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Abstract
Improvements in speech-recognition performance resulting from the addition of low-frequency
information to electric (or vocoded) signals have attracted considerable interest in recent years. An
important question is whether these improvements reflect a form of constructive perceptual
interaction—whereby acoustic cues enhance the perception of electric or vocoded signals—or
whether they can be explained without assuming any interaction. To address this question, speech-
recognition performance was measured in 24 normal-hearing listeners using lowpass-filtered,
vocoded, and “combined” (lowpass + vocoded) words presented either in quiet or in a realistic
background (cafeteria noise), for different signal-to-noise ratios, different lowpass-filter cutoff
frequencies, and different numbers of vocoder bands. The results of these measures were then
compared to the predictions of three models of cue-combination, including a “probability
summation” model and two Gaussian signal-detection-theory (SDT) models—one (the
“independent noises” model) involving pre-combination noises, and the other (the “late noise”
model) involving post-combination noise. Consistent with previous findings, speech-recognition
performance with combined stimulation was significantly higher than performance with vocoded
or lowpass stimuli alone, and it was also higher than predicted by the probability-summation
model. The two Gaussian-SDT models could account quantitatively for the data. Moreover, a
Bayesian model-comparison procedure demonstrated that, given the data, these two models were
far more likely than the probability-summation model. Since these models do not involve any
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constructive-interaction mechanism, this demonstrates that constructive interactions are not
needed to explain the combined-stimulation benefits measured in this study. It will be important
for future studies to investigate whether this conclusion generalizes to other test conditions,
including real EAS, and to further test the assumptions of these different models of the combined-
stimulation advantage.
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1. Introduction
A recent development in the field of cochlear implants (CIs) relates to “electro-acoustic
stimulation” (EAS). EAS involves the combination of electric stimulation (via a CI) and
acoustic stimulation (usually, via a hearing aid), either in the same ear (e.g., Gantz & Turner,
2003; Turner et al., 2004) or in the opposite ear (e.g., Ching et al., 2004; Kong et al., 2005;
Mok et al., 2006). Several studies have demonstrated improved speech-recognition
performance with EAS, compared to electric or acoustic stimulation alone (e.g., Büchner et
al., 2009; Cullington & Zeng, 2011; Gantz & Turner, 2003, 2004; Gantz et al., 2004; Gantz
et al., 2006; Gfeller et al., 2006; Turner et al., 2004; von Ilberg et al., 1999). Benefits of
“combined stimulation” have also been observed in “simulated EAS” studies in normal-
hearing listeners, in which CI processing was simulated using a vocoder, and residual low-
frequency hearing was simulated by lowpass-filtering speech signals (e.g., Başkent &
Chatterjee, 2010; Brown & Bacon, 2009a; Chang et al., 2006; Chen & Loizou, 2010;
Dorman et al., 2005; Kong & Carlyon, 2007; Li & Loizou, 2008; Qin & Oxenham, 2006;
Turner et al., 2004).

Although the potential and actual benefits of combining acoustic stimulation with electric
stimulation are well demonstrated, it is still not entirely clear what explains these benefits. It
has been suggested that the provision of fundamental-frequency (F0) information at low
frequencies plays a key role (e.g., Başkent & Chatterjee, 2010; Brown & Bacon, 2009a, b,
2010; Kong et al., 2005; Qin & Oxenham, 2006; Turner et al., 2004). F0 differences
between talkers (e.g., female and male) provide a cue for the perceptual separation of
concurrent voices (Brokx & Nooteboom, 1982), and it has been suggested that this cue is
more salient at low frequencies (Carlyon, 1996; Culling & Darwin, 1993; Qin & Oxenham,
2006). Low-frequency F0 cues could help listeners track and extract a voice among other
voices in a vocoded or electric mixture. According to another explanation, low-frequency
cues could facilitate “glimpsing,” i.e., selective listening to the target voice through “dips” in
the temporal-envelope or spectrum of the masker (Kong & Carlyon, 2007; Li & Loizou,
2008).

While these various explanations continue to be actively investigated, a more basic question,
which remains without a clear answer, is whether the perceptual benefits of combined
stimulation can be explained simply in terms of non-interactive cue combination, or whether
they necessarily require to assume the existence of synergetic interactions in the perceptual
processing of low-frequency and electric (or vocoded) speech cues—so that access to the
former somehow facilitates or enhances the use of the latter. To gain clarity on this
important issue, Kong and Carlyon (2007) compared listeners’ speech-recognition
performance in combined-stimulation conditions to predictions derived (using a model
described in section 2.4.1) under the hypothesis that the low-frequency and vocoded signals
were identified independently, and that the identification decisions were then combined in
an “additive” fashion. The results showed that listeners’ performance was higher than
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predicted by the model. Kong and Carlyon (2007) interpreted this result as evidence for
“super-additive” effects (i.e., constructive interactions) in the combination of information
across lowpass and vocoded stimuli. Chang et al. (2006) also noted that the performance of
their listeners in combined-stimulation conditions was higher than predicted by adding the
proportions of correct responses for the lowpass-alone and vocoded-alone stimuli. Earlier,
Kong et al. (2005) pointed out that low-frequency acoustic signals that yielded essentially
zero percent correct when presented alone, nonetheless enhanced speech-recognition
performance when they were added to electric stimulation in the opposite ear of CI listeners.
These results have been interpreted as evidence for the existence of significant synergetic
interactions in the processing of lowpass- and vocoded stimuli, and have inspired the search
for specific mechanisms (such as F0-guided segregation or glimpsing), which might explain
these effects. However, two recent studies, one by Kong and Braida (2010), the other by
Micheyl and Oxenham (submitted), indicate that it may not be necessary to posit
interactions to explain the benefits of combined stimulation. Kong and Braida (2010) found
that listeners’ speech-recognition performance in real and simulated EAS conditions could
be accounted for, to a large extent, using a non-interactive cue-combination model based on
Gaussian signal detection theory (SDT). Consistent with this conclusion, Micheyl and
Oxenham (submitted) reanalyzed the data of previous simulated-EAS studies using
Gaussian-SDT models, and they found that such models could explain the performance of
the listeners in those studies without the need to assume the existence of interactions
between low-frequency and vocoded cues.

The aim of this study was to investigate further the hypothesis that listeners’ ability to
combine acoustic speech cues at low frequencies with temporal-envelope and degraded
spectral cues contained in vocoded signals at higher frequencies, can be predicted using
relatively simple psychophysical models of cue-combination, which do not posit any
interaction in the processing of the two types of cues. To this aim, speech-recognition
performance was measured using lowpass-filtered, vocoded, and combined (lowpass-filtered
+ vocoded) signals under a variety of conditions—including different signal-to-noise ratios
(SNRs), different lowpass-filter cutoff frequencies, and different numbers of vocoder bands
—in 24 normal-hearing listeners. The results of these measures were then compared to
predictions obtained using three models of cue combination, including the model used by
Kong and Carlyon (2007), and two Gaussian-SDT models.

2. Methods
2.1 Subjects

Twenty-four subjects (11 female, 13 male, aged 19–35 years, mean = 23.6 years) took part
in the study. All had normal hearing, defined as hearing thresholds of 20 dB HL or better at
octave frequencies between 250 and 8000 Hz. In accord with the Declaration of Helsinki,
written informed consent was obtained from all subjects prior to their inclusion in the study.

2.2. Stimuli and procedure
The speech stimuli consisted of 40 lists of 10 disyllabic words (Fournier, 1951) spoken by a
single male talker and recorded on a compact disc (CD, 44.1-kHz sampling rate, with 16-bit
quantization range). The “lowpass” (L) stimuli were produced by filtering these signals
digitally (using the FFT-filter function of the Adobe Audition software) below a cutoff
frequency (CF) of 500, 707, 1000, or 1414 Hz (stopband attenuation > 70 dB). The vocoded
(V) stimuli were produced by, firstly, bandpass-filtering the original speech signals into N =
1, 2, 3, or 4 frequency bands, which are hereafter referred to as “analysis bands.” The cutoff
frequencies of the analysis bands are listed in Table I. For the highest CF (1414 Hz), only
two N conditions were tested: N = 1 and N = 2. The lower frequency limit of the lowest
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analysis band was equal to CF. The upper frequency limit of the highest analysis band was
fixed at 4000 Hz. The center frequencies of the analysis bands were equidistant on a
logarithmic scale between CF and 4000 Hz. The temporal envelopes of the signals at the
output of these analysis bands were then extracted using full-wave rectification, followed by
lowpass-filtering at 50 Hz to eliminate pitch-related envelope fluctuations (Carroll & Zeng,
2007). Thirdly, the resulting temporal envelopes were used to modulate the amplitude of
noise bands (“synthesis bands”). To avoid interactions between modulation sidebands, each
synthesis band was 150-Hz (75-Hz on each side) narrower than the corresponding analysis
band (Carroll & Zeng, 2007). Finally, the amplitude-modulated synthesis bands were scaled
to have the same RMS amplitude as the corresponding analysis bands in the original signal,
then they were summed to produce the final V signal. The “combined” (C) stimuli were
produced by adding together L and V signals corresponding to the same CF.

Stimuli were either presented in quiet, or added to recordings of cafeteria noise. The latter
were chosen to provide a realistic, everyday-life noise background. They contained
unintelligible chatter from a large number of talkers, and occasional noises of clanging
dishes or chairs being moved, typical of a cafeteria. The noise was processed in the same
way as the speech. The processed speech and noise signals were recorded separately on the
left and right tracks of a CD. During the tests, the signals from the left and right tracks were
mixed at different signal-to-noise ratios (SNRs): −6 dB, 0 dB, and +6 dB. For the Quiet
condition (which may be thought of as corresponding to an infinitely large physical SNR,
and is hereafter included as a fourth SNR condition), the cafeteria noise was turned off.

Together, three presentation modes (L, V, and C), four CFs, and four SNRs would have
resulted in a total of 48 stimulus conditions. However, because it was anticipated that
performance in the quiet C conditions with N = 3 or 4 and a CF of 1000 Hz would be near
ceiling (100% correct), the 1414-Hz CF was tested only when N was less than 3. As a result,
the number of conditions tested was equal to 32. For each condition, and each listener, one
list of 10 dissyllabic words was drawn at random (without replacement) from the 40 lists of
disyllabic words. The 10 words were presented to the listener’s right ear. Listeners were
instructed to repeat each word after its presentation. For scoring, the total number of
correctly repeated syllables in each test condition was divided by the number of syllables
(20) and multiplied by 100 to yield a percent-correct (PC) score. The tests took
approximately three hours per listener. Testing was divided into two sessions of
approximately 90 minutes each, on different days. The listeners did not receive training prior
to the tests.

2.3 Apparatus
The stimuli were played on a CD player (PHILIPS – CD723) connected to an audiometer
(MADSEN – Orbiter 922), and delivered through TDH-39 earphones. Tests took place in a
soundproof booth at Edouard Herriot Hospital in Lyon. The study was approved by the local
Ethics Committee (CPP Sud-Est IV, Centre Leon Berard de Lyon, France, N° ID RCB:
2008-A01479-46).

2.4 Models
2.4.1. The probability-summation model—The first model that was considered in this
study has been used in various other contexts in the psychophysical literature, where it is
sometimes referred to as the “probability summation,” or “independent decisions,” model
(for introductions, see: Green & Swets, 1966; Macmillan & Creelman, 2005; Treisman,
1998). The model has been used to predict the detection of simple events (e.g., signal versus
no-signal) at the outputs of two or more sensory channels (e.g., Pelli, 1985; Pirenne, 1943).
Fletcher (1953) used this model to predict the proportion of correct responses for the
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recognition of simultaneously presented bands of speech based on the intelligibility of each
band in isolation (see also: Braida, 1991; Ronan et al., 2004). Boothroyd and Nittrouer also
used, and expanded, the model to analyze context effects in speech recognition (Boothroyd
& Nittrouer, 1988; Nittrouer & Boothroyd, 1990). The latter work prompted the use of the
model in a simulated-EAS study by Kong and Carlyon (2007). In this context, the
probability of a correct response in combined-stimulation conditions is predicted as the
complement of the product of the error probabilities in the corresponding non-combined
stimulation conditions, as follows.

(1)

In this equation, and the ones that follow, PL denotes the probability of a correct response in
the L condition, PV denotes the probability of a correct response in the V condition, and PC
denotes the predicted probability of a correct response in the C condition; the subscript
“_PS” was added to distinguish the predictions of the probability-summation model from the
predictions of other models.

2.4.2 Gaussian-SDT models—The model described in the previous section falls in the
category of “post-labeling” models (Braida, 1991; Ronan et al., 2004). These models
assume that listeners, first, identify speech items (phonemes, syllables, or words) within
each channel, then, combine the resulting identification decisions in some way, e.g., by
selecting one of the two answers with a certain probability. If the observations on which the
decisions are based are not dichotomous, this decision strategy is sub-optimal, meaning that
it is possible to achieve higher performance than predicted by these models, simply, by
using a different decision strategy. In general, optimal (maximum-likelihood) decision
strategies involve a combination of continuous decision variables, or observations, across
channels before a decision is made as to which item was presented (Green & Swets, 1966;
Wickens, 2001). Models employing this type of decision strategy are known as “pre-
labeling” models (Braida, 1991; Ronan et al., 2004). Usually, the pieces of information that
are (assumed to be) combined in these models are continuous quantities, which are related to
likelihoods or likelihood ratios—for instance, the likelihood that speech item x was
presented, given that input yi was received in channel i. Moreover, these models usually
assume that listeners’ ability to correctly identify speech signals is limited by variability, or
“noise.” The “noise” can be external, such as background noise, a competing voice, or
variability in speech signals due to within- and across-speaker variations (Uchanski &
Braida, 1998), or internal (e.g., neural noise, or fluctuations in attention over time). For
tractability, and justified by the central-limit theorem (see: Green & Swets, 1966), the noise
is traditionally assumed to have a Gaussian probability distribution.

Depending on whether the noise that limits performance is assumed to occur before or after
the combination of information across channels, two models are obtained: the independent-
noises model, and the post-combination noise model.

2.4.2.1 The independent-noises model: In this model, d′ for the combined-stimulation case
(hereafter denoted as d′C) is related to d′ for lowpass-filtered stimulation alone (hereafter
denoted as d′L) and to d′ for vocoded stimulation alone (hereafter denoted as d′V) by,

(2)
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The subscript, IN, stands for “independent noises” model. The PCs measured in the L and V
conditions can be used to estimate d′L and d′V by inverting (numerically) the following
integral equation, which describes the relationship between PC and d ′ for the m-alternative
forced-choice (mAFC) identification task (see: Green & Birdsall, 1958; Green & Dai, 1991).

(3)

In this equation, φ(.) denotes the standard normal probability density function, Φm−1(.)
denotes the cumulative standard normal distribution raised to the power m−1, where m is the
number of response alternatives.

Based on a reanalysis of Kryter’s (1962) data on speech intelligibility as a function of set-
size, Müsch and Buus (2001) found that, when the number of items (e.g., words) in a
speech-recognition test is large (e.g., one hundred or more), setting m to 8000 leads to more
accurate predictions than setting it to the size of the stimulus set. A similar effect was
observed by Green and Birdsall (1958), who suggested that when the stimulus set is large
and its contents are not known in advance to the listener, performance is determined, not by
the number of stimulus alternatives, but by the size of the listener’s active vocabulary.
Müsch and Buus (2001) estimated the size of this active vocabulary to be equal to 8000.
Accordingly, in the analyses described below, the parameter m was initially set to 8000.
However, additional analyses were also performed, in which, either the value of m was
treated as a free parameter, or uncertainty regarding the value of m was explicitly taken into
account, using a Bayesian approach (described in the Appendix).

Combining Eqs. 2 and 3, the prediction of the independent-noises model for the combined
condition is given by,

(4)

2.4.2.2 The late-noise model: Whereas the independent-noises model assumes that the only
significant source of noise occur before information is combined across the L and V signals,
the “late-noise” model assumes that the only significant source of performance-limiting
noise occurs after the combination. In this model, d ′ for the combined (C) case is predicted
using the following equation.

(5)

where the subscript, LN, stands for “late noise.”

Combining Eqs. 3 and 5, the PC prediction of the late-noise model for the case of combined
stimulation is obtained as,

(6)
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3. Results
3.1. PCs measures in human listeners

Figure 1 provides an overview of the data. The upper panel shows how PC varied as a
function of N and SNR, with CF as a parameter, for the three stimulation modes: V, L, and
C. Many of the trends that are apparent in this figure are as expected based on earlier
findings. In particular PC usually increased with CF, SNR and, for the V and C stimulation
modes, it also increased with N. Also consistent with previous findings, PCs measured in the
C stimulation mode were generally (with few exceptions) higher than the PC measured (in
corresponding SNR, CF, and when applicable, N, conditions) for the L or V stimulation
modes.

The statistical significance of these observations was confirmed by the results of repeated-
measures ANOVAs, as detailed in the following five sub-sections. These analyses were
preceded by Mauchly’s test of sphericity. Whenever the sphericity assumption was violated,
the Greenhouse-Geisser correction was applied; the F and p values reported in this article
include this correction, as needed. Although the results reported below were obtained using
analyses performed directly on the PC data, parallel analyses were performed on d′ values
computed using Eq. 3 (with m set to 8000). Unless noted otherwise, these analyses yielded
qualitatively similar outcomes and, in the interest of space, only the results of analyses
performed on PC data are reported.

3.1.1 Analysis of results for the L stimulation mode—A two-way (SNR × CF)
ANOVA on the PCs corresponding to the L stimulation mode showed significant main
effects of SNR (F(3, 69) = 154.90, p < 0.0005) and CF (F(3, 69) = 84.69, p < 0.0005), and a
significant interaction (F(9, 207) = 4.50, p < 0.0005).

3.1.2 Analysis of results for the V stimulation mode—A three-way (N × SNR × CF)
ANOVA on the PCs corresponding to the V stimulation mode showed significant main
effects of N (F(3, 69) = 246.87, p < 0.0005), SNR (F(3, 69) = 83.08, p < 0.0005), and CF
(F(2, 46) = 7.39, p = 0.002), as well as significant interactions between N and SNR (F(9,
207) = 60.40, p < 0.0005), SNR and CF (F(6, 138) = 8.83, p < 0.0005), and a three-way
interaction (F(18, 414) = 2.71, p = 0.019). The N-by-CF interaction failed to reach statistical
significance (F(6, 138) = 2.43, p = 0.057).

3.1.3 Analysis of results for the C stimulation mode—A three-way (N × SNR ×
CF) ANOVA on the PCs corresponding to the C stimulation mode showed significant main
effects of N (F(3, 69) = 76.60, p < 0.0005), SNR (F(3, 69) = 83.08, p < 0.0005), and CF
(F(2, 46) = 148.27, p < 0.0005), as well as significant interactions between N and SNR (F(9,
207) = 3.41, p = 0.004), N and CF (F(6, 138) = 12.67, p < 0.0005), SNR and CF (F(6, 138) =
3.60, p = 0.008), and a three-way interaction (F(18, 414) = 1.90, p = 0.048). The same
ANOVA, when applied on d′, also showed significant main effects of N (F(3, 69) = 152.890,
p < 0.0005), SNR (F(3, 69) = 309.11, p< 0.0005), and CF (F(2, 46) = 146.21, p < 0.0005).
However, except for the N-by-CF interaction (F(6, 138) = 9.05, p < 0.0005), this analysis
showed no significant two- or three-way interaction.

3.1.4 Comparisons between L and C stimulation modes—Planned contrasts
analyses comparing PC measured in the L stimulation mode against the PCs measured in
corresponding SNR and CF conditions of the C stimulation mode, separately for each N,
showed significant differences between the two stimulation modes for all Ns (F(1, 23) =
83.04, p < 0.0005 for N = 1; F(1, 23) = 475.36, p < 0.0005 for N = 2; F(1, 23) = 901.00, p <
0.0005 for N = 3; and F(1, 23) = 872.65, p < 0.0005 for N = 4).
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3.1.5 Comparisons between V and C stimulation modes—A four-way (stimulation
mode × N × SNR × CF) ANOVA on PCs measured using the V and C stimulation modes
showed a significant main effect of the stimulation mode (F(1, 23) = 3529.91, p < 0.0005).
Significant interactions were also observed between the stimulation mode and the following
factors: N (F(3, 69) = 24.168, p < 0.0005), SNR (F(3, 69) = 176.76, p < 0.0005), CF (F(2,
46) = 148.94, p < 0.0005). Additionally, the stimulation-mode factor was involved in
significant three-way interactions with N and SNR (F(9, 207) = 17.73, p < 0.0005), and N
and CF (F(6, 138) = 7.13, p < 0.0005); the three-way interaction between stimulation mode,
SNR, and CF failed to reach statistical significance (F(6, 138) = 2.33, p = 0.057). Finally,
the four-way (stimulation mode × N × SNR × CF) interaction was significant (F(18, 414) =
2.07, p = 0.035). A parallel analysis on d′ yielded qualitatively identical outcomes, except
for the four-way interaction, which was not statistically significant (F(18, 414) = 1.66, p =
0.111).

3.2 Model predictions
In this section, the predictions of the above-described cue-combination models are compared
to the PCs measured for the C stimulation mode. The predicted PCs were obtained by setting
the variables PL and PV in the equations in section 2.4 to the mean PCs measured in L and V
conditions in the listeners. For the SDT models, predictions could not be computed when the
mean PC for the L or V presentation mode was equal to zero, as this led to an undefined d′ .
To circumvent this problem, mean PC values that were equal to zero were replaced by 1/m
(i.e., the chance rate) prior to the computation of d′, resulting in a d′ of zero for that
condition. Only five out of a total of 72 mean PC values had to be replaced in this way. Four
of the replaced values corresponded to conditions involving one-band V stimuli; the
remaining value corresponded to a condition involving two-band V stimuli.

3.2.1 Probability-summation model—The predictions of the probability-summation
model are shown in the upper panel of Fig. 2 (empty symbols), together with the mean PCs
measured in the listeners for the C stimulation mode (filled symbols). The differences
between the data and the predictions are shown in the lower panel. These differences were
obtained by subtracting the predicted PCs from the observed PCs, so that positive values
indicate that listeners’ performance exceeded the predictions of the model. With a few
exceptions, which occurred in conditions where N was equal to 1, the mean PCs of the
human listeners were higher than predicted by the probability-summation model. In most
conditions, the discrepancy between data and predictions was larger than 10 percentage
points. In some conditions—especially, when N was equal to 4—the discrepancies were as
large as 40 to 50 percentage points. For this model, the RMS difference between data and
predictions across all N, SNR, and CF conditions was equal to 24 percentage points.

3.2.2 Independent-noises model—Figure 3 shows the predictions of the independent-
noises model with the parameter m set to 8000. Although these predictions were almost
always lower than the mean PCs of the listeners, the deviations between data and predictions
were generally smaller than for the probability-summation model (compare the lower panels
of Figs. 2 and 3). The RMS difference between data and predictions was equal to 13
percentage points. This approximately half the RMS error for the probability-summation
model (24 percentage points). However, note that, for many of the conditions tested, the
predictions of the independent-noises model were more than 10 percentage-points lower
than the mean PCs of the human listeners.

As mentioned above, the predictions in Fig. 3 were obtained with the parameter, m, set to
8000. As explained in section 2.2, this choice was based on the conclusion of an earlier
study, which estimated the size of listeners’ active vocabulary in open-set speech tests at
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about 8000 words (Müsch & Buus, 2001). However, it is unclear whether this conclusion
applies to the conditions and listeners tested in the current study. To explore the possibility
that the independent-noises model could fit the listeners’ data more closely for different
settings of the parameter m, a gradient-descent algorithm was used to find the value of m
that minimized the RMS error between data and predictions. The results, which are shown in
Fig. 4, reveal that when m was adjusted in this way, the independent-noises model could fit
the human-listeners’ data with an error of less than 10 percentage points in most of the
conditions tested, and an overall RMS error of only 7 percentage points. For comparison, the
RMS deviation between the listeners’ mean PCs and the upper (or lower) bounds of the
95%-confidence intervals around these mean PCs was equal to 6 percentage points; thus, the
RMS error between data and predictions was not appreciably larger than the variability of
the data. However, it is worth noting that the m value that was found to yield such good
agreement between data and predictions was considerably larger than the estimate obtained
by Müsch and Buus (2001), being equal to 870000. Possible explanations for this result are
considered in the discussion.

3.2.3 Late-noise model—The predictions of the late-noise model with the parameter m
set to 8000 are shown in Fig. 5. In contrast to the probability-summation and independent-
observations models, this model almost invariably over-predicted listeners’ performance.
The RMS error between data and predictions was equal to 18 percentage points.

Fig. 6 shows the predictions that were obtained for the late-noise model when the value of
the parameter, m, was adjusted to minimize the RMS error between the data and the
predictions. The value of m that was found to minimize the RMS error was equal to 653. For
this setting of m, the RMS error between the predictions of the model and the data was equal
to 11 percentage points.

3.3. Bayesian model comparison
The finding that smaller RMS errors could be obtained for the two Gaussian-SDT models
than for the probability-summation model was not entirely unexpected, since the former two
contain one free parameter, whereas the latter contains none. To compare the ability of these
models to “explain” the data (in a statistical sense), while taking into account the different
numbers of free parameters, we used a Bayesian model-comparison procedure. The
mathematical details of this procedure are described in the Appendix. One advantage of the
Bayesian approach is that “Occam’s razor” principle, which penalizes models for having
more degrees of freedom, is implemented naturally and automatically via the
marginalization of the likelihood over the space of model parameters (see: MacKay, 2003,
chapter 28, pp. 343–356). Other advantageous features of the Bayesian approach to model-
based analyses of psychophysical data are explained in Rouder and Lu (2005). One such
advantage, which was especially important in the context of the current study, is that
Bayesian inference provides a theoretically principled way to deal with correct-response
counts equal to zero. This was especially important here, because the predictions of the
models considered in this study are based upon estimates of probabilities of correct-response
in V conditions, in which correct-response counts of zero were sometimes observed. With
relatively small numbers of trials per condition, it is possible to obtain correct-response
counts of zero, even if the underlying probability of a correct response is higher than the rate
chance (1/m). The Bayesian model-comparison approach described in the Appendix takes
this into account.

The outcome of a Bayesian model-comparison analysis is traditionally summarized using
Bayes factors. Bayes factors indicate the relative likelihood of a model, compared to another
model, given the data. Figure 7 shows Bayes factors for the independent-noises model,
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compared to the probability-summation model. The values shown in this figure were
obtained by taking the geometric mean, across all listeners, of the “individual” Bayes factors
that were computed (using the approach described in the Appendix) for each combination of
CF, N, and SNR. Values higher than 1 (indicated by the horizontal line) mean that, for the
considered condition, the independent-noises model was more likely than the probability-
summation model, given the data; values lower than 1 indicate the opposite. For example, a
value of 10 means that, on average across all listeners, the independent-noises model was 10
times more likely to have generated the individual data than the probability-summation
model. As can be seen, except for some of the lowest-SNR, lowest-CFs, and lowest-N
conditions, the mean Bayes factors in Fig. 7 were generally higher than 1. On average across
all conditions and listeners, the mean Bayes factor was 41.73, indicating that the
independent-noises model was about 42 times more likely to have generated the individual
data than the probability-summation model. A similar comparison between the late-noise
model and the probability-summation model yielded a mean Bayes factor of 26.08. The
mean Bayes factor for the comparison between the independent-noises model and the late-
noise models was smaller, being equal to 1.60.

In interpreting these values and those shown in Fig. 7, it is important to note that they are
means of Bayes factors computed based on individual data. The “group-level” Bayes
factors, which were computed by taking into account the data of all listeners at once (as
explained in the Appendix), were several orders of magnitude larger than these “individual”
Bayes factors. The geometric-mean (across all conditions) of the group-level Bayes factor
for the independent-noises model compared to the probability-summation model was equal
to 5.85E+38. The geometric-mean group-level Bayes factor for the late-noise model
compared to the probability-summation model was equal to 1.69E+33. The geometric-mean
group-level Bayes factor for the independent-noise model compared to the late-noise model
was equal to 3.47E+05. According to Jeffreys’ scale (Jeffreys, 1961), Bayes factors of 6 or
more provide “strong evidence” for one model over another, and Bayes factor larger than
100 provide “conclusive evidence.”

4. Discussion
Consistent with previous findings (e.g., Chang et al., 2006; Kong & Carlyon, 2007; Li &
Loizou, 2008; Qin & Oxenham, 2006), the results of this study showed generally higher
speech-recognition performance with combined (lowpass-filtered + vocoded) stimulation
than with lowpass-filtered or vocoded stimuli alone. This “combined-stimulation advantage”
was observed under a wide variety of conditions, including in quiet and in a realistic noise
background (cafeteria), for different SNRs (ranging from −6 to +6 dB), and different CFs
(ranging from 500 to 1414 Hz). The numbers of vocoder bands (N) that were tested in this
study were relatively small, ranging from 1 to 4. Interestingly, even with so few vocoder
bands, speech-recognition performance was generally higher when both vocoded and
lowpass-filtered signals were presented, than when only lowpass-filtered signals were
presented. These findings confirm and extend earlier demonstrations of combined-
stimulation advantages under simulated EAS conditions in normal-hearing listeners.

The results of the current study are also consistent with the findings of Kong and Carlyon
(2007), who were the first to test the “super-additivity” hypothesis rigorously, using a
mathematical model. These authors observed that their listeners’ performance in combined-
stimulation (lowpass-filtered + vocoded) conditions was higher than predicted by the
probability-summation model. A similar outcome was obtained in the current study.
However, as noted above, the probability-summation model is largely suboptimal. The two
Gaussian-SDT models that were evaluated in this study both predicted higher performance
in combined-stimulation conditions than the probability-summation model, and even when
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taking into account the fact that these models included a free parameter (while the
probability-summation model did not), they were found to provide a far more plausible
account of the human-listeners’ data than the probability-summation model. This outcome
suggests that future efforts to develop predictive models of human listeners’ speech-
recognition performance in combined-stimulation conditions should build upon Gaussian
SDT models, rather than upon the probability-summation model.

When the parameter, m, in the two Gaussian-SDT models was adjusted to minimize the
error between the predictions and the data, both models were found to be able to fit the
human-listeners’ speech-recognition performance in combined-stimulation conditions well.
The RMS error between data and predictions (across all tested conditions) was equal to 7
percentage points for the independent-noises model, and to 11 percentage points for the late-
noise model. Since neither of these models involves any interaction in the combination of
information, this indicates that, for the listeners and stimulus conditions tested in this study,
the “combined-stimulation advantage” can be explained without invoking “constructive
interactions” in the perceptual processing of the low-frequency and vocoded signals. We
emphasize that this result does not invalidate explanations of the combined-stimulation
advantage that imply a form of constructive interaction. However, it indicates that such
explanations may not always be needed. A similar conclusion was reached in a recent study
by Kong and Braida (2010). These authors concluded that their listeners’ speech-recognition
performance in simulated EAS conditions could be accounted for using “pre-labeling”
models, which were based on Gaussian-SDT assumptions. As those evaluated in the current
study, these SDT models did not assume any interaction in the processing of lowpass-
filtered and vocoded signals, but they did assume optimal (or quasi-optimal) combination of
the cues contained in these signals. More recently, Micheyl and Oxenham (submitted) found
that Gaussian-SDT models could account for the data of Kong and Carlyon (2007).
Nonetheless, it is important to acknowledge that the use of a syllable identification task with
single-word stimuli, and of a noise vocoder with a 50-Hz cutoff frequency for the envelope
lowpass filter (which probably removed even the weakest pitch cues), may have created an
experimental environment that was perhaps more conducive to simple additive effects than
others. Additional work is needed to further clarify the conditions under which the observed
benefits of combined stimulation can, or cannot, be accounted for without positing some
form of interaction. Model-based analyses such as those described here and in other articles
(e.g., Braida, 1991; Kong & Braida, 2010; Kong & Carlyon, 2007; Micheyl & Oxenham,
submitted; Müsch & Buus, 2001; Ronan et al., 2004), should certainly play a key role in this
endeavor.

Two issues with the conclusion that the two Gaussian-SDT models tested in this study could
explain the data deserve mention. First, the value of m that was needed to minimize the
RMS error between the predictions of the independent-noises model and the listeners’ data
was quite large, being equal to 870000. This is more than two orders of magnitude larger
than the estimate of Müsch and Buus (2001), and it appears to be unrealistically large for an
estimate of the size of listeners’ active vocabulary—although it is important to note that the
nature and number of speech “templates” that can be stored in the human brain, and that
may be needed to make speech recognition possible under a wide variety of acoustic
conditions, are currently unknown. This limits the appeal of the independent-noises model.
Although the m value needed to minimize the RMS error between data and predictions for
the late-noise model was considerably smaller (being equal to 653), the assumption on
which this model is based, according to which the predominant source of performance-
limiting noise occurs after low-frequency and vocoded cues are combined, also seems
unrealistic. In low-SNR conditions, where relatively high levels of external noise are
present, the noise that limits performance is likely introduced before, rather than after,
information is combined across channels. This limits the appeal of the late-noise model
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somewhat. However, note that these limitations can be overcome, simply, by combining pre-
and post-combination noise sources within the same model, and by letting the magnitude of
the pre-combination noise decrease as the SNR increases. A possibility, which we did not
consider in the current study, but which it would be interesting to investigate in future
experiments, is that increasing external noise increases the uncertainty of the listener, and
forces the listener to search through a larger set of templates (which may be thought of as an
increase in the listeners’ active vocabulary).

Two important limitations of this study must be pointed out. Firstly, we only considered
models that did not involve interactions in the perceptual processing of low-frequency and
vocoded cues. Our decision on this point was in accord with the stated goal of this study: to
test whether the EAS advantage could be accounted for quantitatively without invoking
interactions. The decision can be further justified a posteriori, given that the answer to this
question was found to be positive—thus making the need to search for alternative (and less
parsimonious) explanations less pressing. However, in future work, it would be interesting
to investigate models of the EAS advantage that involve across-channel interactions.
Moreover, it would be important to examine the impact of correlations (e.g, temporal-
envelope correlations) or, more generally, statistical dependencies, between low-frequency
and vocoded (or electric) speech signals. Secondly, and finally, an important caveat, which
applies to all simulated-EAS studies, relates to use of noise-vocoding and lowpass-filtering
in normal-hearing listeners to simulate CI processing and residual low-frequency hearing in
hearing-impaired listeners. Important aspects and consequences of cochlear damages, such
as reduced frequency selectivity at low frequencies (Faulkner et al., 1990; Moore, 1985;
Moore et al., 1997; Tyler, 1986) and injury-induced neural degeneration (Kujawa &
Liberman, 2009), which can greatly limit the benefit of combined acoustic and electric
stimulation in hearing-impaired individuals, are not taken into account in these simulations.
Therefore, while EAS simulations in normal-hearing listeners provide a test-bed for the
development and the evaluation of explanatory or predictive models of the EAS advantage,
studies in CI listeners are crucially needed to validate these models.
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Abbreviations

CF cutoff frequency

CI cochlear implant

EAS electro-acoustic stimulation

F0 fundamental frequency

PC percentage of correct responses

RMS root-mean-square

SDT signal detection theory

SNR signal-to-noise ratio
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Appendix: Bayesian model comparison
In Bayesian model comparison, the posterior probabilities of two models, MA and MB, given
the data, D, are compared by forming the ratio (Gelman et al., 1995; Jaynes, 2003),

(A1)

where P(D|MA) and P(D|MB) are the conditional probabilities of the data given the model,
and P(MA) and P(MB) are the model prior probabilities. When none of the models is favored
a priori (as was the case in the current application), the prior probabilities are equal, and the
ratio of posterior probabilities, P(MA|D)/P(MB|D), equals the ratio of likelihoods, P(D|MA)/
P(D|MB). The latter ratio, known as the Bayes factor, is computed by integrating over model
parameters, for each model:

(A2)

In the current application of this framework, the data were numbers of correct responses for
lowpass, vocoded, and combined (lowpass + vocoded ) stimuli. These numbers of correct

responses are denoted as , and  (where the superscripts, i and j, index the listener
and the condition), and are assumed to be drawn from binomial distributions with

parameters, n, , and . For clarity, and using probability-theory notation, we have:

(A3)

(A4)

and
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(A5)

The shared parameter, n, corresponds the number of trials per condition per listener; this

number if fixed and known (n= 20). The parameters, , and , are the underlying (or
“true”) probabilities of a correct response. These probabilities are “latent” variables; they are
not observed. Although their most-likely (or maximum-a-posteriori) values can be inferred
based on the measured numbers of correct responses, for the purpose of evaluating the right-
hand side of Eq. A2, these variables are just “nuisance parameters,” which must be
integrated over to compute the conditional probabilities of interest.

The different models described in section 2.4 define specific relationships between ,

and . Specifically, for the probability-summation model,

(A6)

For the independent-noises model,

(A7)

where fm(.) denotes the transformation from d ′ to PC for the mAFC task, as defined by the
integral Eq. 3, and  denotes the inverse of this transformation. Finally, for the late-
noise model,

(A8)

In general terms, we can write,

(A9)

where the subscript, k, refers to the considered model (1: probability-summation model; 2:
independent-noises model; 3: late-noise model).

Together with Eq. A9, and with the additional assumption that  and  are marginally
independent, the conditional-dependence statements A3–A5 define a directed acyclic graph
(Bishop, 2006; Jordan, 1999). By examining the structure of this graph, it can be determined
that, for the probability-summation model,
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(A10)

where , and  denote the random variables, of which , and  are observed

realizations; xL and xV are “dummy” integration variables, which correspond to  and ;
and Bn(q, p) is the probability distribution function with parameters n (the number of trials)
and p (the probability of success) evaluated at q (the number of successes),

(A11)

Uniform prior distributions were placed on parameters  and . Consequently, the terms
P(xL) and P(xV) in Eq. A11 were both equal to one, and,

(A12)

The independent-noises model and the late-noise model have one more parameter than the
probability-summation model. This parameter, m, enters in the transformation between d ′
and PC for the mAFC task (Eq. 3). It corresponds to the number of independent templates,
against which the listener is comparing incoming speech signals, and can be thought of as
the size of the listener’s “active vocabulary” (Green & Birdsall, 1958; Müsch & Buus,
2001). Since m is not known a priori, this extra parameter must also be “integrated out” in
the calculation of the likelihoods of the independent-noises and late-noise models.
Accordingly, for these models, the likelihood was computed as follows.

(A13)

The infinite upper limit in the sum on the right-hand side of Eq. A13 reflects the fact that m
can theoretically be any non-negative integer. However, the size of listeners’ active
vocabulary is most certainly finite. For practical purposes, uncertainty concerning this
parameter was modeled using a uniform-discrete prior probability distribution on m, such
that values of m equally spaced on an octave scale between 125 and 125×213 were regarded
as equally likely a priori.
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The integrals in Eqs. A12 and A13 were replaced by sums, and evaluated numerically. The
Bayes factor were then obtained simply by taking ratios of the conditional probabilities,

, corresponding to two different models (e.g., the probability-summation
model and the independent-noises model). This was done for all pairs of models.
Importantly, these Bayes factors were computed separately for each listener and condition.
The mean Bayes factors reported in the Results section were computed as the geometric
mean, across all listeners, of these individual Bayes factors.

In addition to “individual” Bayes factors, “group-level Bayes factors” were computed as

(A14)

where nsubjs is the number of subjects, and MA and MB refer to the two models being
compared.
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Highlights

• Combining lowpass-filtered and vocoded signals improves speech-recognition
performance

• This effect is observed under a wide variety of stimulation conditions

• It is larger than predicted by a model combining independent identification
decisions

• Gaussian-SDT models can explain the effect without involving cross-modal
interactions
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Figure 1.
PC in L, V, and C conditions, and combined-stimulation advantage, as a function of N and
SNR, with CF as the parameter. The different CF conditions are illustrated by different
symbols, as indicated in the key. The different N and SNR conditions are listed underneath
the abscissa. Note that N refers to conditions that involved vocoded stimuli. The data
obtained in conditions involving only lowpass-filtered stimuli (empty symbols in the upper
panel) were duplicated across N conditions in the upper panel, to facilitate comparisons. The
PC differences, which are shown in the lower panel, were computed by subtracting the PCs
measured in the L or V conditions from the PCs measured in corresponding C conditions.
The error bars show the upper and/or lower bounds of the 95%-confidence intervals
(bootstrap) of the mean PC across the 24 listeners for a subset of conditions. These
conditions were selected so as to minimize overlap and avoid clutter. They include
conditions in which the mean PCs were the lowest or the highest in each N condition; the
500-Hz CF for the N = 2 condition (L) in the upper panel; and the 707-Hz CF for N = 1 and
N = 2 condition (C – V) in the lower panel. Note that some error bars for this subset of
conditions are not visible, due to their small size relative to the symbols.
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Figure 2.
Comparison between the PCs measured for C stimuli in human listeners, and the PCs
predicted by the probability-summation model. Upper panel: Mean PCs of the human
listeners for C stimuli (filled symbols, replotted from Fig. 1), and model predictions (empty
symbols). Lower panel: Differences between observed and predicted PCs. These differences
were obtained by subtracting the predicted PCs from the observed PCs, so that positive
values indicate conditions in which listeners’ performance was better than predicted by the
model, and negative values indicate the opposite effect.
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Figure 3.
Comparison between human listeners’ performance and the predictions of the independent-
noises model, with the value of the parameter, m, set to 8000. The format of this figure is the
same as that of Fig. 2.
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Figure 4.
Comparison between human listeners’ performance and the predictions of the independent-
noises model, with the value of the parameter, m, adjusted to minimize the mean-squared
error between data and predictions. The format of this figure is the same as that of Fig. 2.
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Figure 5.
Comparison between human listeners’ performance and the predictions of the late-noise
model with the value of the parameter, m, set to 8000. The format of this figure is the same
as that of Fig. 2.
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Figure 6.
Comparison between human listeners’ performance and the predictions of the late-noise
model with the value of the parameter, m, adjusted to minimize the mean-squared error
between data and predictions. The format of this figure is the same as that of Fig. 2.
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Figure 7.
Geometric-mean Bayes factors for the comparison between the independent-noises and
probability-summation models. Values higher than 1 (indicated by the horizontal line)
indicate that, on average across all listeners, for the considered combination of N, SNR, and
CF, the data measured in the experiment were more likely to have been generated by the
independent-noises model than by the probability-summation model; values lower than 1
indicate the opposite. Importantly, these Bayes factors refer to individual data; the Bayes
factors that were computed on the group data (assuming statistical independence across
listeners) were orders of magnitude higher.
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Table I

Low- and high-frequency limits of the vocoder synthesis bands for the different CF and N conditions.

Condition Band number Synthesis-band limits (Hz)

CF = 500 Hz

N = 1 1 575 – 3925

N = 2 1 575 – 1339

2 1489 – 3925

N = 3 1 575 – 925

2 1075 – 1925

3 2075 – 3925

N = 4 1 575 – 766

2 916 – 1339

3 1489 – 2303

4 2453 – 3925

CF = 707 Hz

N = 1 1 782 – 3925

N = 2 1 782 – 1607

2 1757 – 3925

N = 3 1 782 – 1185

2 1335 – 2170

3 2320 – 3925

N = 4 1 782 – 1015

2 1165 – 1606

3 1756 – 2517

4 2667 – 3925

CF = 1000 Hz

N = 1 1 1075 – 3925

N = 2 1 1075 – 1925

2 2075 – 3925

N = 3 1 1075 – 1512

2 1662 – 2444

3 2594 – 3925

N = 4 1 1075 – 1339

2 1489 – 1925

3 2075 – 2753

4 2903 – 3925

CF = 1414 Hz

N = 1 1 1489 – 3925

N = 2 1 1489 – 2303

2 2453 – 3925
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