
OPEN ACCESS

ll
Preview

The quest for the missing links
in fatty liver genetics:
Deep learning to the rescue!
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Park, MacLean, et al. conduct an exome-wide association study of liver fat content in the PennMedicine Bio-
Bank.1 By leveraging machine learning-assisted analysis of clinical CT scans to quantify steatosis, they un-
cover previously undescribed liver fat-associated genetic variants.
Non-alcoholic fatty liver disease (NAFLD)

is the most common chronic liver disease

worldwide. Encompassing a spectrum of

conditions, NAFLD ranges from simple

steatosis (increased liver triglycerides

without necroinflammation or fibrosis) to

non-alcoholic steatohepatitis and

cirrhosis. Patients with NAFLD frequently

embody features of the insulin resis-

tance/metabolic syndrome including

obesity, hypertension, dyslipidemia, and

type 2 diabetes, and they are therefore

at increased risk of cardiovascular dis-

ease.2 In the United States, end-stage

liver disease due to NAFLD is already

the second leading indication for liver

transplantation, accounting for approxi-

mately one-fourth of all cases.3

Not all patients with NAFLD are alike,

however. Genetic studies have been high-

ly successful and have identified common

variants in genes such as PNPLA3,

TM6SF2, MBOAT7, MTARC1, GPAM,

and APOE, which together explain >20%

of the population attributable risk of stea-

tosis and >30% of that of cirrhosis.4

Importantly, the causes and conse-

quences of NAFLD due to genetic

polymorphisms clearly differ from those

underlying NAFLD associated with insulin

resistance.5 Insulin-resistant patients

(and their livers) practically bathe in a sub-

strate surplus, which, in conjunction with

hyperinsulinemia, fuels hepatic triglycer-

ide synthesis via multiple pathways.5

This is not the case in NAFLD due to a

high burden of liver fat-increasing genetic

variants, the exact mechanisms of which

are unclear but likely relate to specific de-
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fects in hepatic fatty acid export.5 It is also

of clinical interest that variants in PNPLA3

and TM6SF2 predispose to all stages of

NAFLD but paradoxically protect against

atherogenic dyslipidemia6 and cardiovas-

cular disease.7

Despite these recent advances in

understanding the molecular genetic un-

derpinnings of NAFLD, no approved phar-

maceuticals to treat the disease or its pro-

gressive forms exist. Genetic discovery

studies have the potential of unearthing

novel disease-related proteins, which

may be amenable to modulation via preci-

sion medicine approaches.

In this issue, Park, MacLean, et al. con-

ducted an exome-wide association study

of liver fat content in 10,283 participants

of the Penn Medicine BioBank (PMBB).1

To quantify liver fat in clinical CT scans

of the chest and abdomen, they devel-

oped and validated a fully automated im-

age curation and organ labeling technique

using deep learning. This involved training

of three separate neural networks to first

identify non-contrast CT scans, followed

by segmentation of the liver and spleen

in axial 2D slices for calculation of the dif-

ference in attenuation between the

organs. This spleen-liver attenuation dif-

ference is an established albeit insensitive

and semi-quantitative biomarker of liver

fat, which is based on the observation

that increased liver fat leads to decreased

hepatic attenuation in CT imaging.8 Here,

the automatically calculated attenuation

difference associated not only with the

diagnosis of chronic liver disease and

increased liver enzymes but also with a
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and related laboratory findings1—as

would be expected for a bona fide

biomarker of liver fat. Thus, it served as

a proxy for steatosis in the exome-wide

analysis.

Among 120,315 total variants tested,

the primary association analysis of single

coding variants identified 91 variants in

86 genes with exome-wide significant or

suggestive associations with liver fat.1

This was followed by replication in the

UK Biobank (UKB) in which 9,049 individ-

uals had undergone whole-exome

sequencing and liver fat measurement

by magnetic resonance imaging. In

summary, the study confirmed several

variants previously associated with stea-

tosis (PNPLA3 I148M, TM6SF2 E167K,

APOE C130R) and identified two

additional, heretofore undescribed vari-

ants (FGD5 H600Y and CITED2

S198_G199del) that also replicated in

the UKB. In phenome-wide analysis, the

two novel variants associated with several

hepatic and dysmetabolism-related out-

comes. Furthermore, a gene burden of

rare predicted loss-of-function variants

in LMF2 significantly associated with liver

fat in both the PMBB and UKB cohorts.

Deep learning is a popular machine

learning paradigm based on artificial neu-

ral networks that is well-suited for various

image recognition and classification

tasks. Usual applications in medical im-

age analysis include automatic labeling

of images (e.g., detection of non-contrast

vs. contrast-enhanced CT scans),

segmentation of objects of interest within
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an image (delineation of the liver and

spleen in axial CT slices), or detecting

and counting of objects such as specific

cell types, nuclei, or mitoses in histologi-

cal specimens.9 Relevant to the present

study by Park, MacLean, et al., the capac-

ity of a computer to process vast amounts

of image data per unit time while uphold-

ing a consistent quality of analysis far

surpasses that of humans. Thus, deep

learning can be harnessed to greatly

accelerate a project entailing interpreta-

tion of images, potentially reducing the

time to completion from years or months

to weeks or even days. Here, the authors

not only identified an under-utilized imag-

ing dataset but they ingeniously applied

deep learning to first filter out contrast-

enhanced images and then derive the final

liver fat measurements. Similar to the pre-

sent study, several investigators have

leveraged deep learning to quantify liver

fat in clinical CT scans (reviewed by Star-

ekova et al.8). To our knowledge, howev-

er, this study is the first to use such data

in a genome-wide association study of

NAFLD. It deserves a mention that Spe-

liotes and co-workers have conducted

similar analyses in large cohorts with CT-

derived liver fat measurements, but

without using computerized assistance.10

As in previous studies, the association

of PNPLA3 I148M with liver fat was by

far the most significant, with a p value of

1.91E�30.1 The p value for the TM6SF2

E167K variant was 1.74E�15. Most of

the other variants, including the two novel

ones (FGD5 H600Y and CITED2

S198_G199del), had a p value ranging

on the order of magnitude from E�4 to

E�6, i.e., up to septillion times higher

than that of PNPLA3 I148M. As no histo-

logical validation or functional studies

were performed with the replicated vari-
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ants, their significance in regulating liver

fat content remains uncertain. Neverthe-

less, the authors should be congratulated

for being able to extract essentially new

data out of the existing PMBB imaging

dataset—without the need to restudy the

patients—and successfully combine

these data with exome sequencing to

identify potentially novel NAFLD-associ-

ated genes worth investigating. These

types of studies emphasize the huge

potential of deep learning-based tech-

niques combined with clinical and genetic

information in unraveling the mysteries of

human disease.
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