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Abstract  

The main task in the production of steel in the basic oxygen furnace (BOF) is dephosphorization Therefore, the prediction 
and control of the end-point phosphorus content of molten steel is of great significance. Four machine learning regression 
models (Lasso, Random Forest, Xgboost, and Neural Network) were established to predict the end-point phosphorus 
content of molten steel in the BOF based on raw and auxiliary material data, process parameters, and production quality 
data. The prediction effect of the four models was further compared, and their prediction results were interpreted based on 
the interpretability of the models and the permutation importance method. The results showed that compared with linear 
regression and neural network regression model, two types of ensemble tree model have higher prediction accuracy, better 
stability with small data sets, and lower data preprocessing requirements. The factors influencing the end-point phosphorus 
(P) content in BOF were ranked in order of importance as: Tapping temperature > Turning down times > Steel scrap 
quantity> Operation habits of different working groups > Amount of oxygen injection> Sulfur and phosphorus content of 
molten iron > Addition amount of lime, limestone, and lightly burnt dolomite in the slag > Slag-splashing amount. 
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Introduction1.

Rising raw material costs and fierce market 
competition requires iron and steel enterprises to 
constantly exploit their potential, optimize the 
production process, and refine operations in order to 
achieve effective, cost efficient and environmentally 
friendly production [1]. The ultimate goal of BOF 
steelmaking, a significant step in the steelmaking 
process, is to obtain molten steel with qualified 
composition and temperature while 
dephosphorization, as the core task of in steelmaking, 
is crucial for greening and high efficiency. Common 
research methods tend to evaluate and analyze the 
manufacturing process by establishing 
dephosphorization models. Metallurgical practitioners 
have proposed various mechanism models and 
empirical formulas based on metallurgical principles 
and their own experiences [2-5]. However, these 
models and formulas can neither accurately predict 
the end-point phosphorus (P) content in BOF nor 
analyze the dephosphorization process in depth 
because most steps in BOF steelmaking are multi-

dimensional, multi-variable, non-linear, uncertain, 
and coupled with various factors [6]. A new solution 
is in urgent need. 

The development and application of machine 
learning has inspired metallurgical practitioners to 
apply new technologies in addressing related issues 
such as end-point P content prediction in the BOF 
process etc. Li et al. [7] established a model based on 
Levenberg-Marquardt algorithm of BP neural 
network to predict the end-point phosphorus (P) 
content in the BOF process, which increased the 
convergence rate of the model and avoided the local 
minimum problem. Wang et al. [8] hybridized 
weighted K-Means clustering algorithm and the 
GMDH (Group Method of Data Handling) 
polynomial neural network techniques, and built a 
prediction model of end-point P content in BOF that is 
more advantaged than the BP neural network. He et al. 
[9] adopted principal component analysis to reduce 
the dimension of factors influencing the prediction, 
thus proposing a prediction model for end-point P 
content in BOF based on PCA and BP Neural 
Network. Sala et al. [10] used Ridge Regression and 
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two types of ensemble tree models to form two data-
driven prediction models for end-point components 
and temperature in BOF, one of which contained time 
series data while the other did not. The results showed 
the model with time series data had higher prediction 
accuracy. Zhou et al. [11] set the steelmaking process 
and the end-point P content as the constraint condition 
for the BP neural network based on metallurgical 
rules, and established a prediction model for end-
point P content in BOF based monotone-constrained 
back-propagation (BP) neural network. Li et al. [12] 
applied Least Squares Twin Support Vector Machines 
to classify the end-point phosphorus partition ratio in 
BOF steelmaking based on slag components and 
tapping temperature, which achieved relatively high 
prediction accuracy. Li et al. [13] selected 11 basic 
machine learning models and integrated them with 
averaging and stacking, which further improved the 
prediction effect on steel quality. 

In addition to the prediction of the end point 
phosphorus content of the converter, many 
researchers have also proposed new methods for the 
determination of other end point components. Liu et 
al. [14] proposed a novel method based on accurate 
and fast multi flame features extraction and general 
regression neural network (GRNN). Wang et al. [15] 
fully combined the characteristics of genetic 
algorithm and BP neural network, and a combined 
GA-BP neural network model was established. Chang 
et al. [16] proposed a new multi-channel graph 
convolutional network to integrate these correlations 
with the process variables to build a more accurate 
prediction model. Gu et al. [17] proposed an improved 
CBR model using time-series data (CBR_TM) to 
predict the end-point carbon content and temperature 
in the converter according to the data types of process 
parameters. Song et al. [18] established an intelligent 
case-based hybrid converter model to predict the 
converter endpoint and process operations. 

Existing research is more concerned with the 
predictive accuracy of models and has served its 
purpose from the perspective of data, features and 
algorithms, etc. However, neural network models 
have poor interpretability, which makes metallurgical 
practitioners unable to conclude metallurgical rules 
from these models or apply them in improving 
manufacturing process. 

The upper limit of machine learning is determined 
by the data and their features, and can only be 
approached by models and algorithms. Different data 
processing strategies have different focuses and can 
deal with different issues. Researchers should pay 
more attention to the algorithm’s interpretability and 
make purpose-oriented choice. This study established 
two types of ensemble tree models (Random Forest 
[RF] and Xgboost [XGB]), a neural network model 
[BPNN] and a linear regression model (Lasso) based 

on integrated and processed raw data from BOF 
steelmaking. Furthermore, the results of the four 
models were compared and interpreted from the 
perspective of metallurgy. 

 
Models Adopted 2.

Ensemble methods and ensemble tree 2.1.
regression models 
 
Bagging randomly selected n sampling sets from 

the original data set by bootstrap sampling, based on 
which n weak learners can be trained. The final strong 
learner can be obtained through conducting ensemble 
strategy with weak learners. RF is a representative 
algorithm in bagging, and its random selection of 
features gives it better generalization ability [19]. 
Besides, RF can sort all features by their importance 
for the predicted target while maintaining 
interpretability. 

Boosting, on the other hand, trains a weak learner 
1 from the training set based on the original weights, 
and adjust weights of the samples according to the 
learning error rate of the weak learner 1 to obtain a 
weak learner 2. Repeat these processes untill the 
number of weak learners reaches n set in advance. The 
final strong learner is obtained by integrating these n 
weak learners via ensemble strategy. Unlike 
Adaboost, the Gradient Boosting Decision Tree 
(GBDT) adjusts the residual in each iteration to 
minimize sampling loss. Xgboost is an improved 
GBDT that uses a second-order Taylor expansion for 
better accuracy and excels in its higher operational 
efficiency, effective processing of missing values, and 
great generalization ability [20]. 

 
Neural network regression 2.2.

 
The BP neural network (BPNN) is a type of 

multilayer feedforward neural network whose 
learning process is composed by signal forward-
propagation and error back-propagation [21]. In 
neural network models with only one hidden layer, the 
BPNN mainly works in two stages: in the first stage, 
the sample’s features are input from the input layer, 
and the signal is propagated forward through the 
hidden layer and reaches the output layer; in the 
second stage, the error between network’s actual and 
expected value is propagated backward from the 
output layer to the hidden layer, then to the input 
layer. The weights of the neurons in all layers are 
adjusted based on the errors. The target can be 
achieved in weight adjustment of iterative calculation 
round by round. 

 
Lasso regression 2.3.

 
L1-regularized linear regression is usually called 
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Lasso regression. Compared to conventional linear 
regressions, Lasso regression adds a L1-regularized 
term to loss function. In the L1-regularized term, there 
is a constant coefficient α regulating the mean square 
error term and the weight of the regularized term in 
the loss function. The specific loss function of Lasso 
regression is as Eq. (1): 

 
(1) 

 
The number of samples is expressed as n, the 

constant coefficient as α, the L1 norm as ||θ||1. 
Lasso regression can minimize the coefficient for 

some features, even lowering some with a relatively 
small absolute value to 0. This would improve 
model’s generalization capability [22]. As a linear 
regression model, Lasso can select different features 
to simplify the influencing factors and improve 
model’s interpretability, which is of great benefit to 
the understanding of the steelmaking process in 
metallurgical practice. 

Model establishment 3.
Feature selection and data processing 3.1.

 
The data in this paper are derived from the 

production data of a company’s BOF plants. The 
steelmaking process in BOF is shown in Figure 1. 
Figure 1a is the slag-splashing furnace protection of 
BOF. Slag-splashing operation is mainly concerned 
with the slag-splashing timing and the amount of 
nitrogen injected. These two factors indirectly reflect 
the internal outline of the BOF and the physical and 
chemical properties of slag in the initial phase, which 
is related to dephosphorization. Figure 1b refers to the 
loading stage in steelmaking. The change of scrap 
ratio affects bath temperature, slagging rate, slag 
components, and slag-splashing effect etc. at the same 
time, influencing dephosphorization directly or 
indirectly; besides, the components, temperature, and 
adding amount of molten iron are initial conditions 
that directly influences dephosphorization process. 
Figure 1c represents the blowing stage, the most 
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Figure 1. Flow chart of steelmaking process in BOF. a Slag splashing; b Scrap and hot metal charging; c Blowing and 
smelting; d Tapping



important stage of dephosphorization in steelmaking. 
The process is mainly affected by oxygen blowing 
operation and drossing process, in which the former 
one determines the dynamic condition while the latter 
one determines the thermodynamic condition by 
slag’s physical and chemical properties. These two 
factors interact and couple with each other. In 
addition, turning down times indicates the effects of 
single/double slag operation and reblowing/un-
reblowing on dephosphorization. The employees of 
the different groups have different operating habits 
and experiences, especially in adjusting the height of 
oxygen lance and the adding moment of various 
slagging agents. At the data level, such differences 
lead to fluctuation in the distribution of the same 
factor in the different groups. 

Based on these facts, this work has considered all 
the features in the production data of BOF that can 
influence target prediction, mainly the addition of raw 
and auxiliary materials, the molten iron condition, and 
the operating coefficients in the manufacturing 
process etc. The details are as follows: Working 
group, carbon content in molten iron, silicon content 
in molten iron, manganese content in molten iron, 
phosphorus content in molten iron, sulfur content in 
molten iron, temperature of molten iron, quality of 
molten iron, quality of steel scrap, steel output, 
oxygen blowing time, oxygen blowing amount, 
turning down times, lime, limestone, raw dolomite, 
iron ore, light-burned dolomite, temperature of the 
first turning-down, reblowing time, tapping 
temperature, nitrogen blowing amount, slag-splashing 
time, iron mixing times. With the exception of the 
working groups, which belong to character data, all 
other process data are numerical data. Within these 
numerical data, ‘pouring furnace’ and ‘iron mixing 

times’ are integers (discrete ones) greater than 0, 
while the other data are continuous values. All process 
data do not include unstructured data such as time 
series data or image data. Brief notes on  all features 
are listed in Table 1. 

Extreme outliers were manually removed from the 
original data based on the feature distribution map and 
manufacturing experience, while other outliers were 
removed according to the 3σ principle. Missing values 
mainly include unrecorded data and null data. 
Unrecorded data, such as the temperature of molten 
iron and the steel scrap amount, were filled with the 
average value. Null data, such as raw dolomite and 
addition of limestone, were filled by 0; or by the 
default value, which was 1, such as turning down 
times and iron mixing times. Work groups A, B, and 
C were dumb-coded and expressed as [(1,0,0), (0,1,0), 
(0,0,1)], respectively. Eq. (2) was adopted for z-score 
standardization of data features. 

 
(2) 

 
Figure 2 shows the correlation efficient between 

each feature. The correlation between each variable, 
and between the variables and their predicted targets, 
was analyzed by heat map. The results can serve as a 
reference for engineers and technicians in process 
optimization. 

 
Model training 3.2.

 
All model hyperparameters were determined using 

a grid search and cross-validation. 
The main hyperparameters of RF are 

“n_estimators”, “min_samples_split”, 
“min_samples_leaf”, “max_depth”, “max_features”. 

Y. Kang et al. / J. Min. Metall. Sect. B-Metall. 60 (1) (2024) 93 - 103 96

Influencing factors Brief notes Influencing factors Brief notes
Work group A F1 Oxygen blowing amount F14
Work group B F2 Turning down times F15
Work group C F3 Lime F16

Carbon content in molten iron F4 Limestone F17
Silicon content in molten iron F5 Raw dolomite F18

Manganese content in molten iron F6 Iron ore F19
Phosphorus content in molten iron F7 Light-burned dolomite F20

Sulfur content of molten iron F8 Temperature of the first turning-down F21

Temperature of molten iron F9 Reblowing amount F22

Molten iron amount F10 Tapping temperature F23

Steel scrap amount F11 Nitrogen blowing amount F24

Steel output F12 Slag splashing time F25

Oxygen blowing time F13 Iron mixing times F26

Table 1. List of influencing factors and their brief notes
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“n_estimators” represents the number of trees in the 
forest. If it is too small, the model would easily not fit 
correctly. When the number of trees exceeds a certain 
level, the improvement would be limited. In this 
paper, the number varied between 20 and 300, with a 
step size of 10. “min_samples_split” represents the 
minimum number of samples required to split an 
internal node. It was set between 2 and 32 with a step 
size of 2. “min_samples_leaf” restricts the minimum 
number of samples for a leaf node. It was set between 
1 and 16 with a step size of 1. “max_depth” were not 
limited to pursue a smaller training error. These three 
parameters were used to avoid overfitting to improve 
the generalization of the model. “max_features” can 
be set to “auto”. Only when the number of features is 
large should we consider limiting the maximum 
number to control the generation time of the decision 
tree. All other hyperparameters were set to default 
values.  

The following hyperparameters are optimal for the 

RF regression model. The number n of weak learners 
was set to 250. Minimum samples split was set to 2, 
and minimum samples leaf nodes to 8.  

For XGBoost, the main hyperparameters that had 
to be adjusted were “n_estimators”, “max_depth”, 
“min_child_weight”, “gamma”, and “learning_rate”. 
the other framework parameters, booster and 
objective, were just set as default parameters in the 
regression task. The “learning_rate” shrinks the 
feature weights to make the boosting process more 
conservative after each boosting step. A smaller 
“learning_rate” means more iterations of the weak 
learners to reach the model’s optimal results, but it 
would take more time. In this paper, we fix a learning 
rate first, and adjust “n_estimators”. The 
“learning_rate” was set at 0.01~0.3. “n_estimators” 
represents the number of trees, and the model would 
be too complex when it is too large. It was set between 
10 and 200 with a step size of 10. “max_depth” 
controls maximum depth of a tree. Increasing this 
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value makes the model more complex and more likely 
to overfit. It was set between 2 and 20 with a step size 
of 2. “min_child_weight” represents minimum sum of 
instance weight (hessian) needed in a child. The larger 
it is, the more conservative the algorithm will be. 
“gamma” is an important hyperparameter used by 
XGB to prevent overfitting, and it represents the 
minimum loss reduction required to make further 
partition on a leaf node of the tree. The larger 
“gamma” is, the more conservative the algorithm will 
be. The parameter was gradually increased from 0 to 
1. The above hyperparameters are the main objects of 
adjustment. Only when the model remains overfitting 
after their adjustment, other hyperparameters are 
considered. 

The following hyperparameters are optimal for the 
XGB regression model. The subtree number was set 
to 120, weight reduction factor for each weak learner 
to 0.08, max depth of tree structure to 6, minimum 
child weight to 90, and gamma to 0. 

The BP neural network was structured as a hidden 
layer with 15 neurons. Experimentally, more complex 
structure tends to lead to model overfitting. The 
activation function was the ReLU function because it 
is faster to train, avoids the problem of vanishing 
gradients and is suitable for most neural networks, 
especially MLP and CNN. “max_iter” is the maximum 
number of iterations. It was set between 10~1000. The 
solver was “lbfgs”. However, for small datasets, 
“lbfgs” can converge faster and perform better. If the 
solver is “lbfgs”, the regressor would not use 
minibatch and “learning_rate”. “Alpha” stands for the 
strength of the L2 regularization term. It prevents the 
neural network from overfitting and was set between 
0.00001~0.1, and the search followed the logarithmic 
scale. The final L2 regularization term α=0.01. 

The Lasso regression model only needs to be 
optimized for the hyperparameter “alpha”. This is a 
constant that multiplies the L1 term, controlling the 
regularization strength. It ranged from 0.00001 to 10, 
and the final L1-regularized term α=0.00005. 

All four models suit regression issues with 
multiple features, and their effects were all evaluated 
by Eq. (3), the mean absolute error (MAE), and Eq. 
(4), the mean squared error (MSE). 

 
(3) 

 
 

(4) 
 

Comparison of model’s prediction results 4.
 
Figure 3 compares the evaluation indexes MAE 

and MSE of four models. Two indexes were obtained 
through simple cross validation. Simple cross-
validation here refers to cross-validation performed 

only once in data split. Figure 3 shows that MAE and 
MSE of two ensemble learning models were smaller 
than those of Lasso and BPNN models. More 
specifically, Lasso surpassed BPNN while RF was 
slightly ahead of XGB. This is because ensemble 
models are based on cart decision tree compared to 
linear regression models, which gives them a higher 
accuracy in regression. Besides, the multi-model 
ensemble methods, bagging and boosting, were 
adopted by two ensemble models, which improved 
their fitting accuracy and generalization capability at 
the same time and guaranteed better performance than 
the single-models BPNN and Lasso. The Lasso model 
outperformed  the BPNN since it can reduce the 
number features and avoid the problem of overfitting 
in linear regression by adding the L2-regularized 
term. Compared with the other three models, BPNN’s 
performance may be limited by restricted sample 
amount, which lowered its fitting accuracy. 

It should be noted that the actual end-point P 
content is 0.030 % on average, and the minimum 
absolute error of the prediction is 0.0046 %, which is 
15.3 % off the average. In the actual production 
process, the P content is measured by direct reading 
spectrometer, which also causes certain errors in the 
sampling and location of the measurement points. 
From the stand of converter steelmaking’s 
requirements, such an error is acceptable. 

Figure 4 shows the learning curves of four models 
evaluated by index MAE (score). Cross-validation 
score comparison results of the four learning curves in 
Figure 4 were in line with their performance in Figure 
3, yet they all had lower error than in Figure 3 that 
adopted single cross validation. This is because the 
learning curves were drawn with cross-validation 
conducted via the ShuffleSplit function (n_splits=100, 
test size=0.2). This means that the score of each point 
was calculated as the average error of 100 random 
samplings, thus lowering error fluctuation. By 
Combining results from Figure 3 and Figure 4, the 
accuracy of different models was ranked as RF > 
XGB > Lasso > BPNN. 
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Figure 5 shows the learning curves with a single 
sampling. This means that all scores were obtained by 
a single sampling, i.e. the split n was set to 1 in the 
ShuffleSplit function. Figure 5a and Figure 5b show 
that the learning curves of the ensemble tree models 
tend to smooth out rapidly, reflecting RF and XGB’s 
stability in processing this problem type. Their 
performance remained good even with a small data 
set. Figure 5c and Figure 5d indicate that BPNN and 
Lasso require at least 1,500 data items. Lasso showed 
poor stability with relatively small datasets and the 
BPNN’s learning curve gradually converges when the 
data reaches 1,600 items. All this suggests that BPNN 
and Lasso have higher requirements for the amount of 
data and have a larger error with small data set. RF 
and XGB, on the other hand, do not require 
normalization or standardization of the original data. 
The XGB algorithm can even deal with missing 
values by itself, making its application easier. 
Considering the above results, two types of ensemble 
tree models had better stability in small data set and 
lower requirements on data processing than BPNN 
and linear regression models. 

 
Model interpretation and analysis 5.

 
Metallurgical practitioners mostly optimize the 

manufacturing process by selecting influencing 
factors and controlling variables based on their own 
experience, which requires a lot of time and effort. 

However, with machine learning, technicians can 
perform optimization by integrating the evaluation 
results into multi-models, selecting influencing 
factors and determining their priorities. 

Figure 6 compares the importance of all 
influencing factors. RF and XGB measured their 
importance (parameter as gain) via the extent of gain 
brought by splitting the different features based on the 
decision tree. A larger gain reflects a greater 
importance. BPNN measures importance by the 
permutation importance, which means to observe the 
change of index after permuting one certain feature. A 
greater change in the  index refers to higher 
importance [23]. For better comparison, importance 
calculation results of RF, XGB, and BPNN model 
were unified into percentage and drawn as a 
histogram. 

On the one hand, the three models have different 
mathematical theories and bases for calculating 
importance. On the other hand, each model evaluates 
via relatively single index that differs from the others. 
This led to different importance sorting of all features, 
and the results of one model cannot represent the 
actual situation in manufacturing practice. Therefore, 
the average value of RF, XGB, and MLP was taken as 
a comprehensive and final evaluation of the feature’s 
importance. The coefficient of linear regression was 
adopted to assess whether the feature’s influence was 
positive or negative. It should be mentioned that a 
positive influence here means a higher coefficient 
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value relating to a higher end-point P content, but it is 
actually a negative influence in metallurgical practice. 
Figure 7 shows comprehensive importance evaluation 
results. The comprehensive evaluation score was 
shown in the left vertical coordinate, and the 
coefficient of the linear regression model was drawn 
in point and line chart the values of which can be 
checked by the right vertical coordinate. 

All influencing factors were divided into 11 
groups based on the BOF operations. As shown in 
Figure 7, the importance of all groups were ranked as 
follows: Tapping temperature in BOF (F21, F23) > 
Turning down times (F15) > Material addition and 
Steel output (F10, F11, F12) > Work groups (F1, F2, 
F3) > Oxygen blowing operation (F13, F14) > Molten 

iron components (F4~F8) > Slagging agents 
(F16~F20) > Slag-splashing operation (F24, F25) > 
Reblowing amount (F22) > Molten iron temperature 
(F9) > Iron mixing times (F26). 

Based on the sorting of operation processes and the 
coefficient of the linear regression model shown in 
Figure 7, it can be concluded that the first group, 
including F21 (First turning down temperature) and 
F23 (Tapping temperature), contains the most 
significant influencing factors. These two temperatures 
differ when the composition and temperature of the 
molten steel are not qualified. For the qualified ones, 
first turning down temperature is the tapping 
temperature. For that are not qualified , another 
operation is conducted for adjustment, and the 
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temperature detected then is the tapping temperature. 
Temperature plays an important role in 
dephosphorization. The higher the temperature, the 
worse the dephosphorization [24]. The coefficient of 
both F21 (first turning down temperature) and F23 
(tapping temperature) in the linear regression model 
were the maximum positive values, suggesting higher 
tapping temperature is related to larger end-point P 
content, which is in line with manufacturing experience 
and dephosphorization mechanism. F15 (turning down 
times) of the second group also had relatively greater 
importance. F15 larger than 1 indicated the possibility 
of reblowing or second slag formation blowing 
(double-slag process). Turning down times was 
positively related to end-point P content. Combining 
Figure 2’s correlation analysis, turning down times was 
most strongly correlated with work group 3, which 
suggested their poorer stability than other work groups. 
In the third group, F10 (molten iron amount), F11 (steel 
scrap amount), and F12 (steel output), linear regression 
coefficient indicated the addition of steel scrap amount 
was negatively related to end-point P content while 
steel output is in positive relation. Since the Lasso 
model can reduce variables, it lowered the molten iron 
amount’s coefficient to 0 (molten iron amount and steel 
output have collinear relation), which means that 
employees only need to optimize steel scrap amount. 
The fourth group, work group also played a certain 
role. To the end-point P content, the influence of work 
group A was negative, of group B insignificant, of 
group C positive. This indicates that work group C 
should learn more experience from group A. As for the 
fifth group, oxygen blowing operation, containing F13 
(oxygen blowing time) and F14 (oxygen blowing 
amount), influenced the predicted object to a certain 
extent. Longer F13 was related to a higher oxidation in 
molten pool, and thus lower end-point P content. F14 is 
in positive influence for end-point P content, which 
could be due to the fact that a too high F14 value leads 
to more rapid temperature rising in molten pool, 
inhibiting dephosphorization or even triggers 
rephosphorization [25]. This indicated that personnel 

should pay more attention to the controlling of oxygen 
blowing amount. The sixth group included the molten 
iron components F4~F9. In the molten iron, S and P 
had a positive effect on end-point P content while 
others did not have a significant influence, suggesting 
that technicians can improve the dephosphorization 
effect by controlling the molten iron components. The 
seventh group discussed the influence of slagging agent 
addition, among which the most significant ones were 
lime, limestone, and light-burned dolomite. All these 
were negatively related to end-point P content. For the 
eight group, including F24 (nitrogen blowing amount) 
and F25 (slag splashing time), it was shown that higher 
F25 can raise the oxidation of molten pool in the 
primary stage, and assist dephosphorization in the early 
stage. Both the importance score and the linear 
regression model coefficient showed that F9 (molten 
iron temperature), F22 (reblowing amount), and F26 
(iron mixing times) contained in last three groups had 
relatively small influence on the end-point P content. 

However, in the Lasso model the features of 
coefficients close to 0 can occur in two cases. One is 
caused by the existence of L1 regular term. This can 
be solved by reducing the hyperparameter “Alpha”. 
When the coefficient deviates from 0, we can clarify 
the extent and direction of the influence, but the 
model’s generalization capability may also be 
impaired at this time. Another situation is that the 
feature itself has little influence on end-point P in the 
linear regression model. However, this only means 
that this feature is unimportant just in Lasso model. 
The assesment of their influencing extent must be 
coupled with the importance ranking given by the 
other three algorithms. 

In conclusion, removing factors with relatively 
small influence and those that cannot be improved in 
each group, the following factors must be classified as 
important: Tapping temperature in BOF > Turning 
down times > Steel scrap amount > Group’s operation 
habit > Oxygen blowing amount > S and P content in 
molten iron > addition of lime, limestone, lightly-
burnt dolomite in slagging agents > Slag splashing 
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Figure 7. Comprehensive evaluation on feature’s importance



amount. Of all these factors, the first 6 had a positive 
influence while the lasttwo had a negative one. 

 
Conclusions 6.

 
1. The influencing factors of end-point P content 

mainly include raw and auxiliary material addition, 
the condition of the molten iron, the coefficients of the 
process operation, and the working habits of the 
employees. Four machine learning models were 
established to predict the end-point P content in BOF. 
The accuracy of the four models was ranked as 
follows: RF > XGB > Lasso > BPNN. Compared with 
the BPNN and the linear regression model (Lasso), 
two types of ensemble tree models showed lower 
error and better stability with small data sets, and 
lower data processing requirements. 

2. Through a comprehensive consideration of the 
evaluation results of RF, XGB, BNPP, and the Lasso 
model, the influencing factors of end-point P content in 
the BOF were ranked by importance: Tapping 
temperature in BOF > Turning down times > Steel 
scrap amount > Work group’s operation habits > 
Oxygen blowing amount > S and P content in molten 
iron > addition of lime, limestone, lightly-
burntdolomite in slagging agents > Slag splashing 
amount. Among all these, the first six were of positive 
influence while the last two were of negative influence. 
The optimization of manufacturing process can be 
guided by interpreting prediction results of these 
models. 

3. The production of BOF steel is a complicated 
process. There are still a number of key data that cannot 
be directly included into regression calculation, such as 
the voiceprint data in sonar slag-reducing technique, 
the mouth flame image data of the converter, and time 
series data such as the oxygen lance position, the lime 
loading model, the bottom blown pattern, and the 
change of gas composition etc. These data contain 
important information about changes in the overall 
metallurgical process. An effective processing or 
conversion method for them is in urgent need. 
Including these key data in the regression analysis can 
help engineers and technicians to better understand and 
analyze the steelmaking process. 
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PREDVIĐANJE KONAČNOG SADRŽAJA FOSFORA U RASTOPU ČELIKA U 
BAZNOM KISEONIČNOM KONVERTORU MODELIMA MAŠINSKOG UČENJA 
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Apstrakt  
 
Glavni zadatak u proizvodnji čelika u baznom kiseoničkom konvertoru (BOF) je defosforizacija. Zbog toga je predviđanje 
i kontrola konačnog sadržaja fosfora u rastopu čelika od velike važnosti. Četiri modela regresije mašinskog učenja (Lasso, 
Random Forest, Ksgboost i Neural Netvork) su primenjena za predviđanje krajnjeg sadržaja fosfora u tečnom čeliku u 
BOF-u na osnovu podataka o sirovim i pomoćnim materijalima, parametrima procesa i podacima o kvalitetu proizvodnje. 
Upoređen je efekat predviđanja četiri modela i rezultati predviđanja su interpretirani na osnovu interpretabilnosti modela 
i metode važnosti permutacije. Rezultati su pokazali da u poređenju sa linearnom regresijom i modelom regresije neuronske 
mreže, dva tipa modela ansambla stabla imaju veću tačnost predviđanja, bolju stabilnost sa malim skupovima podataka i 
niže zahteve za prethodnu obradu podataka. Faktori koji utiču na krajnji sadržaj fosfora (P) u BOF-u rangirani su po 
važnosti: Temperatura izlivanja > Vreme gašenja > Količina čeličnog otpada > Radne navike različitih radnih grupa > 
Količina injektiranog kiseonika > Sadržaj sumpora i fosfora u rastopljenom gvožđu > Dodatak količina kreča, krečnjaka i 
lagano sagorelog dolomita u sredstvima za šljaku > količina prskanja šljake. 
 
Ključne reči: Konverterska proizvodnja čelika; Mašinsko učenje; Model ansambla stabla; Interpretabilnost modela;  
Rangiranje faktora uticaja; Predviđanje krajnjeg sadržaja
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