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Introduction

Viruses are the most abundant microorganisms on earth, and it is estimated that there are at

least 10 times more viruses than bacteria in the human microbiome [1]. Unlike bacteria, many

viruses can permanently settle in a host cell, are minimally influenced by environmental

changes, and can even be inherited when infecting germline cells. Many viruses have

coevolved with host species for millions of years and have developed mechanisms to evade

immune recognition and maintain an equilibrium state with the host immune system. Recent

studies have shown that breaking this immune equilibrium can activate the host antiviral

immune responses [2–6].

Current cancer immunotherapies targeting immune checkpoint molecules have limited

efficacy in treatment of noninflamed tumors (so-called “cold” tumors) that show few infiltrat-

ing T cells. The absence of T-cell infiltration is largely caused by the lack of tumor antigens,

antigen presentation, and/or abundance of immunosuppressive cells in the tumor microenvi-

ronment (TME) [7]. To convert immune “cold” tumors to inflamed “hot” tumors, a variety of

different strategies are currently under investigation, including bispecific antibodies, chimeric

antigen receptor (CAR) T cells, oncolytic viruses, and cyclic GMP-AMP synthase-stimulator

of interferon genes (cGAS-STING) agonists [8, 9]. The high mutation loads in tumors often

result in expression of mutation-associated neoantigens, which are recognized as foreign anti-

gens to the host T cells. These neoantigens have been found to be associated with improved

responses to immune checkpoint inhibitors (ICIs) [10]. Interestingly, when suppressed viral

gene expression in a tumor is reactivated from the virome, they are similarly recognized as

tumor neoantigens by host immune systems [6, 11]. These findings suggest that activating

immune responses against viruses in the human virome might be an effective tool for cancer

immunotherapies.

Which viruses are included in the human virome for potential

tumor neoantigens?

The human virome consists of a multitude of viruses, including eukaryotic viruses that infect

human cells, viruses that infect prokaryotes (including bacteria and archaea), and viral genetic

elements that reside within the host genome [12]. Although a significant portion of the human

virome consists of bacteriophages, our current understanding of the virome mainly centers

around eukaryotic viruses [13].

Human endogenous retroviruses (HERVs) are the most abundant viral elements in the

human virome, making up over 8% of the human genome [14]. Previous studies have shown

potential associations between increased HERV protein expression and human diseases [15,
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16]. All HERVs exist in the human virome as permanently integrated elements in the host

genome, which can be inherited by future generations through germline cells.

Similar to HERVs, human herpesvirus 6 (HHV-6) is integrated into the host germline chro-

mosome and inherited in about 1% of human populations [17]. Several other types of herpes-

viruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV) establish life-long

persistence in the vast majority of humans without showing any clinical symptoms. However,

if the immune system is compromised, in for example, immunodeficient patients, they are at a

higher risk for developing severe diseases, such as cancers, from these viruses [18]. In addition,

small DNA viruses, such as human papillomaviruses and polyomaviruses, have coevolved with

host species and are also frequently found in the human virome [19]. Although a small subset

of these viruses encodes potent viral oncoproteins, the majority of persistent infections of

these viruses are found in asymptomatic hosts. Unlike retroviruses, DNA viruses such as her-

pesviruses, papillomaviruses, and polyomaviruses normally maintain their genomes as multi-

copy episomes in persistently infected cells. These viral episomes, maintained in a covalently

closed circular form, are assembled into chromatin with histones for autonomous replication

[20]. However, these viruses also occasionally integrate into the host genome, despite no bene-

fits for their replication from viral integration.

For these viruses to establish life-long persistence in the human virome, it is essential to

avoid recognition and elimination by host antiviral immunity. Accordingly, almost all viruses

in the human virome evade immune recognition by limiting viral replication and gene expres-

sion. The lack of viral gene expression and/or host immune tolerance leads to immune silence

or an immune equilibrium state in the host. Thus, viral antigens from reactivated viral gene

expression in tumor cells could be recognized as tumor neoantigens to induce antitumor

immune responses.

How can endogenous retroviruses be reactivated to induce

antitumor immunity?

Viral gene expression from HERVs are predominantly silenced by DNA methylation and his-

tone modification, resulting in a transcriptionally inactive heterochromatic structure [21].

Thus, reactivating HERVs using epigenetic drugs has been proposed to trigger antitumor

immune responses [22, 23].

DNA methyltransferase inhibitors

Reversing DNA methylation with DNA methyltransferase inhibitors (DNMTi), such as decita-

bine, reactivates expression of HERV RNA transcripts. Detection of these transcripts by the

host double stranded RNA sensors, such as the toll-like receptors (TLRs) and melanoma differ-

entiation-associated protein 5 (MDA5), drives an interferon (IFN) response [2, 24]. Due to

chromosomal residence in the germline, HERV proteins should be generally considered as

“self” peptides with their cognate T cells deleted in the thymus during T-cell development.

However, due to the effective epigenetic silencing of HERVs, HERV-specific T cells are not

removed during T-cell development and can be activated by transcriptional induction of

HERVs [23]. Consequently, reactivated HERVs in tumor cells can be recognized by host as

tumor neoantigens.

Indeed, reactivation of endogenous retroviruses (ERVs) by DNMTi enhances susceptibility

to anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) ICI therapy in the B16 mouse

melanoma model, a model that has been shown to be highly resistant to ICIs (Fig 1A) [2].

DNMTi treatment significantly up-regulates the expression of intercellular adhesion molecule

1 (ICAM1), interleukin-1 receptor antagonist (IL-1RA), CXCL10, CCL2, and CCL5 and
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increases the percentage of effector CD8+ T and natural killer (NK) cells in the TME [25].

Interestingly, these antitumor effects induced by DNMTi completely disappear when the IFN-

α/β receptor α chain (IFNAR1) is blocked, suggesting that type I IFN signaling is critical. The

combination therapy of DNMTi and histone deacetylase inhibitors (HDACi) synergistically

increases reexpression of silenced ERVs in cancer cells and increases sensitivity to the anti-

programmed cell death 1 (PD-1) therapy in lung [26] and ovarian cancers [25]. Interestingly,

however, the HDACi treatment alone has little effect, suggesting that DNA demethylation is

necessary for ERV reactivation.

Consistent with these findings in mouse models, the signatures of antitumor effector func-

tion and anti-PD-1 responsiveness are also positively associated with HERV expression in

human cancers [27]. In addition, Haffner and colleagues found that type I IFN signaling and

the number of CD8+ T cells are significantly higher in seminomatous testicular germ cell

tumor (TGCT) characterized by constitutive DNA hypermethylation when compared to sev-

eral non-seminomatous TGCTs that have normal methylation levels [28]. Beyond ERV reacti-

vation, DNMTi also induces antitumor immune responses by activating transcription of

Fig 1. Antiviral immune responses sensitize antitumor immunotherapy. (A) Reactivation of ERVs by DNA

demethylation induces an IFN response through cytosolic sensing of double stranded RNA. (B) Activation of virus-

specific memory T cells induces antitumor CD8+ T cells through cross-presentation of viral peptides on DCs. CD8T,

CD8+ T cells; CMV, cytomegalovirus; DC, dendritic cell; dsRNA, double stranded RNA; EBV, Epstein-Barr virus;

ERV, endogenous retrovirus; Flu, influenza; IFN, interferon; MDA5, melanoma differentiation-associated protein 5;

RIG-I, retinoic acid-inducible gene I.

https://doi.org/10.1371/journal.ppat.1008814.g001
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tumor antigens (e.g., cancer-testis antigens) and Th1-type chemokines (e.g., CXCL9 and

CXCL10) [6, 29]. These results suggest that DNMTi could be used as a useful multi-tool for

cancer immunotherapy.

Cyclin-dependent kinase inhibitors

While it is well known that inhibitors of cyclin-dependent kinase (CDK) 4/6—the key regula-

tors of the G1–S transition of the cell cycle—directly inhibit tumor growth by arresting cell

cycle progression, recent studies have also discovered that CDK4/6 inhibitors can induce

strong antitumor immune responses [30–32]. CDK4/6 inhibitor treatment reactivates ERVs,

produces type III IFNs, suppresses the proliferation of regulatory T cells, and down-regulates

the expression of the E2F transcription factor target genes including DNA methyltransferase 1

(DNMT1) [30]. Interestingly, CDK4 also directly interacts with and stabilizes DNMT1, thus

further supporting the notion that CDK4/6 inhibitors would impair DNMT1 activity and reac-

tivate ERVs [33].

In addition to CDK4/6 inhibition, inhibition of CDK9—a transcriptional activator

recruited to promote RNA polymerase II—also induces ERV expression and antitumor

immune activation without DNA demethylation [4]. A selective CDK9 inhibitor blocks phos-

phorylation of the chromosome remodeling protein SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily a, member 4 (SMARCA4), which epigenetically

silences a set of genes including ERVs independently of DNA methylation [4]. Accordingly,

ERV reactivation by treatment of CDK4/6 or CDK9 inhibitors significantly enhances the

response rates of the current ICI therapies.

How can quiescent antiviral immunity be reactivated to boost

antitumor immunity?

The idea of using antiviral immunity for cancer treatment has been studied for over a century,

and finally, the first oncolytic virus (Talimogene laherparepvec [T-VEC]) was approved by the

Food and Drug Administration (FDA) in 2015 [34, 35]. Many different recombinant human

viruses, including adenovirus, herpesvirus, poliovirus, reovirus, and poxvirus, are being used

as oncolytic viruses in approximately 120 ongoing clinical trials to directly lyse tumor cells and

indirectly stimulate antitumor immune responses (ClinicalTrials.gov) [36]. In addition to the

oncolytic viruses, quiescent antiviral immune responses activated by viral peptides and vac-

cines can induce antitumor activity in the TME [5, 37].

Recent studies have shown that memory T cells specific to viruses in the human virome

such as CMV and EBV are abundant in humans and can be activated by viral antigenic pep-

tides [11, 37]. Although these host antiviral memory T-cell responses are not sufficient to elim-

inate life-long persistence of the viruses, treatment with viral peptides may be useful to awaken

existing memory T-cell responses against exogenous viruses, such as CMV and EBV, persistent

in the human virome to promote an antitumor response [37]. Accordingly, injection of CMV

viral peptides significantly enhances the efficacy of the anti-PD-1 ligand 1 (PD-L1) therapy

and suppresses tumor growth by activating an antiviral memory T-cell response (Fig 1B) [37].

The FDA-approved seasonal influenza vaccine greatly increases cross-presenting dendritic

cells (DCs) and tumor antigen-specific CD8+ T cells in the TME (Fig 1B). These DCs and

CD8+ T cells have been shown to play an important role in both antiviral and antitumor

immune responses when the influenza vaccine is injected intratumorally [5]. Although adju-

vants in vaccines normally boost immune responses against target pathogens, antitumor CD8+

T-cell responses are abrogated by adjuvant-enhanced regulatory B cells. These results suggest

differential regulations of antiviral and antitumor immune responses despite their shared
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immune components and mechanisms. To further screen commercially available vaccines that

activate the immunogenicity of cold tumors, Shekarian and colleagues tested 14 viral and bac-

terial vaccines and found that intratumoral injection of 2 rotavirus vaccines (Rotarix [GlaxoS-

mithKline Biologicals, Rixensart, Belgium] and RotaTeq [Merck, Kenilworth, NJ]) can activate

antitumor immunity and aid in overcoming tumor resistance to ICI immunotherapies, sup-

pressing tumor growth [38]. These results represent a potent mechanism to initiate key

immune responses in tumors to assist in successful treatment.

Taken together, recent findings suggest that the awakening of antiviral host immune

responses to the viruses in the human virome could be an effective force to fight against

cancer.
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