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T E L L U S

Measuring information content from observations for
data assimilations: utilities of spectral formulations

demonstrated with radar observations

By Q IN X U 1∗ and LI W EI2, 1NOAA/National Severe Storms Laboratory, Norman, Oklahoma, USA;
2Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, USA

(Manuscript received 22 May 2011; in final form 14 July 2011)

A B S T R A C T
Utilities of the spectral formulations for measuring information content from observations are explored and demonstrated
with real radar data. It is shown that the spectral formulations can be used (i) to precisely compute the information
contents from one-dimensional radar data uniformly distributed along the radar beam, (ii) to approximately estimate the
information contents from two-dimensional radar observations non-uniformly distributed on the conical surface of radar
scan and thus (iii) to estimate the information losses caused by super-observations generated by local averaging with a
series of successively coarsened resolutions to find an optimally coarsened resolution for radar data compression with
zero or near-zero minimal loss of information. The results obtained from the spectral formulations are verified against
the results computed accurately but costly from the singular-value formulations. As the background and observation
error power spectra can be derived analytically for the above utilities, the spectral formulations are computationally
much more efficient and affordable than the singular-value formulations, even and especially when the background
space and observation space are both extremely large and too large to be computed by the singular-value formulations.

1. Introduction

Remotely sensed observations, especially those scanned from
radars, are often much denser than the model background and
analysis grids used in data assimilations for numerical weather
predictions. Excessive observation resolutions not only impose
unnecessary computational burdens on a data analysis system but
can also cause the analysis system to be ill conditioned. To reduce
or eliminate observation resolution redundancy for data assim-
ilation, it is necessary to compress densely distributed observa-
tions into fewer super-observations with minimum possible loss
of information. Such observational data compression is called
super-Obbing. Some general super-Obbing techniques were pro-
posed by Purser et al. (2000) to minimize the information loss
measured by the Shannon entropy difference with the observa-
tions batched locally around each super-observation. With these
techniques, super-observations can be generated efficiently by
weighted local averaging, but the information loss is minimized
locally rather than globally. By converting the general formu-
lations of relative entropy and Shannon entropy difference into

∗Corresponding author: National Severe Storms Laboratory, 120
David L. Boren Blvd., Norman, Oklahoma 73072-7326, USA.
e-mail: Qin.Xu@noaa.gov
DOI: 10.1111/j.1600-0870.2011.00542.x

singular-value forms for measuring information content from
observations, Xu (2007, referred to as X07 hereafter) exam-
ined the above issue without batching the observations locally.
With the singular-value formulations, the information redun-
dancy from densely distributed observations can be explicitly
quantified in connection with the rank deficiency of the scaled
observation operator, M ≡ R−1/2HB1/2, and super-observations
can be constructed with zero or minimized information loss glob-
ally. However, since the super-observations and their covariance
are constructed in the truncated singular-vector space of M,
their connections to the original observations are non-local and
non-explicit in the physical space, and the singular-value decom-
position (SVD) of M will become too expensive or impractical
to compute if the background space and observation space are
both very large, as often seen in radar data assimilation (Gao
et al., 2004; Xu et al., 2010).

To overcome the above shortcomings, Xu (2011, referred to
as X11 hereafter) transformed the singular-value formulations
into spectral forms in the wavenumber space for situations in
which the observations are locally uniform and the observa-
tion and background error covariances or correlations (i.e. the
covariances scaled by their respective variances) are locally ho-
mogeneous in each direction in the analysis domain. The spectral
formulations exhibited the following advantages over their coun-
terpart singular-value formulations: (i) The information contents
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MEASURING INFORMATION CONTENT FROM OBSERVATIONS FOR DATA ASSIMILATIONS 1015

from densely distributed observations can be calculated very ef-
ficiently and analysed easily for each wavenumber. (ii) Super-
observations can be constructed by spectral truncations in the
wavenumber space with zero or minimum loss of information
and explicitly related to the original observations in the physi-
cal space. These advantages, however, have not been tested and
demonstrated yet with real observations. As a follow-up of X11,
this paper will design and perform these tests with radar obser-
vations and explore the utilities of the spectral formulations for
radar data compression.

As shown and commented in section 4.1 of X11, constructing
super-observations by a spectral truncation requires the observa-
tions to be precisely uniformly distributed, and this is a serious
limitation for super-Obbing by spectral truncation. On the other
hand, super-Obbing by local averaging or weighted local averag-
ing can be used easily and adaptively for any densely distributed
observations without the above limitation (see e.g. Purser et al.,
2000; Liu et al., 2005; Alpert and Kumar 2007; Lu et al. 2011,
section 3.3). According to the theoretical analysis based on the
spectral formulations in section 4.3 and remarks in section 4.4
of X11, super-Obbing by local averaging will cause no loss of
information (measured globally by the dispersion part of relative
entropy or the Shannon entropy difference) for uniformly dis-
tributed observations with unbiased and spatially uncorrelated
errors unless the super-observation resolution becomes coarser
than the effective background resolution (Frehlich, 2008) or the
background error covariance resolution (determined by one half
of the wavelength associated with the cut-off wavenumber of the
background error power spectrum). This is an attractive global
property for super-Obbing by local averaging, but it is not clear
whether and to what extent this global property can be retained
for non-uniformly distributed observations. It is also not clear
whether and how the information loss (if any) caused by local
averaging for non-uniformly distributed observations can be es-
timated by the spectral formulations. These problems will be
examined in this paper. In particular, we will explore how to
apply the spectral formulations to densely but non-uniformly
distributed radar observations as well as to their compressed
super-observations by local averaging, so the information loss
(if any) caused by local averaging can be estimated efficiently
as a function of the successively coarsened super-observation
resolution to find an optimally coarsened resolution for super-
Obbing by local averaging that causes zero or near-zero minimal
loss of information.

The paper is organized as follows. The next section will exam-
ine the utility and accuracy of the spectral formulations, in com-
parison with the singular-value formulations, for computing the
information contents from one-dimensional radar observations
uniformly distributed along the radar beam and the information
losses caused by spectral truncation, uniform thinning and local
averaging. Section 3 will explore and demonstrate the utility of
the spectral formulations, in comparison with the singular-value
formulations, for estimating the information contents from two-

dimensional radar observations non-uniformly distributed on the
conical surface of radar scan and the information losses caused
by local averaging with a series of successively coarsened reso-
lutions. Conclusions follow in Section 4.

2. Applications to one-dimensional radar data
along the radar beam

2.1. Descriptions of the one-dimensional radar data and
background field

The selected radar data are the same as those described in section
5.2 of X07, and they are the radial-component velocities (along
the radar beam) scanned by the NSSL phased array radar from
2100 to 2200 UTC on 2 June 2004 with a resolution of 240 m
in the radial direction and a resolution of 1.6o in the azimuthal
direction. The data were processed through quality control and
then thinned to the coarsened resolution of �xo = 3 km along the
radar beam (see fig. 1 of X07). After the thinning, the observation
errors become spatially uncorrelated (Xu et al., 2007) to facilitate
the tests in Section 2.5 for super-Obbing by local averaging to
cause zero or minimal information loss. The observation error
variance is σ 2

0 = 6.4 m2 s−2, as estimated in Xu et al. (2005).
The single beam of radial-velocity observations that was used for
the illustrative examples in section 5 of X07 is used here again.
This beam was scanned at 2108 UTC along 0.75o elevation angle
and 97.8o azimuthal angle (positive clockwise from the north),
and it contains 40 (thinned) observations (spaced every �xo =
3 km). The observation error covariance matrix is thus given by
R = σ 2

0 IM with M = 40.
The background velocity field is produced by the Coupled

Ocean/Atmosphere Mesoscale Prediction System (COAMPS,
Hodur, 1997) on a 6 km grid and then projected onto the afore-
mentioned radar beam on a one-dimensional grid of �x = 6 km
resolution with N = 20, where N denotes the number of grid
points. This one-dimensional grid is similar to that described in
section 5.2 of X07, except that the resolution is 6 km instead
of 5 km and thus the number of grid points is 20 instead of
24. In this case, the background radial-velocity error covariance
still can be modelled approximately by the Gaussian function,
that is, σ 2exp[-x2/(2L2)] according to (2.7) and (3.2) of Xu and
Gong (2003), where x is the distance between two correlated
points along the radar beam, σ 2 and L denote the background
radial-velocity error variance and de-correlation length scale,
respectively. As in section 5.4 of X07, σ 2 = 70 m2 s–2 and L =
15 km are selected here for the illustrative purpose. However, to
use the spectral formation, the above one-dimensional domain
of length D = M�xo = N�x (=120 km) needs to be extended
periodically as described in section 2.2 of X11. In particular, the
background error covariance function can be extended periodi-
cally into

B(x) = σ 2 exp
{−(|x| − Int [|x|/D + 1/2] D)2/(2L2)

}
,

(1a)

Tellus 63A (2011), 5
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where Int[ ] denotes the integer part of [ ]. This periodic co-
variance function recovers exactly B(x) = σ 2exp[−x2/(2L2)] for
|x| ≤ D/2 in the original domain, but it is continuous only to the
zeroth order and thus non-smooth at |x| = (1/2 + i)D for i = 0,
1, 2, . . .. For D � L, the background error covariance function
can be also extended periodically into

B(x) = (σ 2/A0)
∞∑

i=−∞
exp

[−(x − iD)2/(2L2)
]
, (1b)

where A0 = ∑∞
i=−∞ exp[−(iD)2/(2L2)] to ensure B(0) = σ 2.

For the above selected D = 120 km and L = 15 km, A0 = 1 +
2.5 × 10−14 ≈ 1 and thus (1b) recovers B(x) = σ 2exp[–x2/(2L2)]
almost exactly for |x| ≤ D/2 in the original domain. Since the
periodic covariance function in (1b) is smooth to infinitely high
order and its associated power spectrum has a simple analytical
form [see (10)], (1b) will be used in this section as the peri-
odically extended covariance function. The background error
covariance matrix B can be constructed from B(x) in (1b) with
the nth element in the n′th column of B given by B(n�x – n′�x)
for n and n’ in the range of [N−, N+], where N– ≡ Int[(1 –
N)/2] = –19 and N+ ≡ Int[N/2] = 20 for N = 40.

2.2. Applications of spectral formulations versus
singular-value formulations

According to (8) of Xu et al. (2009) and (22)–(24) of X11, the
spectral formations for the signal part of the relative entropy
(denoted by Sg), the dispersion part of the relative entropy (de-
noted by Ds), the Shannon entropy difference (denoted by SD),
and the degrees of freedom for signal (denoted by DFS), can be
written into the following forms:

Sg =
μ+∑

i=μ−

Sgi, (2)

Ds =
μ+∑

i=μ−

Dsi, (3)

SD =
μ+∑

i=μ−

SDi, (4)

DFS =
μ+∑

i=μ−

DFSi . (5)

Here, μ− ≡ Int[(1 – μ)/2], μ+ ≡ Int[μ/2] and μ ≡
min(N, M);

Sgi = [(|ci |2/Ci)|γi |2/(1 + |γi |2)2]/2

= [|ci |2/(2β�i)
] |γi |4/(1 + |γi |2)2, (6)

Dsi = SDi − DFSi/2, (7)

SDi = ln(1 + |γi |2)/2 (8)

and

DFSi = |γi |2
(
1 + |γi |2

)
, (9)

are the ith components of Sg, Ds, SD and DFS, respectively, in
the spectral space; and ci is the ith component of the normal-
ized discrete Fourier transform (DFT) of the innovation dm [see
(10)–(11) of X11]; Ci is the observation error power spectrum
[see (14) of X11]; �i is the collapsed background error power
spectrum (into the range of the observation error spectrum) if
N > M but becomes identical to the background error power
spectrum, denoted by Si, if N ≤ M [see (13) and (25) of X11];
|γ i|2 = ß�i/Ci and ß = �x/�xo.

For the data described in Section 2.1, the number of observa-
tions (M = 40) is larger than the number of the background grid
points (N = 20) and the observation errors are spatially uncorre-
lated, so �i = Si, Ci = σ 2

0 and |γi |2 = ßSi/σ
2
0 . By using the fast

Fourier transform (FFT), Si and ci can be computed efficiently.
For B(x) given in (1b), Si can also be obtained analytically by
using the following generalized Fourier Transformation:

S(k) =
∫ ∞

−∞
dxB(x) exp(−jkx)

= (
σ 2/A0

)
L(2π )1/2 exp(−k2L2/2)

∞∑
−∞

exp(−jikD),

= (σ 2/A0)L(2π )1/2 exp(−k2L2/2)
∞∑

i=−∞
δ (k − ki) , (10)

where j ≡ (–1)1/2 is the imaginary unit, k is the
wavenumber, δ(•) denotes the delta function of (•),∫ ∞

−∞ dx exp[−(x − iD)2/(2L2)] = L(2π )1/2 exp(−k2L2/2)
exp(−jikD) is used in the second step, and the identity∑∞

i=−∞ exp(−jikD) = (2π/D)
∑∞

i=−∞ δ(k − 2πi/D) is
used with ki = i�k and �k ≡ 2π /D in the third step
(see page 68 of Lighthill, 1958). Note that the Fourier
integral that defines S(k) in (10) can be discretized into∑N+

n=N− B(xn) exp(−jkixn)�x = Si�x over the periodic
domain D, where Si = S(ki) is precisely the same discrete power
spectrum as that defined in (12)–(13) of X11. On the other hand,
the analytical form of S(k) derived in (10) can be discretized
directly into

∫ (i+1/2)�k

(i−1/2)�k
dkS(k). According to (10), the above two

discretized forms should be equal to each other, and this leads
to the following analytical expression of Si

Si =
∫ (i+1/2)�k

(i−1/2)�k

dkS(k)/�x

= (
σ 2/A0

)
(L/�x) (2π )1/2 exp

(−k2
i L

2/2
)
. (11)

As shown above, Si can be obtained either numerically by
using the DFT in (12) of X11 [which is equivalent to the discrete
cosine transform in (13) of in X11] or analytically by using (11).
For the data described in Section 2.1, these two ways give almost
identical Si and thus almost identical |γ i| = (ßSi)1/2/σ o. For |i| ≤

Tellus 63A (2011), 5
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6, |γ i| is obtained identically at least to the 5th effective digit
with the exact symmetry of |γ –i| = |γ i|, and the obtained values
are |γ 0| = 11.848, |γ 1| = 10.155, |γ 2| = 6.3936, |γ 3| = 2.9572,
|γ 4| = 1.0048, |γ 5| = 0.25078 and |γ 6| = 0.045982. For |i| ≥
7, |γ i| is also obtained with the exact symmetry of |γ –i| =
|γ i|, but the values obtained by the two ways become slightly
different, and the numerically (or analytical) obtained values are
|γ 7| = 6.1935 × 10−3 (or 6.1934×10−3), |γ 8| = 6.1191×10−4

(or 6.1281×10−4), |γ 9| = 5.1068 × 10−5 (or 4.4542 × 10−5),
and |γ 10| = 3.3613 × 10−6 (or 2.3783 × 10−6). Here, since M =
40 and N = 20, the wavenumber index i ranges from μ– = –9
to μ+ = 10 in (2)–(5), and the index range length is μ = μ+ –
μ– + 1 = 20. Due to the symmetry of |γ –i| = |γ i|, there are
only 11 independent values of |γ i| as listed above for 0 ≤ i ≤
10.

In the singular-value formulations [see (3.6)–(3.10) of X07],
the singular-value index i ranges from 1 to μ, so the index range
length is also μ = 20. Since |γ i| = (ßSi)1/2/σ o is a decreasing
function of |i| as shown in (11), |γ i| for i > 0 (or i ≤ 0) in the
spectral formulations is equivalent to λ2i (or λ2i+1)—the (2i)th
[or (1 + 2i)th] singular value in the singular-value formulations.
This equivalence was explained in the conclusion of X11 and can
be verified here numerically by comparing the above obtained
|γ i| for i > 0 (or i ≤ 0) with λ2i (or λ2i+1) computed from
the SVD of the scaled observation operator M ≡ R−1/2HB1/2

[see (3.6) of X07]. The computed λ1, λ2, λ3, . . . λ19 are found
to be identical (at least to the 5th effective digit) to the above
analytically derived |γ 0|, |γ 1|, |γ –1|, . . . |γ –9|, respectively.
Only the last and smallest singular value λ20 (=3.3635×10−6)
becomes different from the above obtained |γ 10| mainly due
to computer round-off errors. This well-verified equivalence is
also shown in Fig. 1 by the two coincided curves, that is, (i) the
grey dashed curve labelled ‘SVD-Svi’ for the SVD-computed
λi/λ1 (called the relative amplitude of λi), and (ii) the thin solid
curve labelled ‘Spc-Svi’ for the spectral-derived |γ i/γ 0| (called
the relative amplitude of |γ i|) plotted in the wavenumber index
sequence of i = 0, 1, –1, . . . , 7, –7 (not shown) corresponding
to the singular-value index sequence from i = 1 to 15 (as shown
explicitly). According to the above comparisons, the spectral-
derived Si in (11) is sufficiently accurate and will be used for the
applications considered in this section.

With Si given by (11) and ci given by the DFT of the innovation
dm, the signal part of the relative entropy Sg and its partitioned
component, denoted by Sgi for the ith wavenumber ki, can be
computed from (2) and (6), respectively. The computed Sgi/Sg
is plotted in Fig. 1 by the dark dotted curve labelled ‘Spc-Sgi’
in the wavenumber index sequence of i = 0, 1, –1, . . . 7, –7
(not shown) corresponding to the singular-value index sequence
from i = 1 to 15 (as shown explicitly). The relative amplitude
Sgi/Sg is also computed by using the singular-value formulation
{see (5.4) of X07 but note that Sgi was already normalized by
Sg and there was a typo in the definition of Sg, that is, [λ2

i (1 +
λ2

i )−2]−1 should be λ2
i (1 + λ2

i )−2 inside the summation for the

Fig. 1. Relative amplitudes of SVD-computed λi and Sgi plotted as
functions of the singular-value index i by the grey dashed curve
(labelled SVD-SVi) and grey dotted curve (labelled SVD-Sgi),
respectively. Relative amplitudes of Spectral-derived |γ i| and Sgi

plotted by the thin solid curve (labelled Spc-SVi) and dark dotted curve
(labelled Spc-Sgi), respectively, in the wavenumber index sequence of
i = 0, 1, –1, . . . , 7, –7 (not shown) corresponding to the singular-value
index sequence from i = 1 to 15 (as shown explicitly). When the
singular-value index i increases beyond 15 toward its upper bound of
μ ≡ min(N, M) = 20 (outside the plotted range), all the relative
amplitudes become extremely and increasingly close to zero (not
shown). The relative amplitudes of λi, |γ i| and Sgi are defined by λi/λ1,
|γ i/γ 0| and Sgi/Sg, respectively.

second equation in (5.4) of X07}, and the result is plotted by
the grey dotted curve labelled ‘SVD-Sgi’ as a function of the
singular-value index i in Fig. 1. As shown by the Spc-Sgi curve,
the spectral-computed Sgi satisfies the symmetry of Sgi = Sg–i

where i is the wavenumber index, but the SVD-Sgi curve does
not. The difference is caused by the non-uniqueness of the SVD
of M. As shown in (7)–(9) and (20)–(21) of X11, the SVD pre-
sented by M = U
VT in X07 can be generalized to a complex
SVD (although M is always a real matrix), so the squared abso-
lute value of the complex singular value can be given by |γ i|2 =
ßSi/σ 2

o for the ith wavenumber ki and the complex counterpart of
U can be given by the unitary matrix F H

M , where FM is the nor-
malized DFT matrix in the observation space [see (11) of X11],
and ()H ≡ ()∗T, ()∗ and ()T denote the Hermit transport, complex
conjugate and real transpose of (), respectively. With this gener-
alization, the transformed innovation vector d′ = UTR−1/2d in
the singular-vector space [see (3.6) of X07] is replaced by its
spectral representation C−1/2c = FMR−1/2d [see (22) of X11].
Clearly, FM is different from UT, and this explains the difference
between the SVD-Sgi and Spc-Sgi curves in Fig. 1. As shown
by the Spc-Sgi curve, the spectral-computed Sgi/Sg and Sg–i/Sg
have the same value (due to the symmetry of Sgi = Sg–i) for the
ith paired (positive and negative) wavenumbers and this value
is the same as the averaged value of the two counterpart points

Tellus 63A (2011), 5
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Fig. 2. Relative amplitudes of spectral-derived |γ i|2, Dsi and SDi

plotted by the thin solid curve (labelled SVi2), dotted curve (labelled
Dsi) and thick solid curve (labelled SDi), respectively, as functions of
the absolute value of the wavenumber index over the range of 0 ≤ |i| <

8. The relative amplitudes of |γ i|2, Dsi and SDi are defined by
|γ i/γ 0|2, Dsi/Ds and SDi/SD, respectively. The SVi2 curve is
duplicated from the square of the Spc-SVi curve in Fig. 1 but plotted
here as a function of the absolute value of the wavenumber index
(instead of the singular-value index).

on the SVD-Sgi curve, so the two curves yield exactly the same
summed value of Sg (=5.994949) in (2).

The dispersion part of the relative entropy Ds and its par-
titioned component Dsi for ki are formulated in (3) and (7),
respectively. The Shannon entropy difference SD and its parti-
tioned component SDi for the ith wavenumber ki are formulated
in (4) and (8), respectively. The spectral-derived Dsi/Ds (called
the relative amplitude of Dsi) and SDi/SD (called the relative
amplitude of SDi) are plotted in Fig. 2 by the dark dotted and
dark solid curves, respectively, as functions of the absolute value
of the wavenumber index over the range of 0 ≤ |i| < 8. The Spc-
SVi curve in Fig. 1 is squared and recast into the thin solid curve
labelled ‘SVi2’ for the spectral-derived |γ i/γ 0|2 as a function of
|i|, where i is the wavenumber index (instead of the singular-
value index in Fig. 1). Note from (7)–(8) that Dsi and SDi are
determined solely by |γ i|, and |γ i| for i > 0 (or i ≤ 0) is equiv-
alent to λ2i (or λ2i+1) as shown by the coincided Spc-SVi and
SVD-SVi curves in Fig. 1, so the spectral-derived Dsi and SDi

for i > 0 (or i ≤ 0) are equivalent to the SVD-computed Ds2i (or
Ds2i+1) and SD2i (or SD2i+1), respectively. In view of the above
explained and verified equivalences, we only need to present the
results from the spectral formulations in the remaining part of
this section.

Note that |γ i/γ 0|2 ≤ 1.5 × 10−5, Sgi/Sg ≤ 1.29 × 10−4,
Dsi/Ds ≤ 1.1 × 10−7 and SDi/SD ≤ 7.6 × 10−5 when |i| ≥
6 in Fig. 2 (or, equivalently, i ≥ 12 in Fig. 1). Therefore, the
upper limit of the wavenumber index i can be truncated from
μ+ = 10 to 5 for the summations (over i > 0) in the spectral

formulations of Sg, Ds and SD [see (2)–(4)] with virtually no
loss of information. This implies that the 40 observations can be
compressed into 10 uniformly spaced super-observations with
the observation resolution coarsened from �xo = 3 km to �xs =
4�xo = 12 km with no loss of information. This implication will
be verified in Section 2.4.

2.3. Information loss caused by uniform thinning

According to the analysis in section 4.2 of X11, uniformly thin-
ning the observations will always cause a loss of information
and the information loss increases as the thinned observation
resolution becomes increasingly coarse. The information losses
for the signal and dispersion parts of the relative entropy and the
Shannon entropy difference can be measured relative to Sg(�xo),
Ds(�xo) and SD(�xo), respectively, by

SIL = 1 − Sg(�xs)/Sg(�x0), (12)

DIL = 1 −Ds(�xs)/Ds(�x0) (13)

and

SDIL = 1 = SD(�xs)/SD(�x0). (14)

Here, �xs (>�xo) denotes the thinned observation resolution;
Sg(�xo), Ds(�xo) and SD(�xo) denote the information contents
from the original observations; Sg(�xs), Ds(�xs) and SD(�xs)
denote the information contents from the thinned observations.
The relative information losses defined by SIL, DIL and SDIL
in (12)–(14) may also be called information losses for short.

For the data described in Section 2.1, Sg(�xo), Ds(�xo) and
SD(�xo) are computed from the spectral formulations in (2)–(4)
with μ– = –9 and μ+ = 10 for μ ≡ min(N, M) = 20. By
reducing the number of observations from M = 40 to Ms = 20,
10, 8 and 4 and thus reducing ß (≡ M/N = �x/�xo) = 2 to ßs

(≡ Ms/N = �x/�xs) = 1, 1/2, 2/5 and 1/5 in (2)–(4), Sg(�xs),
Ds(�xs) and SD(�xs) are computed for four types of thinned
observations with the observation resolution �xo coarsened to
�xs = 2�xo, 4�xo, 5�xo and 10�xo, respectively. The resulting
SIL, DIL and SDIL calculated from (12)–(14) for the thinned
observations (with �xs/�xo = 2, 4, 5 and 10) are plotted in Fig. 3
by the thin solid curve labelled ‘SIL-thin’, light dotted curve
labelled ‘DIL-thin’ and thin dashed curve labelled ‘SDIL-thin’,
respectively. As shown, the information losses are significant
and increase quasi-linearly with �xs/�xo. This exemplifies the
analysis in section 4.2 of X11.

2.4. Super-Obbing by spectral truncation

According to the analysis in section 4.1 of X11, the original ob-
servations can be compressed into fewer super-observations by
a proper spectral truncation with zero or minimum loss of infor-
mation. This compression, called super-Obbing by spectral trun-
cation, requires the observations to be uniformly distributed. The
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Fig. 3. Relative information losses SIL, DIL and SDIL caused by
thinning plotted as functions of �xs/�xo by the thin solid curve
(labelled SIL-thin), light dotted curve (labelled DIL-thin”) and thin
dashed curve (labelled SDIL-thin), respectively; and relative
information losses SIL, DIL and SDIL caused by spectral truncation
plotted as functions of �xs/�xo by the thick solid curve (labelled
SIL-trun), dark dotted curve (labelled DIL-trun) and thick dashed curve
(labelled SDIL-trun), respectively.

information losses caused by this super-Obbing can be measured
by the same SIL, DIL and SDIL as those defined in (12)–(14)
except that �xs (>�xo) represents now the super-observation
resolution, and thus Sg(�xs), Ds(�xs) and SD(�xs) denote the
information contents from the super-observations. In this case,
Sg(�xo), Ds(�xo) and SD(�xo) remain the same as those in
Section 2.3, but Sg(�xs), Ds(�xs) and SD(�xs) are obtained for
four types of super-observations with �xo coarsened to �xs =
2�xo, 4�xo, 5�xo and 10�xo by truncating the observation
spectral space dimension from M = 40 to Ms = 20, 10, 8 and 4,
respectively, (without changing ß) as explained in section 4.1 of
X11.

The information losses SIL, DIL and SDIL caused by the
above super-observations are computed and plotted as func-
tions of �xs/�xo (=2, 4, 5 and 10) in Fig. 3 by the thick solid
curve labelled ‘SIL-trun’, dark dotted curve labelled ‘DIL-trun’
and thick dashed curve labelled ‘SDIL-trun’, respectively. As
shown, the information losses are virtually zero for �xs/�xo =
2 (because �xs = �x in this case) and remain negligibly small
(=0.02, 0.0001 and 0.002 for SIL, DIL and SDIL, respectively)
as �xs/�xo increases to 4. This verifies the implication stated at
the end of Section 2.2. As �xs/�xo further increases to 5, the
dispersion-part information loss DIL (or SDIL) remains small
and below 0.01 (or 0.03), but the signal-part information loss
SIL becomes significant and increases to 0.36. Note that the
signal-part information content depends on the sampled indi-
vidual realization of the innovation and so does the signal-part
information loss. Note also from in Fig. 1 that the Spc-Sgi curve
reaches its peak value at the 4th paired wavenumbers k4 and

k–4 (corresponding to the singular-value indices at i = 8 and 9,
respectively, in Fig. 1). When the wavenumber index increases
from i = 0 to 4, |γ i| decreases rapidly from 11.84 to 1.01 but
|γ i|4/(1 + |γ i|2)2 decreases slowly from 0.96 to 0.26. Since Sgi =
[|ci|2/(2ßSi)]|γ i|4/(1 + |γ i|2)2 for N ≤ M as shown in (6), the
peak of the Spc-Sgi curve for Sgi/Sg can be largely explained
by the peak of |ci|2/(ßSi) at |i| = 4, while the latter peak is tied
up with the smallness of Si and local (secondary) peak of |ci| at
|i| = 4 in the innovation spectrum (not shown). When �xs/�xo

increases to 5, the wavenumber k4 is marginally retained but
the wavenumber k–4 is truncated. This truncation is significant
and it explains why SIL increases rapidly (from 0.02 to 0.36) as
�xs/�xo increases from 4 to 5 in Fig. 3.

Based on the equivalence between the spectral and general-
ized singular-value formulations explained and verified in Sec-
tion 2.2, the above super-Obbing by spectral truncation can be
viewed as a special and yet generalized form of super-Obbing by
singular-value truncation (see section 4 of X07) for uniformly
distributed observations. An advantage of this super-Obbing is
that super-observations generated in the truncated spectral space
can be easily transformed back and explicitly related to the orig-
inal observations in the physical space. In particular, as shown
in (41)–(42) of X11, super-observations can be expressed in the
physical space by the original observations convoluted with a
super-Obbing operator [see (40) of X11], and their error covari-
ance can be given explicitly by the original observation error
covariance convoluted with the super-Obbing operator. In this
case, the original observations are required to be precisely uni-
formly distributed (in each direction) so that the spectral trunca-
tion can be accurately implemented for super-Obbing to avoid or
minimize information loss. The required uniform distribution,
however, can rarely be satisfied in real data assimilation, and this
is a serious limitation for super-Obbing by spectral truncation,
as commented at the end of section 4.1 of X11 and mentioned
in the introduction of this paper.

2.5. Super-Obbing by local averaging

According to the analyses in sections 4.3 and 4.4 of X11, uni-
formly distributed observations with unbiased and spatially un-
correlated errors can be compressed into super-observations by
local averaging with no loss of information until the super-
observation resolution becomes coarser than the effective back-
ground resolution (Frehlich, 2008) or the background error co-
variance resolution (determined by π /kc where kc is the cut-
off wavenumber of the background error power spectrum). In
this case, the original observations are simply averaged over
each �xs, where �xs is the super-observation resolution. To
verify and illustrate the above property, four types of super-
observations are generated by local averaging with �xs set to
�xs = 2�xo, 4�xo, 5�xo and 10�xo, respectively. The informa-
tion losses caused by super-Obbing can be measured by the same
SIL, DIL and SDIL as defined in (12)–(14) except that Sg(�xs),
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Fig. 4. Relative information losses SIL, DIL and SDIL caused by local
averaging plotted as functions of �xs/�xo by the dark solid, dark
dashed and dark dotted curves, respectively; and relative degradations
of the analysis mean and covariance, defined by MD/MD0 and
CD/CD0, respectively, plotted as functions of �xs/�xo by the thin solid
curve (labelled MD) and thin dashed curve (labelled CD), respectively.

Ds(�xs) and SD(�xs) are now the information contents from
super-observations generated by local averaging. The super-
observation error variance is estimated by σ 2

s = σ 2
o�xo/�xs,

where the sampling error in the original observations is assumed
to remain constant and not yet start to increase with �xs [see
(43) and remark (ii) in section 4.4 of X11].

The computed SIL, DIL and SDIL are plotted in Fig. 4 by
the thick solid curve, dark dotted curve and thick dashed curve,
respectively. As shown, DIL and SDIL are zero for �xs/�xo =
2 and remain negligibly small as �xs/�xo increases to 5, but
SIL is non-zero (0.07) for �xs/�xo = 2 and increases rapidly
as �xs/�xo increases beyond 2. For the original observations,
Ds(�xo) [or SD(�xo)] is the summation of Dsi (or SDi) over the
wavenumber index range of –9 = μ– ≤ i ≤ μ+ = 10, and Dsi

(or SDi) is determined solely by |γ i|2 = ßSi/σ 2
o. For �xs = 2�xo

(=�x), the number of super-observations is Ms = 20 (=N), so
Ds(�xs) [or SD(�xs)] is still the summation of Dsi (or SDi) over
–9 ≤ i ≤ 10, and Dsi (or SDi) is still determined solely by |γi |2 =
ßsSi/σ

2
s = ß Si/σ

2
0 , where ßs ≡ �x/�xs and σ 2

s = σ 2
0 �xo/�xs

are used. Thus, as revealed by the analysis in section 4.3 of
X11, Ds(�xs) and SD(�xs)] remain the same as Ds(�xo) and
SD(�xo), respectively, for �xs = 2�xo = �x. This explains why
DIL and SDIL are zero for �xs/�xo = 2 in Fig. 4.

When �xs/�xo increases to 5, the number of super-
observations reduces to Ms = 8 (<N), so Ds(�xs) [or SD(�xs)]
is the summation of Dsi (or SDi) over –3 = μs– ≤ i ≤ μs+ = 4,
where μs– ≡ Int[(1 – μs)/2], μs+ ≡ Int[μs/2] and μs ≡ min(N,
Ms). Note that Dsi (or SDi) is determined solely by |γi |2 = ßs

�i/σ
2
s = ß�i/σ

2
0 , where �i is the collapsed background error

power spectrum. According to (25) of X11, we have �–3 =

S–3 + S5, �–2 = S–2 + S6, �–1 = S–9 + S–1 + S7, �0 = S–8 +
S0 + S8, �1 = S–7 + S1 + S9, �2 = S–6 + S2 + S10, �3 =
S–5 + S3, and �4 = S–4 + S4 for N = 20 and Ms = 8 (with
�xs = 5�xo). Note also that |γ i/γ 0|2 = Si/So for M ≥ N, and
Si/So decreases rapidly to 7.2 × 10–3, 4.5×10–4, 1.5 × 10–5
and virtually zero as |i| increases from 0 to 4, 5, 6 and beyond (as
shown by the SVi2 curve in Fig. 2). Therefore, Si/So < or � 4.5
× 10–4 for |i| > 4, and we only need to consider the case of |i| =
4. Note that �4 = S–4 + S4 = 2S4 due to the symmetry of S–i =
Si, so S–4 is collapsed into �4 and this doubles Ds4 and SD4. The
original contribution of Ds–4 (or SD–4) to Ds(�xo) [or SD(�xo)]
in the summation over –9 ≤ i ≤ 10 for the original observations
is thus largely retained by the doubled Ds4 (or SD4) in the sum-
mation over –3 ≤ i ≤ 4 for super-observations generated with
�xs = 5�xo. This explains why the dispersion-part information
loss, measured by DIL (or SDIL), remains negligibly small as
�xs/�xo increases to 5 in Fig. 4.

The signal-part information loss, measured by SIL, depends
mainly on the difference between the original innovation spec-
trum ci and associated super-innovation spectrum, denoted by
csi. The local averaging acts like a sinc-function filter in the
spectral space [see the discussion of (40) in X11], so |csi| is
not exactly the same as |ci| even when �xs = 2�xo = �x [and
the summation of Sgi in (2) for the super-observations is still
over the same range of –9 ≤ i ≤ 10 as for the original observa-
tions]. This explains why SIL is non-zero (0.07) for �xs/�xo =
2 as shown in Fig. 4. When �xs/�xo increases to 4, 5 and 10,
the number of super-observations reduces to Ms = 10, 8 and 4,
respectively. In this case, the difference between |csi| and |ci|
becomes increasingly large and the summation of Sgi in (2) for
the super-observations is confined to the successively narrowed
ranges of –4 ≤ i ≤ 5, –3 ≤ i ≤ 4 and –1 ≤ i ≤ 2. This explains
why SIL increases rapidly as �xs/�xo increases to 4 and beyond
as shown in Fig. 4.

As explained in section 5.1 of X07, the signal-part information
loss measures the information loss caused by super-Obbing that
degrades the analysis mean, and the analysis mean degradation
(MD) can be quantified by

MD = |a − as |, (15)

where a and as are the state vectors of the analysis means ob-
tained from the original observations and super-observations,
respectively. On the other hand, the dispersion-part information
loss measures the information loss caused by super-Obbing that
degrades the analysis covariance and, the analysis covariance
degradation (CD) can be quantified by

CD = ||A − As ||F, (16)

where A and As are the analysis covariance matrices obtained
from the original observations and super-observations, respec-
tively, and ‖A – As‖F denotes the Frobenius norm of As – A
defined by the square root of the sum of the squared absolute
values of all the elements in As – A [see (2.2–4) of Golub and Van
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Loan 1983]. If the observations are not used at all, then the anal-
ysis mean and covariance matrix reduce to the background mean
and covariance matrix, denoted by b and B, respectively. In this
case, the degradations of the analysis mean and covariance reach
their maxima MD0 ≡ |a – b| and CD0 ≡ ‖A – B‖F, respectively.
The relative degradations of the analysis mean and covariance
can be then measured by MD/MD0 and CD/CD0, respectively,
and they are expected to increase with �xs/�xo similarly to the
relative information losses SIL and DIL (or SDIL), respectively.
As shown in Fig. 4, these expected similarities are indeed veri-
fied by the closeness of the thin solid curve for MD/MD0 to the
thick solid curve for SIL and the closeness of the thin dashed
curve for CD/CD0 to the thick dotted curve for DIL (or thick
dashed curve for SDIL).

3. Applications to two-dimensional radar data
on the conical surface of radar scan

3.1. Descriptions of the two-dimensional radar data and
background field

The two-dimensional radar data used in this section are the
radial velocities on the conical surface at 0.75o elevation angle
scanned by the same phased array radar around 2108 UTC as
described in Section 2.1. As these original radar data are dense
and have high resolutions (240 m in the radial direction and
1.6o in the azimuthal direction) as mentioned in Section 2.1,
the number of observations is quite large (=10134) over the
(108 × 60 km2) area covered by the analysis domain on the
conical surface at 0.75o elevation angle. The original radar data
are thinned to the coarsened resolutions of �ro = 1.2 km in
the radial direction and �θ o = 3.2o in the azimuthal direction.
After the thinning, the observation errors become essentially
uncorrelated (Xu et al., 2007) to facilitate the tests in Section 3.3
for super-Obbing by local averaging to cause near-zero minimal
information loss. The observation error variance is σ 2

0 = 6.4 m2

s−2, as stated in Section 2.1. The analysis domain is a 108 × 60
km2 rectangular area on the conical surface at 0.75o elevation
angle, and it ranges from 30 to 138 km in x-direction and from
–30 to 30 km in y-direction relative to the radar. The analysis
grid consists of 18 × 10 grid boxes with a uniform resolution of
�x = �y = 6 km. The thinned radial-velocity data within the
analyses domain are plotted in Fig. 5a. These thinned data will
be used as the input observations for the analysis in this section,
and the number of the observations is Mo = 1012.

The background velocity field is produced by the COAMPS
on the same 6 km grid as described in Section 2.1, and then
projected onto the above two-dimensional analysis grid on the
conical surface at 0.75o elevation angle. The projected back-
ground radial-velocity field is shown in Fig. 5b. According to
(5.1) of Xu and Gong (2003), the background radial-velocity
error covariance between two points x2 and x1 on this surface

can be modelled by

B(r) = cos(�β)σ 2 exp
[−r2/(2L2)

]
, (17a)

where r = x2 – x1, r = |r|, �β is the angle between the two dis-
tance vectors represented by x2 and x1 in the radar-centred Carte-
sian coordinate system (see fig. 1 of Xu and Gong, 2003). Here,
as in (1), σ 2 and L denote the background radial-velocity error
variance and decorrelation length scale, respectively. Again, as
in Section 2.1, σ 2 = 70 m2 s−2 and L = 15 km are selected for
the illustrative purpose in this section.

3.2. Applications of spectral formulations and
singular-value formulations

As shown in Fig. 5a, the input observations are not uniformly
distributed and contain data-void areas. In this case, the signal
part of the relative entropy cannot be easily or directly estimated
by the two-dimensional spectral formulation in (29) of X11, be-
cause the signal part depends on the sampled observations and
the observations must be properly mapped on a uniform grid in
each direction in order to use the two-dimensional spectral for-
mulation (which is an unexplored approach beyond this paper).
However, the dispersion part of the relative entropy, Ds, and
the Shannon entropy difference, SD, do not depend on the in-
dividual realization of the sampled set of observations although
they depend on the observation distribution and error covariance.
Thus, Ds and SD can be estimated approximately by the two-
dimensional spectral formulations in (30)–(31) of X11, as long
as the input observations in Fig. 5a can be treated approximately
as uniformly distributed with an averaged resolution in each di-
rection and the background error covariance function in (17a)
can be simplified into the following homogeneous and isotropic
form:

B(r) = σ 2 exp
[−r2/(2L2)

]
. (17b)

The analysis domain in Fig. 5b can be extended periodically
as described in section 2.2 of X11. The simplified background
error covariance function in (17b) can be extended periodically
in each direction, similar to that in (1b), into the following form:

B(x, y) = (σ 2/A0)
∞∑

i=−∞

∞∑
j=−∞

× exp{−[(x − iDx)2 + (y − jDy)2]/(2L2)},
(17c)

where A0 = ∑∞
i=−∞

∑∞
j=−∞ exp[ − (i2D2

x + j 2D2
y)/(2L2)] to

ensure B(0, 0) = σ 2. For the analysis grid described in Sec-
tion 3.1, we have �x = �y = 6 km, Nx = 18, Ny = 10, Dx =
108 km, Dy = 60 km and A0 = 1 + 6.7 × 10−4 (with L = 15
km). The background error power spectrum can be derived from
(17c) by using the generalized Fourier transformation in each
direction similar to that in (10)–(11). The derived background
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Fig. 5. (a) Input radial-velocity observations
plotted by grey image pixels (with �ro = 1.2
km and �θo = 3.2o) on the conical surface
at 0.75o elevation angle scanned by the
radar, (b) background radial-velocity field
plotted by contours of every 5 m s−1, (c) S1
super-observations plotted by grey image
pixels (with �xs = �ys = 6 km), and (d) S2
super-observations plotted by grey image
pixels [with �rs = 6 km and �θ s =
(�rs/r)(180o/π )]. The greyscale of every 5
m s−1 is shown on the top. The (x, y)-
coordinate system is centred at the radar site.
The + sign marks the radar site in panel (a)
and the thin lines show the county
boundaries in panels (a), (c) and (d). The
dark rectangular boundary lines highlight the
analysis domain in panel (b). The tiny black
dot within each super-observation grey
image pixel marks the location of the
super-observation.

error power spectrum has the following discrete form:

Sij = (
σ 2/A0

)
2πL2 (�x�y)−1 exp

[− (
k2

i + k2
j

)
L2/2

]
for Nx− ≤ i ≤ Nx+ and Ny− ≤ j ≤ Ny+, (18)

where ki = i�kx kj = j�ky, �kx ≡ 2π /Dx, �ky ≡ 2π /Dy, Dx =
Nx�x, Dy = Ny�y, Nx– ≡ Int[(1 – Nx)/2], Nx+ ≡ Int[Nx/2],
Ny– ≡ Int[(1 – Ny)/2] and Ny+ ≡ Int[Ny/2].

For the input observations in Fig. 5a, the averaged resolutions
can be represented by �xo = 1.2 km in the x direction and �yo =
5 km in the y direction. With these averaged resolutions, the
observation space can be approximated by a Mx × My = 90 × 12
uniform grid over the 108 × 60 km2 rectangular area of the

above analysis domain. The observation error covariance is σ 2
0

multiplied by an identity matrix in the approximated observation
space of RM = RMx ⊗ RMy where M = Mx × My = 90 × 12.
The observation error power spectrum is thus a constant in the
approximated observation-spectral space and is given by

Cij = C(i�kx,j�ky) = σ 2
0

for Mx− ≤ i ≤ Mx+ and My− ≤ j ≤ My+, (19)

where Mx– ≡ Int[(1 – Mx)/2], Mx+ ≡ Int[Mx/2], My– ≡ Int[(1 –
My)/2] and My+ ≡ Int[My/2].

By substituting the derived background error power spectrum
in (18) and approximated observation error power spectrum in
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Table 1. Spectral-estimated and SVD-computed information contents
from the input observations in Fig. 5a.

Sg Ds SD

Spectral-estimated N/A 57.0 75.2
SVD-computed with B(r) in (17a): 66.7 61.6 83.6
SVD-computed with B(r) in (17b): 70.2 58.4 78.7
SVD-computed with B(x, y) in (17c): 83.9 53.5 71.0

(19) into the spectral formulations in (30)–(32) of X11, we can
estimate Ds and SD approximately for the dispersion part of
the information content extracted from the input observations
in Fig. 5a by the analysis with the background field in Fig. 5b.
As listed in the first row of Table 1, the estimated values are
Ds = 57.0 and SD = 75.2, while the observation space di-
mension is approximated by M = Mx × My = 90 × 12 =
1080. These spectral-estimated values are close to their counter-
part values computed by the singular-value formulations, called
SVD-computed values, as shown below.

With the singular-value formulations [see (3.6)–(3.10) of
X07], the background error covariance matrix B can be con-
structed directly by discretizing B(r) in (17a), B(r) in (17b)
or B(x, y) in (17c) on the analysis grid, while the observation
error covariance matrix R is simply given by σ 2

0 IMo, where
IMo is an identity matrix in the observation space RMo and Mo

(=1012) is the number of the input observations in Fig. 5a. The
innovation vector, denoted by d ∈ RMo, in the observation space
can be obtained by subtracting the background values in Fig. 5b
from the observations in Fig. 5a. By substituting this d with the
above constructed B and R into (3.6) of X07, we can compute
Sg for the signal part of the information content from the input
observations in Fig. 5a. As listed in the first column of Table 1,
the computed value is Sg = 66.7 for B constructed from the orig-
inal B(r) in (17a), and the value is inflated slightly (by 5.2%)
to 70.2 when B is constructed from the simplified B(r) in (17b),
and inflated further (by 19.5%) to 83.9 when B is constructed
from the periodically extended B(x, y) in (17c). By substituting
the above B and R into (3.9)–(3.10) of X07, we can compute
Ds and SD for the input observations in Fig. 5a. As listed in
Table 1, the computed values are Ds = 61.6 and SD = 83.6
when B is constructed from the original B(r) in (17a), and the
values are deflated slightly (by 5.2% and 5.9%) to Ds = 58.4
and SD = 78.7, respectively, when B is constructed from B(r)
in (17b), and deflated further (by 2.4% and 9.8%) to Ds = 53.5
and SD = 71.0, respectively, when B is constructed from B(x, y)
in (17c).

Note that cos(�β) (≤1) is a non-isotropic damping factor for
B(r) in (17a). When this factor is neglected by the simplified
B(r) in (17b), the spatial correlation is enhanced in B(r) relative
to that in B(r). When B(r) is extended periodically into B(x, y) in
(17c), the spatial correlation is further enhanced. Thus, when B

is constructed from B(r) in place of B(r) and then from B(x, y) in
place of B(r), the off-diagonal elements of B are inflated consec-
utively but the diagonal elements still have the constant value of
σ 2. In this case, the sum of λ2

i is not changed [because
∑N

i=1 λ2
i =

trace(MMT) = trace(MTM) = trace(B)/σ 2
0 = Nσ 2/σ 2

0 for N =
Nx × Ny = 18 × 10 < Mo = 1012 and R = σ 2

0 IMo where HHH =
IN is used], but λ2

i (that is, the eigenvalue of MTM = B/σ 2
0 ) is

a consecutively steepened decreasing function of i when B is
constructed from B(r) in place of B(r) and then from B(x, y)
in place of B(r). The incremental change of λ2

i caused by each
consecutive steepening is thus a zero-sum function of i, and
this function increases positively (or negatively) as i decreases
toward 1 (or increases toward N). This zero-sum incremental
change of λ2

i explains why the SVD-computed Ds and SD are
deflated consecutively when B is constructed from B(r) in place
of B(r) and then from B(x, y) in place of B(r), as shown in the
last three rows of Table 1.

The ith component of Sg is computed by Sgi =
d ′2

i /λ2
i (1+λ2

i )−2/2 where d′
i is the ith component of the trans-

formed innovation vector d′ = UTR−1/2d in the singular-vector
space [see (3.6) of X07]. For d computed from the observations
in Fig. 5a and the background field in Fig. 5b, the transformed
innovation vector d′ has its large-amplitude (measured by |d′

i|)
components mostly within the index range of 1 ≤ i < N/2, and
this feature becomes increasingly distinctive when B is con-
structed from B(r) in place of B(r) and then from B(x, y) in place
of B(r). This feature in combination with the aforementioned
zero-sum incremental change of λ2

i explains why Sg is inflated
consecutively when B is constructed from B(r) in place of B(r)
and then from B(x, y) in place of B(r), as shown in the first
column of Table 1.

The spectral-estimated Ds (or SD) in the first row of Table 1
can be verified against the SVD-computed Ds (or SD) in the last
row of Table 1, because they both use the periodically extended
background error covariance B(x, y) in (17c). When the observa-
tion error power spectrum is derived in (19), the observations are
assumed to cover the analysis domain uniformly with no data-
void area. The observation space dimension is approximated by
M = Mx × My = 90 × 12 = 1080 in the derivation of (19) which
is slightly larger than that (Mo = 1012) for the input observations
in Fig. 5a, while the observation error variance remains the same
(σ 2

0 = 6.4 m2 s−2). This slightly increased number of observa-
tions (with the same σ 2

0 ) explains why the spectral-estimated Ds
(or SD) in the first row is slightly larger than the SVD-computed
Ds (or SD) in the last row of Table 1. Consequently, the spectral-
estimated Ds (or SD) is very close to and only slightly smaller,
by merely 4.4% (or 2.4%), than the SVD-computed Ds (or SD)
with B constructed from B(r) in the third row of Table 1. There-
fore, B(r) will be used as an intermediate approximation of the
original B(r), which is between B(x, y) and B(r), to compute the
information losses caused by super-observations and verify the
spectral-estimated information losses in the next subsection.
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Table 2. Super-observation resolution �ls, its ratio �ls/�lo to the
input observation resolution (�lo = 1.2 km) and its associated
super-observation space dimension Ms listed (in the first five rows) for
each set (in each column) of S1 super-observations, S2
super-observations and spectral-approximated super-observations. The
last two rows list the spectral-approximated super-observation
resolutions (�xs, �ys).

�ls (km) 3 6 12 15 24 30
�ls/�lo 2.5 5 10 12.5 20 25
S1 Ms 410 153 44 30 15 8
S2 Ms 337 136 50 34 19 14
Spectral Ms 432 180 45 32 15 8
Spectral �xs (km) 3 6 12 13.5 21.6 27
Spectral �ys (km) 5 6 12 15 24 30

3.3. Super-Obbing by local averaging

In this subsection, two types of super-observations, called S1
and S2, are generated from the input observations in Fig. 5a by
local averaging. Each S1 super-observation covers a square area
of �xs × �ys with �xs = �ys set to a prescribed resolution,
denoted by �ls. Each S2 super-observation covers a sector area
with the radial-range interval �rs set to a prescribed resolution
�ls in the radar-centred polar coordinate system (on the conical
surface of radar scan), while the azimuth span of the sector area
is determined by �θ s = (�rs/r)(180o/π ) where r is the radial
range distance from the radar to the far side of the sector area.
Each super-observation of either type is computed by averaging
the input observations locally in its covered area. The location
of each super-observation is assigned to the centroid of the input
data points in its covered local area. The error variance of each
super-observation is estimated by σ 2

s = σ 2
0 /ns , where ns is the

number of input observations in the super-observation covered
local area and the input observation error variance σ 2

0 is assumed
to be constant and not affected by the increase of �xs [see (43)
and remark (ii) in section 4.4 of X11].

Six sets of S1 super-observations are generated with �xs =
�ys = �ls prescribed to 3, 6, 12, 15, 24 and 30 km, respectively,
as listed in the first row of Table 2. The associated ratios with
respect to the input observation resolution �xo = �lo (=1.2
km) in the x-direction are �ls/�lo = 2.5, 5, 10, 12.5, 20 and 25,
respectively, as listed in the second row of Table 2. These six
sets contain Ms = 410, 153, 44, 30, 15 and 8 super-observations,
respectively, as listed in the third row of Table 2, and an example
is shown in Fig. 5c for the set obtained with �xs = �ys = �ls = 6
km. Six sets of S2 super-observations are generated with �rs =
�ls prescribed to 3, 6, 12, 15, 24 and 30 km, respectively, as
listed again in the first row of Table 2. The associated ratios with
respect to �lo are the same as those listed in the second row
of Table 2. These six sets contain Ms = 337, 136, 50, 34, 19
and 14 super-observations, respectively, as listed in the fourth
row of Table 2, and an example is shown in Fig. 5d for the set
obtained with �rs = �ls = 6 km. As shown in Fig. 5c (or 5d),

super-observation areas do not overlap and their combined area
covers all the input data points in Fig. 5a.

For each set of S1 or S2 super-observations listed in Table 2,
Sg, Ds and SD can be computed by the singular-value formula-
tions in the same way as described in the previous subsection for
the input observations. The background error covariance matrix
B is still constructed directly from either B(r) in (17a) or B(r)
in (17b), while the super-observation error covariance matrix R
is simply given by σ 2

s IMs (since the super-observation errors are
still spatially uncorrelated) where IMs is an identity matrix in
the super-observation space RMs and Ms is the number of super-
observations in the concerned set. The super-innovation vector,
d ∈ RMs, is obtained by subtracting the background values in
Fig. 5b from the super-observations in the concerned set. By
substituting the above d, B and R into (3.6) and (3.9)–(3.10)
of X07, Sg, Ds and SD are obtained for each set of S1 or S2
super-observations with B constructed from either B(r) or B(r).

The relative information losses caused by each set of super-
observations with respect to the input observations in Fig. 5a can
be measured and computed by SIL, DIL and SDIL in the same
way as those in (12)–(14) except that Sg(�xo), Ds(�xo) and
SD(�xo) are replaced by Sg(�lo), Ds(�lo) and SD(�lo), respec-
tively, to denote the information contents from the input observa-
tions in Fig. 5a, and Sg(�xs), Ds(�xs) and SD(�xs) are replaced
by Sg(�ls), Ds(�ls) and SD(�ls), respectively, to denote the
information contents from each set of super-observations listed
in Table 2. Here, �lo represents (�ro, �θ o) with �ro = �lo

(=1.2 km) and �θ o = 3.2o for the input observations in Fig. 5a,
and �ls represents (�xs, �ys) with �xs = �ys = �ls for S1
super-observations or represents (�rs, �θ s) with �rs = �ls and
�θ s = (�ls/r)(180o/π ) for S2 super-observations.

The SVD-computed SIL and DIL for the six sets of S1 (or
S2) super-observations with B constructed from B(r) in (17a)
are plotted in Fig. 6 as functions of �ls/�lo by the dark long-
dashed (or dark short-dashed) curve labelled SIL-S1a (or SIL-
S2a) and dark dot-dashed (or dark dotted) curves labelled DIL-
S1a (or DIL-S2a), respectively. The counterpart SIL and DIL
computed with B constructed from B(r) in (17b) are plotted
in Fig. 6 by the grey long-dashed (or grey short-dashed) curve
labelled SIL-S1b (or SIL-S2b) and grey dot-dashed (or grey
dotted) curve labelled DIL-S1b (or DIL-S2b), respectively. The
SVD-computed SDIL curves (not shown) are very similar to and
only slightly higher than their counterpart DIL curves in Fig. 6.
Note that �ls/�lo = 1 corresponds to the case of no super-
Obbing and thus no information loss, so all the curves start from
zero at �ls/�lo = 1 in Fig. 6. All the grey curves are very close
to their counterpart dark curves, so the simplified B(r) in (17b)
can be indeed used as an approximation of the original B(r) in
(17a) to facilitate the use of the spectral formulation to estimate
the information losses as shown below.

When the spectral formulations in (30)–(32) of X11 are
used to estimate Ds (or SD) for each set of super-observations,
the super-observation space is approximated by a Mxs × Mys
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Fig. 6. SVD-computed SIL and DIL for S1 (or S2) super-observations
with B constructed from B(r) in (17a) plotted as functions of �ls/�lo
by the dark long-dashed (or dark short-dashed) curve labelled SIL-S1a
(or SIL-S2a) and dark dot-dashed (or dark dotted) curves labelled
DIL-S1a (or DIL-S2a), respectively; SVD-computed SIL and DIL for
S1 (or S2) super-observations with B constructed from B(r) in (17b)
plotted as functions of �ls/�lo by the grey long-dashed (or grey
short-dashed) curve labelled SIL-S1b (or SIL-S2b) and grey
dot-dashed (or grey dotted) curve labelled DIL-S1b (or DIL-S2b),
respectively; and spectral-estimated DIL plotted as a function of
�ls/�lo by the dark solid curve labelled DIL-Spc. See the first two
rows and last two row in Table 2 for the super-observation resolutions
�ls and (�xs, �ys) associated with �ls/�lo.

uniform grid over the Dx × Dy = 108 × 60 km2 rectangular
area of the analysis domain, where Mxs = Int[Dx/�xs + 1/2]
and Mys = Int[Dy/�ys + 1/2]. For the six sets of S1 or S2
super-observations, the super-observation space dimensions are
approximated by Ms = Mxs × Mys = 36 × 12 = 432, 18 × 10 =
180, 9 × 5 = 45, 8 × 4 = 32, 5 × 3 = 15 and 4 × 2 = 8,
respectively, as listed in the fifth row of Table 2. The approx-
imated super-observation resolutions are (�xs, �ys) = (3, 5),
(6, 6), (12, 12), (13.5, 15), (21.6, 24) and (27, 30) km, respec-
tively, as listed in the last two rows of Table 2. In this case,
the background error power spectrum is still given by (18), but
the observation error power spectrum in (19) is replaced by the
following super-observation error power spectrum

Cij = C(i�kx,j�ky ) = σ 2
s = σ 2

s /ns

for Mxs− ≤ i ≤ Mxs+ and Mys− ≤ j ≤ Mys+, (20)

where ns = �xs�ys/(�xo�yo) is the averaged number of input
observations in the local area covered by a super-observation,
Mxs– ≡ Int[(1 – Mxs)/2], Mxs+ ≡ Int[Mxs/2], Mys– ≡ Int[(1 –
Mys)/2] and Mys+ ≡ Int[Mys/2]. By substituting (18) and (20)
into (30)–(32) of X11, we can obtain the spectral-estimated Ds
(or SD) for each set of super-observations and then estimate
the associated information loss, DIL (or SDIL), relative to the
spectral-estimated Ds (or SD) for the input observations (listed
in the first row of Table 1). The spectral-estimated DIL is plotted

as functions of �ls/�lo by the dark solid curve labelled DIL-
Spc in Fig. 6, where �lo represents (�xo, �yo) with �xo =
�lo = 1.2 km and �yo = 5 km for the approximated observation
resolutions used in the derivation of (19), and �ls represents
(�xs, �ys), with �xs = �ls for �ls ≤ 12 km and �ys = �ls for
�ls > 12 km, as shown by the approximated super-observation
resolutions listed in the last two rows of Table 2. As shown in
Fig. 6, the spectral-estimated DIL-Spc curve follows closely the
SVD-computed DIL-S1b curve with B constructed from B(r).

All the curves in Fig. 6 increase with �ls/�lo monotoni-
cally, and the SVD-computed SIL curves increase more rapidly
than the SVD-computed DIL curves especially when �ls/�lo

increases from 5 to 10 and beyond. Note that �xo = 1.2 km
and �ls/�lo = 5 corresponds to �xs = �ys = �ls = 6 km
(or �rs = �ls = 6 km) for the S1 (or S2) super-observations,
so the super-observation resolution becomes the same as the
background resolution (�x = �y = 6 km) when �ls/�lo = 5 in
Fig. 6. For the one-dimensional observations in Section 2, �xo =
3 km and the super-observation resolution becomes the same as
the background resolution (�x = 6 km) when �xs/�xo = 2
in Fig. 4. Thus, the rapid increase of SIL after �ls/�lo > 5 in
Fig. 6 is similar to the rapid increase of SIL (shown by the dark
solid curve) after �xs/�xo > 2 in Fig. 4. This rapid increase of
SIL can be explained by the reduced super-observation space
dimension (below the background space dimension) plus the
reduced amplitude of the transformed super-innovation vector
caused by the local averaging (that acts like a sinc-function filter
in the spectral space), which is similar to that explained for the
one-dimensional super-observations in Section 2.5.

As shown in Fig. 6, the SVD-computed DIL curves increase
slowly from zero to various levels below 0.05 when �ls/�lo

increases from 1 to 10. Note that �ls/�lo = 10 corresponds to
�xs = �ys = 12 km (or �rs = 12 km) for the S1 (or S2) super-
observations and this super-observation resolution (=12 km) is
still finer than the background error de-correlation length scale
L = 15 km. This explains why the SVD-computed DIL curves all
remain very low (< 0.05) for �ls/�lo ≤ 10 in Fig. 6. Note also
that the S1 and S2 super-observations are not exactly uniformly
distributed (because the location of each super-observation is
assigned to the centroid of the input data points in its covered
local area as described in Section 3.1 and shown in Figs. 5c and
d), and they both contain data-void areas due to the incomplete
coverage of the input data as shown in Fig. 5. This explains
why the SVD-computed DIL curves increase slowly but notably
above zero as �ls/�lo increases from 1 to 10 in Fig. 6. On the
other hand, the spectral-estimated DIL curve (dark solid labelled
DIL-Spc) remains virtually zero for �ls/�lo ≤ 10 in Fig. 6.
Similarly, the dark dotted DIL curve computed for the uniform
one-dimensional super-observations is also virtually zero for
�xs/�xo ≤ 5 as shown in Fig. 4, and this is simply because
�xs/�xo = 5 in Fig. 4 and �ls/�lo = 10 in Fig. 6 both correspond
to the same super-observation resolution of �xs = 12 km and
thus the same ratio of �xs/L (=0.8).
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As listed in Table 2, the number of S1 super-observations
is larger (or smaller) than that of S2 super-observations for
�ls/�lo ≤ 5 (or �ls/�lo ≥ 10). This explains why the SIL-
S1 curves are lower (or higher) than their respective SIL-S2
curves for �ls/�lo ≤ 5 (or �ls/�lo ≥ 10) as shown in Fig. 6.
Note also that the number of S1 super-observations is substan-
tially smaller than that of S2 super-observations for �ls/�lo ≥
20) as listed in Table 2. This explains why the DIL-S1 curves
become significantly higher than their respective DIL-S2 curves
when �ls/�lo ≥ 20 as shown in Fig. 6. Also as listed in Table 2,
the number of super-observations approximated by Ms = Mxs ×
Mys for the super-observation error power spectrum in (20) is
much closer to the number of S1 super-observations than the
number of S2 super-observations and even becomes identical to
the number of S1 super-observations when �ls/�lo ≥ 20. This
explains why the spectral-estimated DIL curve follows the SVD-
computed DIL-S1b curve more closely than the DIL-S2b curve
especially when �ls/�lo ≥ 20, as shown in Fig. 6. A similar
close comparison is seen between the spectral-estimated SDIL
curve and the SVD-computed SDIL-S1b curve (not shown) for
the S1 observations with B constructed from B(r) in (17b). These
close comparisons indicate that the spectral formulations can be
used to estimate the information loss caused by local averaging
for the purpose of finding an optimally coarsened resolution for
radar radial-velocity data compression with zero or near-zero
minimal information loss.

As mentioned at the end of the previous subsection, the sim-
plified B(r) in (17b) can be used as an intermediate approxi-
mation of the original background radial-velocity error covari-
ance B(r) in (17a) to compute the information losses caused
by radial-velocity super-observations. This is indeed the case
as shown in this subsection. In addition to this proxy use, B(r)
can be also used directly to model the pure-scalar error co-
variance without approximation for the background reflectivity
field if σ 2 in (17b) is viewed as the background reflectivity
error variance. In this case, the radial-velocity observations in
Fig. 5a and background field in Fig. 5b can be viewed as re-
flectivity observations and background field, respectively. Then,
the SVD-computed information losses with B constructed from
B(r) become accurate results (without approximation) for re-
flectivity super-observations, and their close comparisons with
the spectral-estimated information losses (shown by the DIL-
S1b and DIL-Spc curves in Fig. 6) ought to indicate that the
spectral formulations can have the same (or even better) utility
for radar reflectivity observations as demonstrated for the radar
radial-velocity observations in this section.

4. Conclusions

In this paper, the spectral formulations derived in X11 for mea-
suring information contents from uniformly distributed observa-
tions are applied to radar observations to test and demonstrate the
advantages of the spectral formulations in comparison with the

singular-value formulations derived in X07 and to explore the
utilities of the spectral formulations for radar data compression.
The main results are summarized below with conclusions:

(i) For uniformly distributed observations, the spectral for-
mulations are shown to have precise correspondences to the
singular-value formulations, as speculated in the conclusion of
X11. As the SVD of the scaled observation operator M is gen-
eralized to complex domain in the spectral formulations, the
absolute singular values can be computed very efficiently or
even derived analytically in the spectral space [see Fig. 1 and
(11)]. In this case, the spectral formulations are not only very
accurate but also much more efficient than the singular-value
formulations in computing the information contents. This ad-
vantage and related utilities of the spectral formulations for com-
puting the information losses (if any) caused by uniform thin-
ning, spectral truncation and local averaging are demonstrated
(in Sections 2.2–2.5) with one-dimensional radar radial-velocity
observations uniformly distributed along the radar beam.

(ii) For densely but non-uniformly distributed observations,
the spectral formulations are shown to be able to estimate the
dispersion part of the information content (measured globally
by the dispersion part of relative entropy Ds or the Shannon en-
tropy difference SD) with the observation error power spectrum
constructed approximately based on the averaged observation
resolution in each direction [see (19)]. The spectral formula-
tions can also estimate the dispersion part of the information
content from super-observations generated by local averaging
with the super-observation error power spectrum constructed
based on the super-observation resolution in each direction [see
(20)]. These utilities of the spectral formulations are demon-
strated with two-dimensional radar radial-velocity observations
densely but non-uniformly distributed on the conical surface
of radar scan (see Fig. 5a). The spectral-estimated information
contents are closely verified by the SVD-computed counterpart
values (see Table 1).

(iii) The background error power spectrum can be derived
analytically [see (18)] in addition to the observation and super-
observation error power spectra, so the information content
(measured globally by Ds or SD) from the original observa-
tions and the information loss caused by their compressed super-
observations through local averaging can be estimated very ef-
ficiently by the spectral formulations. The high-computational
efficiency is an important advantage for the spectral formulations
over the singular-value formulations, especially when the back-
ground and observation spaces are both extremely large and too
large to be computed by the singular-value formulations, as often
seen in radar data assimilation (Gao et al., 2004; Xu et al. 2010).
Thus, regardless of the sizes of the observation and background
spaces, the spectral formulations can always efficiently estimate
the information loss caused by local averaging as a function of
successively coarsened super-observation resolution, so an op-
timally coarsened super-observation resolution can be found for
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radar data compression to minimize the information loss to an
insignificant level. This utility is demonstrated with the afore-
mentioned two-dimensional radar radial-velocity observations
in section 3.3 (see Fig. 6).

In addition to the results summarized above, the spectral for-
mulations can also estimate the dispersion part of information
content from thinned non-uniform observations and the associ-
ated information loss (not shown), while the thinned observation
error power spectrum can be constructed based on the thinned
observation resolution in each direction similarly to that for
the original observations [see (19)]. Moreover, as explained at
the end of Section 3.3, the original non-isotropic background
radial-velocity error covariance [in (17a)] is simplified into an
isotropic form [in (17b)] to facilitate the use of the spectral for-
mulations and such an isotropic form can be used directly to
model the pure-scalar error covariance without approximation
for the background reflectivity field (or any other pure-scalar
background field). Thus, although the spectral formulations are
tested only with the radial-velocity observations, they can be
equally well or even better tested with radar reflectivity obser-
vations for similar utilities. The spectral formulations are also
expected to have similar utilities for other densely and remotely
sensed observations (such as those from GOES satellites).

As explained in Sections 2.1 and 3.1, the original radar ob-
servations are thinned to facilitate the tests in Sections 2.5 and
3.3 for super-Obbing by local averaging to cause zero or min-
imal information loss. In addition, the thinning also reduced
the computational cost of the singular-value formulations dras-
tically (especially if the number of observations exceeds the
order of 103) for the two-dimensional case tested in Section 3.
Ideally for real-data applications (without using the expensive
singular-value formulations for verifications), the spectral for-
mulations should be applied to the original radar observations
directly without thinning to avoid thinning-caused information
loss (see section 4.2 of X11 and Section 2.3 of this paper). In
this case, we need to consider correlated radar observation errors
between neighbouring gates or neighbouring beams (Xu et al.,
2007) and use their associated non-constant observation error
power spectrum [more complex than that in (19)] in the spectral
formulations to estimate the information contents from the orig-
inal observations and evaluate the information loss caused by
local averaging. This problem will be examined in a follow-up
study.
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