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Innate immune sensing of RNA and DNA viruses

As the first line of host defense, the innate immune system utilizes germline-encoded receptors

named pattern-recognition receptors (PRRs) to detect invading pathogens. PRRs recognize

conserved molecular structures of pathogens known as pathogen-associated molecular pat-

terns (PAMPs) to initiate immune responses that counteract pathogen infection. The immu-

nostimulatory feature of exogenous nucleic acids, such as viral DNA and RNA, has been

known for more than half a century, but the mechanism by which they function as an immune

stimulant remained unclear for a long time. The past two decades have witnessed tremendous

progress in understanding the signaling mechanisms of innate immune networks and estab-

lished the retinoic acid inducible gene-I (RIG-I)/melanoma differentiation associated gene 5

(MDA5)–mitochondrial antiviral-signaling protein (MAVS) axis and cyclic GMP-AMP

synthase (cGAS)–stimulator of interferon genes (STING) axis as the major sensing pathways

for cytosolic RNA and DNA, respectively [1]. However, emerging evidence indicates that, in

addition to its well-established role in sensing cytosolic DNA, the cGAS–STING pathway is

also involved in restricting RNA virus infection, suggesting that there exists crosstalk between

the innate sensing of cytosolic DNA and RNA.

Canonical role of the cGAS–STING pathway in sensing DNA virus

infection

cGAS binds to cytosolic double-stranded DNA (dsDNA) from various sources, including bac-

teria, DNA viruses, and retroviruses, in a sequence-independent but length-dependent man-

ner [1, 2]. Following the binding of dsDNA, cGAS catalyzes the production of a second

messenger known as cyclic guanosine monophosphate (GMP)-adenosine monophosphate

(AMP) (cGAMP) in the presence of GTP and ATP, which subsequently binds to the adaptor

protein STING on the endoplasmic reticulum (ER) membrane [1]. Aside from cGAMP,

STING also directly senses other cyclic dinucleotides (CDNs), which are secreted by some bac-

teria [3]. After binding to CDNs, the STING dimer undergoes a dramatic trafficking process

from the ER to the Golgi complex and eventually to perinuclear compartments to form large

punctate structures where it is degraded [4]. STING recruits TANK binding kinase 1 (TBK1)

and activates transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor-κB

(NF-κB), which then translocate into the nucleus to induce the transcriptional activation of

type I interferons (IFNs) and other inflammatory cytokines, thus establishing an antiviral state

in infected and uninfected neighboring host cells [4] (Fig 1). Numerous DNA viruses have

been reported to activate the cGAS–STING pathway, and cGAS or STING deficient mice are

more susceptible to lethal infection after exposure to many DNA viruses, including herpes
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Fig 1. The cGAS–STING pathway and its counteraction by viruses. Genomic DNA form DNA viruses or reverse transcription

intermediates from retroviruses are recognized by cGAS, which catalyzes the production of cGAMP to bind and activate the ER-resident

adaptor protein STING. STING then forms a complex with TBK1 and translocates from the ER to the perinuclear lysosomal

compartments via an autophagy-like process. The STING–TBK1 complex subsequently activates transcription factors IRF3 and NF-κB to

induce the production of type I IFNs and inflammatory cytokines to establish an antiviral state. Viruses have developed numerous

strategies to antagonize the cGAS–STING pathway. Tegument protein ORF52 from gammaherpesviruses inhibits cGAS binding to viral

DNA, while nonstructural protein NS2B of DENV promotes cGAS degradation. Similarly, DENV NS2B3 protease cleaves STING and

leads to its degradation. HBV polymerase and papain-like proteases of human coronaviruses prevent or remove the K63-linked Ub of

STING. KSHV vIRF1 blocks the TBK1-mediated phosphorylation of STING, while HSV-1 ICP27 prevents the phosphorylation of IRF3

by TBK1. HPV18 E7 protein and hAd5 E1A protein bind to STING and inhibit its activation. cGAMP, cyclic GMP-AMP; cGAS, cyclic

GMP-AMP synthase; DENV, Dengue virus; ER, endoplasmic reticulum; HBV, Hepatitis B virus; hAd5, human adenovirus 5; HSV-1,

herpes simplex virus 1; HPV18, human papillomavirus 18; ICP27, infected cell protein 27; IFN, interferon; IRF3, interferon regulatory

factor 3; KSHV, Kaposi’s sarcoma-associated herpesvirus; NF-κB, nuclear factor-κB; NS2B, nonstructural protein 2B; ORF52, open

reading frame 52; P, phosphorylation; RLRs, RIG-I-like receptors; STING, stimulator of interferon genes; TBK1, TANK binding kinase 1;

Ub, ubiquitination; vIRF1, viral interferon regulatory factor 1.

https://doi.org/10.1371/journal.ppat.1007148.g001
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simplex virus 1 (HSV-1), vaccinia virus, and murine gammaherpesvirus 68 (MHV68) [5].

Infection of retroviruses such as human immunodeficiency virus (HIV) generates RNA:DNA

hybrids and dsDNA in the cytosol that can also activate the cGAS–STING pathway [6, 7]).

Noncanonical role of the cGAS–STING pathway in restricting RNA

virus infection

The question of whether cGAS and STING are also engaged in antiviral responses to RNA

viruses has been asked since the very beginning. A quick answer to this question would be yes

because studies have shown that deficiency of cGAS or STING in cells or mice greatly facili-

tated replication of several RNA viruses, such as vesicular stomatitis virus (VSV), Sendai virus

(SeV), dengue virus (DENV), and West Nile virus (WNV) [8–11]. However, exactly how

cGAS and STING are involved in RNA virus-induced immune responses is largely unknown.

Although cGAS was reported to bind dsRNA, this interaction did not lead to the production

of cGAMP [12]. Moreover, cGAS deficiency does not affect SeV-induced IFNβ production

[13]. Therefore, although cGAS restricts replication of some RNA viruses, it is not required for

RNA virus-induced type I IFN responses. One recent study reported that DENV infection led

to mitochondria damage and release of mitochondrial DNA into the cytosol, which then acti-

vated the cGAS–STING pathway to potentiate host defense responses [14]. This finding pro-

vides a possibility that cGAS might play an indirect role in restricting RNA virus infection.

STING was found to interact with RIG-I and MAVS [15, 16], which are key components of

the RNA sensing pathway, indicating that it might play a role in RNA virus-induced cytokine

production. Some studies showed that loss of STING significantly impaired VSV and SeV-

induced IFNβ production [8, 16], while others reported that cells produced type I IFNs nor-

mally after VSV or SeV infection in the absence of STING [11, 17]. Nevertheless, STING is

required for the induction of some antiviral cytokines other than type I IFNs, such as C-C

motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 20 (CCL20), in response

to SeV and VSV infection [17]. Recently, STING, but not cGAS, was found to be required for

full interferon production induced by enveloped RNA viruses such as influenza A virus (IAV)

[18]. Taken together, the role of STING in RNA virus-mediated type I IFN and cytokine pro-

duction still awaits further investigation, and it might be virus or cell type specific.

DNA virus infection leads to quick ubiquitination and phosphorylation of STING, which is

required for its trafficking and subsequent degradation in the perinuclear lysosomal compart-

ment [19, 20]. However, RNA virus infection does not cause any post-translational modifica-

tions nor the degradation of STING [11, 20]. On the contrary, infection of some RNA viruses

was seen to up-regulate expression of STING at both mRNA and protein levels [21]. Therefore,

distinct and context-dependent mechanisms likely exist between STING-mediated antiviral

responses to DNA versus RNA viruses. The concerted role between RIG-I and STING in RNA

virus-induced defense responses has been reported [15, 21], but the underlying mechanism is

unclear. A recent study demonstrated that rather than induce IFN expression, STING initiates a

global translation inhibition to restrict production of both viral and host proteins in a RIG-I/

MDA5-dependent but MAVS-independent manner [11]. Thus, recognition of RNA virus infec-

tion by RIG-I/MDA5 probably results in two distinct responses: one is mediated by MAVS to

induce IFNs and cytokines, and the other is mediated by STING to inhibit translation.

Evasion of the cGAS–STING pathway by DNA and RNA viruses

Considering the central role of cGAS and STING in the innate DNA sensing pathway, it’s not

surprising to find that many DNA viruses have evolved effective strategies to antagonize the

function of cGAS and STING in order to facilitate their replication in host cells [5] (Fig 1).
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Binding of viral DNA is the first step of the DNA sensing pathway. The tegument protein open

reading frame 52 (ORF52) of several gammaherpesviruses, including Kaposi’s sarcoma-associ-

ated herpesvirus (KSHV), Epstein–Barr virus (EBV), and MHV68, was found to interact with

cGAS and disrupt its binding to viral DNA, thus inhibiting activation of the cGAS–STING

pathway [22]. Another KSHV protein, latency-associated nuclear antigen (LANA), was also

reported to interact with cGAS and antagonize the cGAS–STING-dependent signaling [23].

STING seems to be an even more favorable target of many DNA viruses, probably because of

its essential role in transducing signaling from not only cGAS but also other DNA sensors [1].

HSV-1 regulatory protein infected cell protein 27 (ICP27) interacts with STING and TBK1

and thereby prevents the phosphorylation of IRF3 by TBK1 [24]. Another HSV-1 protein

ICP0 was reported to promote degradation of interferon-γ-inducible protein 16 (IFI16), which

detects HSV-1 DNA in human fibroblasts, thereby blocking its activation of downstream

STING-dependent signaling [25]. Interestingly, HSV-1 appears to induce infected cells to

export exosomes containing STING [26]. KSHV viral interferon regulatory factor 1 (vIRF1)

was also found to interact with STING and prevent its interaction with TBK1, thereby inhibit-

ing TBK1-mediated phosphorylation and activation of STING [27]. Two oncoviruses, human

papillomavirus 18 (HPV18) and human adenovirus 5 (hAd5), have been shown to inhibit

STING activity using their viral oncoproteins E7 and E1A, respectively [28]. Moreover, the

Hepatitis B virus (HBV) polymerase was found to bind STING and attenuate its K63-linked

polyubiquitination and function [29].

Emerging evidence also indicates that RNA viruses have developed their own strategies to

antagonize cGAS and STING activity (Fig 1). The nonstructural protein NS4B of yellow fever

virus (YFV) was the first reported viral protein that interacts and inhibits STING, although the

mechanism is unclear [8]. Additional studies showed that Hepatitis C virus (HCV) NS4B, a

homolog of YFV NS4B, also disrupts STING signaling by attenuating STING–TBK1 interac-

tion [30]. Despite also encoding a NS4B protein, DENV employs another distinct strategy to

antagonize STING activity. The DENV NS2B3 protease complex specifically cleaves human

STING protein but not mouse STING, leading to STING degradation and attenuation of type

I IFN production [31]. Interestingly, DENV NS2B was recently found to also interact with

cGAS and promote its degradation via an autophagy-dependent pathway [9]. The papain-like

proteases (PLPs) from several coronaviruses such as SARS–CoV, human coronavirus NL63

(HCoV-NL63), and porcine epidemic diarrhea virus (PEDV) have been shown to associate

with STING and block its dimerization and K63-linked ubiquitination, thereby inhibiting the

production of IFNβ [5]. Moreover, IAV hemagglutinin inhibits STING dimerization and

TBK1 phosphorylation, thereby blocking STING-dependent IFN production and facilitating

IAV replication [18].

Concluding remarks and future directions

Although it is clear that cGAS is essential in cytosolic recognition of DNA viruses, its role in

restricting RNA virus infection is still inconclusive. On the other hand, it is now apparent that

STING is required for host responses against both DNA and RNA viruses. Studies of mecha-

nisms employed by STING to restrict RNA virus infection have only just begun. The study

which unraveled STING’s function in protein translation inhibition has shed light on our

understanding of how the cGAS–STING pathway functions in RNA virus restriction [11].

However, the underlying mechanisms still need to be further elucidated. Several outstanding

questions remain: How does RIG-I/MDA5 transduce a signal to STING after sensing viral

RNA? Are there any other cofactors involved in this process? It is known that STING activa-

tion requires binding of CDNs. However, cytosolic RNA does not activate cGAS to generate
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cGAMP, and STING does not undergo any posttranslational modifications or trafficking dur-

ing RNA virus infection. This begs the question as to how STING is activated to initiate trans-

lation inhibition. Furthermore, what is the strategy that STING uses to inhibit translation if it

is eIF2α-independent? Answers to these questions and others will further expand our under-

standing of how the cGAS–STING pathway deploys immune defenses to detect and eliminate

viral infection and how viruses evade or inhibit activation of this pathway. Lessons learned

from this will greatly facilitate the development of new vaccines and antivirals for the preven-

tion and treatment of infectious diseases.
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