
M A R I T I M E  T E C H N I C A L  J O U R N A L  

2022  1 (224) 

 28 

                                                                                                                DOI:10.2478/sjpna-2022-0003  

A R I M A  M O D E L  O P T I M A L  S E L E C T I O N  F O R  
T I M E  S E R I E S  F O R E C A S T I N G  

Vadim Romanuke   

Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69 Str., 81-127 
Gdynia, Poland; e-mail: v.romanuke@amw.gdynia.pl; ORCID ID: 0000-0003-3543-3087 

ABSTRACT 

A fast-and-flexible method of ARIMA model optimal selection is suggested for univariate time 

series forecasting. The method allows obtaining as-highly-accurate-as-possible forecasts auto-

matically. It is based on effectively finding lags by the autocorrelation function of a detrended 

time series, where the best-fitting polynomial trend is subtracted from the time series. The fore-

casting quality criteria are the root-mean-square error (RMSE) and the maximum absolute error 

(MaxAE) allowing to register information about the average inaccuracy and worst outlier. Thus, 

the ARIMA model optimal selection is performed by simultaneously minimizing RMSE and Max-

AE, whereupon the minimum defines the best model. Otherwise, if the minimum does not exist, a 

combination of minimal-RMSE and minimal-MaxAE ARIMA models is used. 
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INTRODUCTION 

Time series analysis and forecasting is an important field which has both 

deep theoretical and practical impact. In this field, a sequence of practically influen-

tial values registered at discrete time steps is referred to as a time series and is 

used to forecast future values. The forecasting accuracy depends on a model, which 

is used to generate forecasts, and the forecasting horizon. As the horizon is extend-

ed, the accuracy decreases. Selection of a model to forecast a time series expansion 

is crucial to achieve the best accuracy, whichever the forecasting horizon is [13, 3, 

8]. 

In analyzing a time series, the main difficulties are possible seasonality and 

trend effects. These effects are handled by autoregressive integrated moving aver-

age (ARIMA) approach [3, 8]. To forecast a time series, an ARIMA model is built by 

specifying three parameters: a degree of the nonseasonal autoregressive polyno-

mial (NSARP), a degree of the nonseasonal differencing lag operator polynomial 

(NSDLOP), and a degree of the nonseasonal moving average polynomial (NSMAP). 

The NSARP degree can be defined by using properties of the autocorrelation func-

tion (ACF). A positive integer value of the NSDLOP degree corresponds to a trend in 

the time series. For instance, is the NSDLOP degree is set at 1, then it is assumed 

that the trend is linear. The NSMAP degree is adjusted in a trickier way. It requires 

iterative nonlinear fitting procedures by additional assumptions that random 

shocks are normally distributed by zero mean and constant scale [6]. 

A methodology from Box and Jenkins [2, 9] exists for ARIMA model optimal 

selection. Basically, the methodology consists in the model general structure identi-

fication, estimation of its parameters, and checking whether the estimated model 

conforms to the specifications of a stationary univariate process [2]. The last step of 

the methodology, at which stationarity is checked, is argued to be fundamentally 

problematic. The reason behind this lies in that real-world practically usable time 

series are never stationary. In the desired automation of time series forecasting, 

therefore, the question of ARIMA model optimal selection is still open to arguing. 

MOTIVATION AND GOAL 

Reasoning from that, in the general case, selecting an ARIMA model is 

weakly defined or undefined, the goal is to suggest a fast-and-flexible method of 
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ARIMA model optimal selection for univariate time series forecasting. The method 

should be independent of additional assumptions allowing to obtain best forecasts 

automatically. To achieve the goal, the selection criteria are to be substantiated, 

whereupon the ARIMA forecasts are automatically generated. The ARIMA model 

optimal selection will be tested on a set of benchmark time series. Finally, the re-

sults will be discussed and brief conclusions with an outlook for further research 

will be made. 

ARIMA MODEL OPTIMAL SELECTION 

Denote a degree of the NSARP by p , a degree of the NSDLOP by d , and a 

degree of the NSMAP by q . As it is classically denoted [2, 1], an ARIMA model is 

defined by triplet  , ,p d q . However, a lot of experimental data allow affirming that 

ARIMA models by  , , 0p d  are not worse than ARIMA models by  0, ,d q . Moreo-

ver, ARIMA models by  , , 0p d  are determined faster. Meanwhile, experiments 

show that setting both p  and q  at nonzero integers generate less accurate fore-

casts. Therefore, it is practically efficient to consider only ARIMA models defined by 

 , , 0p d . 

Denote by 0T  the amount of a time series data, which are used to select an 

ARIMA model. The data are formally denoted by  

 ( ) 
=

0

1

T

i i
y t , (1) 

where, without losing generality, =it i . Data (1) can be also referred to as the time 

series. Let forecT  be a forecasting horizon, which is a time point to which forecasts 

are made, where 0 forecT T . Data  

 ( ) 
= +

forec

0 1

T

i i T
y t  (2) 

will be used for testing the forecasting quality (performance). Data (2) can be also 

referred to as the test data. 

First, the time series (1) is approximated by a polynomial trend model 

 ( )
=

= trend

0

N

j
j

j

y t t , (3) 
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where =1,2,3, ...N , successively. If the root-mean-square error (RMSE) [13, 8] of 

the polynomial trend model of degree +1N  is greater than the RMSE of the poly-

nomial trend model of degree N , then the latter is presumed to be the time series 

trend. Then the ACF of the sequence 

 ( ) ( ) 
=

−
0

trend 1

T

i i i
y t y t  (4) 

is found (e. g., see [12, 5, 10]). All different lags in sequence (4) are determined by 

this ACF. For each lag, denoted by zp , an ARIMA model is defined and determined 

by  , , 0zp N . The performance is estimated by the corresponding RMSE (not to be 

confused with the RMSE of the approximating trend) and the maximum absolute 

error (MaxAE) [4, 7, 11] as follows. If  

 ( ) 
= +

forec

0 1

T

i i T
y t  (5) 

are forecasted data, they are normalized with respect to the initial data: 

 ( )
( ) ( )

( ) ( )
0 forec

0 forec0 forec

1,

1,1,

min

max min

i k
k T T

i

k k
k T Tk T T

y t y t
u t

y t y t

= +

= += +

−

=
−

  by  0 forec1,i T T= + . (6) 

Test data (2) are normalized as well: 

 ( )
( ) ( )

( ) ( )
0 forec

0 forec0 forec
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1,1,

min

max min

i k
k T T

i
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−

  by  0 forec1,i T T= + . (7) 

Then the RMSE is calculated as 

 ( ) ( ) ( )
= +

  = − − 
forec

0

2

RMSE

forec 0 1

1
,

T

z i i

i T

p N u t u t
T T

 (8) 

and the MaxAE is calculated as 

 ( ) ( ) ( )
= +

 = −
0 forec

MaxAE
1,

, maxz i i
i T T

p N u t u t . (9) 

MaxAE (9) registers information about the worst outlier. RMSE (8) and MaxAE (9) 

are used to see the averaged and worst errors in forecasting. 

The best ARIMA model is selected by such a lag, at which RMSE (8) and 

MaxAE (9) are simultaneously minimal. If there are two different lags (1)
zp  and (2)

zp , 

at which 
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 ( ) ( ) (1) (2)
RMSE RMSE, ,z zp N p N  (10) 

and  

 ( ) ( ) (1) (2)
MaxAE MaxAE, ,z zp N p N , (11) 

or 

 ( ) ( ) (1) (2)
RMSE RMSE, ,z zp N p N  (12) 

and  

 ( ) ( ) (1) (2)
MaxAE MaxAE, ,z zp N p N , (13) 

then the best ARIMA model is a combination of models determined by  (1) , , 0zp N  

and  (2) , , 0zp N . The forecasts by this model are made as the average of the fore-

casts by models determined by  (1) , , 0zp N  and  (2) , , 0zp N .  

RESULTS OF TESTING THE METHOD 

To test the ARIMA model optimal selection method, a set of benchmark 

time series is formed. A benchmark time series is generated in the form of 

   ( ) ( ) ( ) ( ) 2 3
1 1 forec 2 2 forec 3 4 50.25i i i i iy t a T r t a T a t a t a t = +  +  + + +    by  forec1,i T=  (14) 

where 1 2a = , ( )1 forecT  and ( )2 forecT  are two vectors of forecT  pseudorandom 

numbers drawn from the standard normal distribution (with zero mean and unit 

variance), ( )  forec

1

T

i i
r t

=
 is a sequence of identical randomly-structured subsequences 

(IRSS) of periodicity  6,7, 8rP  , 2 0.175a = , and 

 ( )4 4
3 10 ;10a − − − ,  ( )5 5

3 10 ;10a − − − ,  ( )6 6
3 10 ;10a − − −  (15) 

are randomly generated coefficients of the trend polynomial. 

Obviously, the forecasting performance worsens as the forecasting horizon 

is extended. Having generated 200 benchmark time series by (14), (15), 0 84T =  

and forec 168T = , a lot of extremely inaccurate forecasts are obtained (see fig. 1, 

where time series points are marked as dots, and forecasts are marked as squares).  
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Fig. 1. A set of 20 time series forecasts whose horizon is the doubled length of the time series 
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It is clearly seen that the most inaccurate forecasts are typical for time series which 

have poorly visible periodicity. The distribution of RMSE (8) for the best ARIMA 

models of 200 time series by (14), (15), 0 84T = , forec 168T =  is presented in fig. 2. 

This distribution shows that there are many time series (among those remaining 

180 instances) whose forecasts are as poor as those for time series ## 6, 9, 10, 12 

in the respective subplots of fig. 1. Forecasts for time series #100 and #170 are the 

poorest. This is confirmed by fig. 3 presenting the distribution of MaxAE (9) for this 

case. Having compared the distributions of RMSE (8) and MaxAE (9), it is worth 

noting that they do not strongly correlate. Therefore, these criteria of ARIMA model 

selection can be thought of as complementary. 
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Fig. 2. RMSE (8) for the best ARIMA models of 200 time series by (14), (15),  

0 84T =  and forec 168T =  (fig. 1) 
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Fig. 3. MaxAE (9) for the best ARIMA models of 200 time series by (14), (15),  

0 84T =  and forec 168T =  (fig. 1) 

 

As the horizon length is shortened from 84 to 63 and 42, the ARIMA per-

formance significantly improves (see fig. 4, where forecasts are marked as squares 

and stars, respectively). However, there are still cases, in which the forecasting  
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Fig. 4. The set of 20 time series (fig. 1) forecasts by shortening the horizon length to 63 and 42 
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accuracy for the shortest horizon length (i. e., by 0 126T = ) is worse than that for 

0 105T = . An example of this is seen in fig. 4 for time series #6 (the third upper sub-

plot in the right column). Nevertheless, shortened-horizon forecasts mostly have 

become sufficiently accurate. For instance, forecasts for time series #100, unlike 

the case by 0 84T = , have become a way better (fig. 5), as well as forecasts for time 

series #170 (fig. 6). The number of cases in which the forecasting accuracy has 

been improved after shortening the horizon length in presented in tab. 1. Surely, 

this is not a perfect result, but the result in tab. 2 is more convincing: the amount of  
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Fig. 5. Three cases of ARIMA forecasts for time series #100 

 

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 168
-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 

Fig. 6. Three cases of ARIMA forecasts for time series #170 

 

Tab. 1. The number of cases (bold) in which shortening the horizon length improves the accuracy 

RMSE MaxAE 

preceding and succeeding length of the time series ( 0T ) 

84, 105 105, 126 84, 126 84, 105, 126 84, 105 105, 126 84, 126 84, 105, 126 

149 113 166 72 153 127 174 89 
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Tab. 2. The number of cases (bold) in which RMSE and MaxAE do not exceed a threshold 

 RMSE is less than 0.25 MaxAE is less than 0.5 

length of the time series 
( 0T ) 84 105 126 84 105 126 

The number of cases 
(out of 200) 

115 160 172 61 122 145 

 

sufficiently accurate forecasts has increased since 86 % of RMSE (see fig. 7) and 

72.5 % of MaxAE (see fig. 8) do not exceed the acceptable threshold. 
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Fig. 7. RMSE (8) for the best ARIMA models of 200 time series by (14), (15),  

0 126T =  and forec 168T =  (see star-marked forecasts in fig. 4) 
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Fig. 8. MaxAE (9) for the best ARIMA models of 200 time series by (14), (15),  

0 126T =  and forec 168T =  (see star-marked forecasts in fig. 4) 

 

Among those 200 best ARIMA models obtained for the worst case (see 

fig. 1), where the horizon length is equal to the length of the time series, only 18 

time series have been forecasted by combinations of two ARIMA models. This 

number has increased up to 45 and 55 for the cases with 0 105T =  and 0 126T =  

(i. e., for the two longer time series), respectively. It is noteworthy that, in the worst 
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benchmark case, 172 ARIMA models have been determined by a linear trend, i. e., 

by =1N . For the two longer time series with 0 105T =  and 0 126T = , the number of 

linear-trend ARIMA models has dropped to 106 and 99, respectively. 

DISCUSSION 

The suggested method does not select an appropriate forecasting horizon 

length. This can be considered as a drawback or concession. In real-world practical 

tasks, however, the horizon length is usually adjusted by studying short-length 

forecasts first. 

Confidence intervals for ARIMA model forecasts stretch as the forecasting 

horizon length is made longer. Such intervals are based on assumptions that resid-

uals are uncorrelated and normally distributed. If either of these assumptions does 

not hold, then the forecast intervals may be incorrect [3, 8]. This is why confidence 

intervals are not estimated for the 200 benchmark time series forecasts. 

Obviously, the forecasting quality (which can be also referred to as the per-

formance or accuracy) depends on the forecasting horizon length. The longer this 

length is, the poorer forecasts may become (see fig. 4 — 6), if even ARIMA models 

are selected optimally. Besides, the exemplary forecasts in fig. 1 allow claiming that 

time series with weakly visible periodicity are expected to be forecasted poorly. 

The obtained results also allow claim that if the trend is linear or parabolic, 

ARIMA models perform forecasts more accurately. Time series with the cubic trend 

seem to be forecasted the worst. This is why the suggested method initially tries to 

forecast by assuming that the trend is linear, where 1d =  is set. It is worth noting 

that even if the time series does not have a trend, the initial degree of the NSDLOP 

is set at 1d = . Then, anyway, sequence (4) does not significantly differ from time 

series (1). 

CONCLUSIONS 

In order to improve the quality of forecasting, the suggested method auto-

matically selects an ARIMA model or a combination of ARIMA models. The respec-

tive forecasts are close to be as accurate as possible owing to effectively finding 

lags and using diverse criteria of the forecasting quality. Lags are found by the ACF 
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of a detrended time series, where the best-fitting polynomial trend is subtracted 

from the time series. The forecasting quality criteria are RMSE and MaxAE allowing 

to register information about the average inaccuracy and worst outlier. Thus, the 

ARIMA model optimal selection is performed by simultaneously minimizing RMSE 

and MaxAE, whereupon the minimum defines the best model. Otherwise, if the 

minimum does not exist, a combination of minimal-RMSE and minimal-MaxAE 

ARIMA models is used. 

The research is to be furthered by considering a possibility to predict poor 

accuracy in forecasts before applying an approach. The poorly visible periodicity is 

an option (see fig. 1). Such a possibility, for instance, can optimize a forecasting 

horizon length. Obviously, this is a meta-forecasting methodology, and it will en-

compass much wider and deeper area of univariate time series. 
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O P T Y M A L N Y  D O B Ó R  M O D E L U  A R I M A  D L A  
P R O G N O Z O W A N I A  S Z E R E G Ó W  C Z A S O W Y C H  

STRESZCZENIE 

W pracy zaproponowano szybką i elastyczną metodę optymalnego doboru modelu ARIMA na 

potrzeby prognozowania szeregów czasowych z jedną zmienną. Metoda pozwala na uzyskanie 

możliwie najdokładniejszych prognoz, opierając się na skutecznym znajdowaniu opóźnień. Po-

szukiwanie opóźnień realizowane jest za pomocą funkcji autokorelacji szeregu czasowego bez 

trendu, w którym najlepiej dopasowany trend wielomianowy jest odejmowany od szeregu cza-

sowego. Za kryteria jakości prognozowania przyjęto średni błąd kwadratowy (RMSE) i maksy-

malny błąd bezwzględny (MaxAE), które pozwoliły na rejestrację informacji o średniej i 

maksymalnej niedokładności. Optymalny dobór modelu ARIMA odbywa się poprzez jednoczesną 

minimalizację RMSE i MaxAE, dla której wartość minimalna określa najlepszy model. W przeciw-

nym razie, jeśli minimum nie istnieje, używana jest kombinacja modeli ARIMA z minimalnym 

RMSE i minimalnym MaxAE. 

Słowa kluczowe:  

prognozowanie szeregów czasowych, ARIMA, dobór modelu, horyzont prognozowania, sezono-

wość, trend. 


