Normal distribution') 

 

Listing 14: Statistical test of the normality of 

a distribution using the Lilliefors method. 
import pandas as pd 
from statsmodels.stats.diagnostic import lilliefors  
 
cols = ["Data","P1"] 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stat, p=lilliefors(df.P1) 
print('Statistics: %.3f, p = %.3f' % (stat, p)) 
 
if p>0.05: 
    print('Normal distribution') 

 

Listing 15: Statistical test of the normality of 

a distribution using the Jarque-Bera method. 
import pandas as pd 
from scipy.stats import jarque_bera  
 
cols = ["Data","P1"] 

df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
stats, p = jarque_bera (df.P1) 
print('Statistics: %.3f, p = %.3f' % (stats, p)) 
if p>0.05: 
    print('Normal distribution') 

 

Listing 16: Weibull probability plot example. 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from reliability.Fitters import Fit_Weibull_2P 
from reliability.Probability_plotting import 
Weibull_probability_plot, Exponential_probability_plot 
 
# Set specific column from CSV file 
cols = ["Data","P1"] 
# and load the machine log file to DataFrame object 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
mask = (df.index >= 5120) & (df.index <= 5280) 
df = df.loc[mask] 
 
# Round to eight decimal places in pandas 
pd.options.display.float_format = '{:.8f}'.format 
 
# Define errors and anomaly based on critical values 
# The correct values are within the limits of min max 
df['error'] = np.where((df['P1'] < 3.2) | (df['P1'] > 9.63), True, 
False) 
df = df[(df['error'] == True)] 
  
# Print error count 
print(df.error.value_counts()) 
 
# Create fail data 
fail_data = df.index.tolist()  
 
# Create the probability plot 
Weibull_probability_plot(failures=fail_data) 
 
# Set title, change labels and size settings than are provided 
by default 
plt.title('Probability plot', size=14) 
plt.xlabel("Time", size=14) 
plt.ylabel("Fraction failing", size=14) 
plt.xticks(size = 14) 
plt.yticks(size = 14) 
# Show chart 
plt.show() 

 

Listing 17: Weibull dstribution fit 2P and plots the 

survival function. 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from reliability.Fitters import Fit_Weibull_2P 
from reliability.Distributions import Weibull_Distribution 
from reliability.Probability_plotting import plot_points 
 
# Set specific column from CSV file 
cols = ["Data","P1"] 
# and load the machine log file to DataFrame object 
df = pd.read_csv("log.csv", decimal=".", delimiter=";", usecols = 
cols) 
 
# Optional select index range data from DataFrame 
mask = (df.index >= 120) & (df.index <= 1500) 
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df = df.loc[mask] 
 
data = df 
 
# Round to eight decimal places in pandas 
pd.options.display.float_format = '{:.8f}'.format 
 
# Create additional column with logical value True/False 
# The correct values are within the limits of min max 
df['error'] = np.where((df['P1'] < 3.2) | (df['P1'] > 9.63), True, 
False) 
# Filter error values 
df = df[(df['error'] == True)] 
 
# Create fail data 
fail_data = df.index.tolist() 
 
# Fits a Weibull distribution to the data and generates the 
probability plot 
weibull_fit = Fit_Weibull_2P(dataframe=data, failures=fail_data, 
show_probability_plot=False, print_results=True) 
# Uses the distribution object from Fit_Weibull_2P and plots 
the survival function 
weibull_fit.distribution.SF(label='distribution 
fit',color='steelblue') 
# Plots the survival function of the original distribution 
plot_points(failures=fail_data,func='SF',label='Failure 
data',color='red',alpha=0.7) 
 
# Change labels and size settings than are provided by default 
plt.xlabel("x values", size=14) 
plt.ylabel("Fraction surviving", size=14) 
plt.xticks(size = 14) 
plt.yticks(size = 14) 
plt.legend() # Enable legend 
# Show chart 
plt.show() 
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