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Abstract. The work is devoted to the study of continuation and stability estimation of the solution of
the Cauchy problem for the biharmonic equation in the domain G from its known values on the smooth
part of the boundary 0G. The problem under consideration belongs to the problems of mathematical
physics in which there is no continuous dependence of solutions on the initial data. In this work, using
the Carleman function, not only the biharmonic function itself, but also its derivatives are restored from
the Cauchy data on a part of the boundary of the region. The stability estimates for the solution of the
Cauchy problem in the classical sense are obtained.
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Introducnion

Let © = (z1,72),y = (y1,92) € R? and G is a bounded simply connected domain in R? with
boundary 0G, consisting of compact part "= {y; € R: a1 < y1 < b1} and a smooth arc of the
curve S : yo = h(y;) lying in the half-plane S : yo = h(y1). G = GUIG, 0G = SUT.

In the domain G, consider the equation

A’U(y) =0, y€G, (1)
2 2

— + — Laplace operator.
Oyt Oy3

Problem definition. It is required to find the biharmonic function U(y) = U(y1,y2) € C*(G)N
C3(@), for which the values on the part S of the boundary dG are known, i.e.

where A =

Uy, y2)lg = [i(y), AUy, y2)lg = f2(),

aU(g;’ y2) _ fB(y), a(AUa(?:Lla y2)) _ f4(y), (2)
S S

, 0
here f;(y) € C*79(S),j = 1,2,3,4 are given functions, and o operator of differentiation
along the outward normal to 0G.
The considered problem (1)—(2) refers to ill-posed problems of mathematical physics. The

true nature of such problems was clarified for the first time in the work of A.N. Tikhonov [4],
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and he pointed out the practical importance of unstable problems, and also showed that if the
class of possible solutions is reduced to a compact set, then the stability of the solution follows
from the existence and uniqueness.

Formulas that make it possible to find a solution to an elliptic equation in the case when
the Cauchy data are known only on a part of the boundary of the domain are called Carleman-
type formulas. In [2] Carleman established a formula giving a solution to the Cauchy—Riemann
equations in a domain of a special form. Developing his idea, G. M. Goluzin and V.I.Krylov [3]
derived a formula for determining the values of analytic functions from data known only on
the border on the border section, already for arbitrary domains. They found a formula for
restoring a solution from its values on the boundary set of positive Lebesgue measure, and also
proposed a new version of the extension formula. The monograph by L. A. Aizenberg [1] is
devoted to one-dimensional and multidimensional generalizations of the Carleman formula. A
formula of the Carleman type, which uses the fundamental solution of a differential equation
with special properties (the Carleman function), was obtained by M. M. Lavrent’ev [7,8]. In
these works, the definition of the Carleman function is given for the case when the Cauchy
data are given approximately, and the a scheme of regularization of the Cauchy problem for the
Laplace equation is also proposed. Using this method, Sh.Ya.Yarmukhamedov [9, 10] constructed
Carleman functions for a wide class of elliptic operators defined in spatial domains of a special
form, when part of the boundary of the domain is a hypersurface or a conical surface. It
should de noted that the Carleman function proposed by Sh.Yarmukhamedov was also studied
by M. Ikehata [11].

The Carleman matrix for the Cauchy—Riemann equation in the case when S is an arbitrary
set of positive measure was constructed in [13]. In [14] in classical domains, Carleman’s formulas
are given that restore the values of a function inside a domain from its values given on a set of
positive measure on the skeleton.

The Cauchy problem for linear elliptic differential operators has numerous applications in
physics, electrodynamics, fluid mechanics (see [8,12,15]). It is known that if the Carleman
function is constructed, then using Green’s formula one can write the regularized solution ex-
plicitly. This implies that the efficiency of constructing the Carleman function is equivalent to
constructing a regularized solution to the Cauchy problem.

In [16], a method is proposed for the regularization of the solution of the Cauchy problem
for the Laplace equation by introducing a biharmonic operator with a small parameter, and
it is shown that if a solution to the original problem exists, then the difference between the
spectral expansions of the solutions of the original and regularized equations tends to zero as
the parameter tends regularization to zero in the space of square-summable functions. In recent
years, many numerical methods have been presented solving the Cauchy problem for elliptic
equations. In the paper [18] L. Marin investigated the iterative method of fundamental solutions
algorithms together with the Tikhonov regularization method.

An estimate for the conditional stability of a boundary value problem for a fourth-order
elliptic type equation in rectangular domains was obtained in [19].

In [20], using the Carleman function, not only the harmonic function itself, but also its
derivatives for the Laplace equation are reconstructed from the Cauchy data on a part of the
boundary of the domain.

Note that when solving applied problems, one should find the approximate values of the

x
,reG, i=1,2.
61‘1‘

solution U(z) and its derivative
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ou
In this paper, we construct a family of functions U(z, o, frs) = Uss(z) and M =

0:@-
ouU,
= ﬂ, k=1,2,3,4; i = 1,2 depending on a parameter ¢ and prove that with a special

8:51-
. . 8U06 (.’I}) .
choice of parameter o = ¢(d) the family U,s(x) and ~om at  — 0 converges at each point
Z;

U
T(I, respectively. The family of functions
X

, 1 = 1,2 with indicated properties is said to be a regularized

x € G to the solution U(zx) and its derivative

U(z,0o, frs) and oU(x, 0, frs)

solution by M. M. Lavrent’ev [7]. If, under the indicated conditions, instead of the Cauchy data,
their continuous approximations with a given deviation in the uniform metric are given, then
an explicit regularization formula is proposed. In this case, it is assumed that the solution is
bounded on the part T of the boundary.

The proof of these results is based on the construction in an explicit form of the fundamental
solution of the biharmonic equation depending on a positive parameter, disappearing along with
its derivatives as the parameter tends to infinity on 7" when the pole of the fundamental solution
lies in the half-plane yo > 0.

1. Construction of the Carleman function

Let us define the function ®,(z,y) (from [10]) as follows

eow? ] udu
Vuz+a?

Separating the imaginary part of the function @, (x,y), we have

727re‘””§<l>g(x, y) = / Im{
0 w — T2

1
Ba(0,4) = oemele e
/°° e—ov’ (y2 — m2) sin 20y2vVu? + @?  udu
0 u2 —+ 7”2 A /u2 + Oé2

where ¥’ = (y1,0), 2’ = (1,0), r=|ly—z|,a= |y —2/|,a > 0,0 > 0, w = ivu? + a? + ys,
u = 0.

It the paper [10], one has proved that the function ®,(z,y) defined by the equalities (3) with
o > 0 is presentable in the from

/°° e~ cos 202V uZ + a2udu
0

u? + r?

(4)

)

Qo (z,y) = F(r) + Go(2,y), (5)

1 1
where F(r) = o In -, G, (x,y) is harmonic function with respect to y in R?, including y = z.
T

It follows that the function ®,(z,y) for any o > 0 in y is a fundamental solution of the Laplace
equation. The fundamental solution ®,(x,y) with the indicated property is said to be the
Carleman function for the half-space [7].

Therefore, for the function U(y) = U(y1,y2) € C*G) N C3*(G) and any x € G the following
integral Green formula holds true [17]:
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U(z) = /6 i [U(y)a(Agff’y)) — AL(z,y) ‘ngly)} dS,+
(6)
OL(x,y) ;.. 9(AU(®Y) -
+/8G {AU(y) 5, L@y ——Fp = ]dSy, €G,

where L(x,y) = r?In — is the fundamental solution to the equation (1).

Since ®,(z,y) is represented in the form (5), then in the integral representation (6) L(x,y)
replacing the function L, (z,y) = r?®,(z,y), we have

) D (ALy(x3)
U(z) = /aG [U(y)an —ALq(z,y) on

ILy(z,y) 9 (AU(y))
w [ Jave) et e XD as, v e

oU(y)

s

2. The formula of continuation and regularization
by M. M. Lavrent’ev

‘We denote

Uate) = [ [P EED) — p) AL (o) | as,+

+/S [f 2<y>W - f4(y>Lo(x,y>] ds,, = €G.

The main result of this paper is contained in the following theorem.

Theorem 1. Let the function U(y) = U(y1,y2) € CHG)NC3(G) on the part S of boundary OG

satisfy the conditions (2), and on the part T of boundary OG the inequality be fulfilled
oU(y) OAU(y)
on on

Then, for any x € G and o > 0, the estimates hold true

IU(y)+‘ ‘+AU(y)I+‘ ‘gM, yeT, M>0. (9)

2

|U($> - UU(CL’)| < 90(0'5 $2)M€_Ux27 (10)

’8U(x) U, (x)

< @i(0,wa)Me ™%, i =1,2 (11)
axi ﬁxi X Pilo, T2 € , 1= 1,4

where

234/ v
o(o,z9) = 340077 + <3 4::7T +20vom + 8 07T0'> To+

9/ 9v/
+ (2\/071' +4 0770) x5+ Uﬂx% + or
2 ox2
1 13 1654/ 4 2 4 3
p1(o,x9) =10+ — + ﬁ+ 74 Vo + Vo +
o Vo 2 Vo Vo
2 17 9 4 2
VT L34 Vo oot (X4 Vo Jro
4o Vo

9

44 4 2 13
+(a+ 5 2ﬁ+ﬁ+a>x2+ (13)

66 4 1 1 20
+90z5 + ( VT Vo ) VT

+—+8) —+
g

160,
N | Joad
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217 | T8YT0 <M+ 1, 3y7 4\/7?02> -
2

902(07352): 2\/5 + \/(; m+ \/E

v 60
+ (29\/07r + 58 0'7T0') x5 + %x% + 10y/omoxs + \f\/i
ox5

Proof. Let us prove the inequality (10). Denote by I,(x) the difference

Further, from (7) and (8), we have

I(z) = /T [U(y)a(AL"(‘”’y)) — ALy (z,y) 8U(y)] S, +

on on

ILo(z,y) 9 (AU(y))
+A [AU(y)an - Lo(xay)an] dsy’ reG.

From this and the inequality (9) we obtain

/ [U(y)a(ALg(x’y)) - AL,,(x,y)aU(y)] dS,+
T n

on

OLo(s.1) 28U ()
+ [ [ave ZEei 1o 26T s,

< MN,(z),

9 (AL, (z, OLo(x,
Nota) = [ [[PEE D  aro o+ | 5D 4 ool S, = 5t ok

To show that the estimate (10) is valid, we prove the following
N, (z) < ¢(o, xg)eﬁmg, o> 0. (16)

According to (4), we have

L (33 y) = r2® (CU y) = 2 {le_a(oz?-&-wg—yg) [/oo e~ cos 20yavVu? + a?udu
o b [ea bl 271_ 0

u? 472

Hence, setting yo = 0 we get

1 o [ e oWy
Lo(x,y) = (11 — 1) +93§) {%6 2/O 2 :

/‘X’ e—ou’ (y2 — w2) sin 20y2Vu2 + a2 udu
0 U2 —+ ’/‘2 A /u2 + O[2

+ (y1 — 21)? + 23

Now we estimate the following integral

b — 21)24 22 o0 —o(u’+(y1—21)?) g
J1:/ |Ly(z,y)|dS, g/ {(yl x1) +x26_az§/ lule u}dyl < \/%e_amg.
T al 0

27 u?+ (y1 — x1)2? + 23 2\/0
Here, in the estimation, we used the inequality

(y1 —21)* + 23
u2 + (y1 — 331)2 + .1‘%

<1
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and introduced polar coordinate systems. Considering

8La(xay) — aLO‘(I7y) COS’7+ aLO’(x7y) sin’y,
on oy 0y

get
9(Lo(z,y)) _ O
Yo 8y2

00, (x,y)

(2@, (,y)] = 2(y2 — x2) @ (2, y) + 1 Y2

)

here cos~y, sin~y are the coordinates of the unit outward normal n at the point y of the boundary
0G.
Further, setting yo» = 0, we estimate the following integral

8L0(xay) b T2 _ g2 o0 |u|e_‘7(yz+(y1—$1)2)
Jzz/TdSyé/ 2, w/ . )
T n ay ™ 0 u“ + (yl 1‘1) + :172

du+

Ty gz [ |ul|(y1 — @1)* + a3 eo W +(y1—21)%)
+—e 79"z > . .
0 u? + (y1 — x1)? + 23
* u —x1)? -+ 2 e*U(u2+(91*I1)2)
_i_@e—oxg/ | ||(y1 : 1) 2’ - - du dyl
m 0 u? 4+ (y1 — 21)? + 23
S\fxg . \f \/a7r -

In what follows, we need the following expressions

ALy(a.) = A (P00 (0.9)) = 55 [P0ole.9)] + 5 [0, (00)] =

2

0P, (x 09, (z,
= 40, (2,y) + 4y — 20) 222D gy, gy 2200,
oy 0y2
O(ALy(z,y)) 0 o _
871 - (9:1/2 [A (T (I)U(I7 y))] -
0%y (2, y) Py (z,y) Py(2,y)
=8 T LAy — x1) e Ay — )
ayz (yl JU1) aylayQ (y2 '1:2) ay%
where
9(ALy(2,y)) _ 9(ALy(z,y)) 9(ALy(z,y)) .
on = oy cosy + 9y sy

In these expressions, flat yo = 0, estimating, we get

b1 2 9 [eS) |u| e—a(u2+(y1—zl)2)
J3 = AL, (xz,y)|dS, < —e %2 du+
o= [ 1L @ias, < [ {W | e

do(y —@1)? _ppz [ Julem 70 oD
+—-""e"
T /o u? + (y1 — x1)? + 23
Meazg/ |u| e —o(u+(y1-21)%) du+ %670‘% /oo lu| e —o(u’+(y1—21)?)
2 2 242
" ’ 0 (W4 (y1 — 1) +23)

u? + (y1 — x1)? + 23 T
40'1‘2 .2 /oo |u|e_‘7(“2+(yl—11)2) 5\/»
+——=e Ty du y d + 2/ omx 2,

Q 0w+ (y1 —a1)? + 3 Y1 s NG Vora}

du+

+ du+
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0 (ALy(2,y))
on

O 2
9 670'21/’2'
g2

n- |
T

In estimating the integrals, we used the inequality

’ ds, < |:(20\/U7T +8 O'7TCT) Ty + d/omoxi + 4/oras +

ul lyr — 1]

< 1.
u? + (y1 — x1)% + 23

Taking into account the obtained estimates, we have

/T [ 3(AL(;TE$,y)) BLUa(;c,y)

234/ V/
< Svom + Vo + 20y om + 8omo | zo+ (17)
4o 40
N 9\/2a7rxg \/0'71':| )
x

9
_|_
g2

+|ALy (2,y)] +‘ ‘+ |Lg(x,y)|} ds, <

+ (2V/om + 4/oT0) 23

From (17) follows the proof of the inequality (10).
Let us prove the inequality (11). Differentiating the equalities (7) and (8) by z;, i = 1,2 we
get

alafgc) _ /BG {U(y)aii {0(AL5n(x,y))] B 8(A%;(iw7y)) 83(11/)] qs,+
+/aG [AU(y)ai {8%8(5,?;)} _ 8ng,y)3(Aa(7fl(y))} as,,
(“)Ua'g('x) :/ [U(y)aa. [8(AL5(937y))} B 3(A%a(vw7y)) 3(A6U(y))} d5, +
, +/S{AU(y)a; {aLga(:c,y)} _ 3L3(é,y)f;(A8U(y))} as,.
Denote by I;5(x) the jiﬂerence ofzthe der:/atives : ’
) — 818JJE;B) B a[g;(f) _ /T [U(y) 6‘; [3(AL575$711))} . B(Alé;(im)) ‘927(1?/)] a5, +
+/T {AU(y)aii {8L§s7y)} B 3L3(xxi,y)5(AaTiL(y))} as,.

From this and the inequality (9) it follows

oo =| [ [ [H85ees)] _ OBLete) 201)

+/T [AU(y)aii {3L¢g§,y)} 3 3Lg(xz?y)3(ﬁai(y))} as,

| as,+

< MNiU(g:)ﬂ

where

o= |

To show that the estimate (11) is valid, we prove the following inequality

Or; on Oz

0 [2(lsle))| |0(ELolew)

0 [0Lo(z,y)]|, |OLo(z,y)
oz, { on } ' * ‘ oz, 45y

Nio(x) < pi(o, 952)6_‘””37 o> 0. (18)
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For i = 1, we have

_ 9 [0(ALy(z,y)) I(ALy(z,y))| , | 0 [0Ls(2,y) OLy(2,y)
Nio () _/T[ 0x1 { on + 0x1 + o0x1 on + o0x1 dSy-
We denote
_OLs(z,y) 0 1, _ 20%,(,y)
Zl - 8331 - axl [T ¢0'(x7y):| =r 8(131 - 2(y1 - ‘Il)éa(xay% (19)
0 [0Ls(x,y) 0 [0Ls(z,y) OL,(z,y) .
Ty = — |2 Il T\ TR ) AR VA
27 om [ on } 0x1 [ oy cosy Oy it
0 [OLe)] _ 0 [0, .
O, { on } Om {3y2 e (]| = (20)
_ o aq)a(xay) _ o a@a’(mvy) 282(1)0'(1'73/)
= 2(y2 1’2)78%1 2(y1 — x1) B r D210y
O (AL, (x, 0
T = ( (z,9)) _ 9 [A (TQQU(x,y))} _
8%1 83;1 (21)
0Py (z,y) 0P (7,y) Py(z,y) 8@, (z,y)
=4 4 Ay — 1) DY) 4 (g — ) LY
o AT e T T ) o
_ 0 [o(ALs(z,y)] _ 9 [9(ALs(z,y)) 9(ALy(2,y)) .
Za = 01 [ on Oz Oy cosy+ Oyo bl
0 [0(ALy(z,y) | _ 0 [9(ALs(z,y)) 7882@"(%?’) 7452@a($,y)+
Ox1 on - Om Oy 0 0110ys 0y10y2 (22)
Py (z,y) Poy(z,y)
Ay~ xl)@xlﬁylﬁyg +4(y2 — 22) Oz10y3
VVheni M amdi M , COs7y, sin-y are the coordinates of the unit
o0x1 on 0x1 on

outward normal n at the point y of the boundary 0G.
In (19), (20), (21), (22), setting yo = 0 and estimating the resulting integrals, we have:

1 13/ 165\/om 4y/mo?  4y/mo?
Nig(z) < (10 + = 16
1(x)<+a+\/5+2+a+ﬁ+ﬁ+
17 9y
+ (440 + N +2/om + 3) ZTo + < + 207T +4y/omo + 40) T3 + (23)

NG 2
66/7 1 2007\ e
Vors ¢

1
9ozs + [ —= +4V/ —+8) —
+ Ux2+< Jo + 07r+20+ >x2+
The inequality (18) is proved for i = 1. Now let us prove the inequality (18) for ¢ = 2.
Taking into account (15) we have

N2"<x):/T[ 0 {8(ALg(x,y))]‘+’6(ALU(x,y))’+

Oy on Jxa
We introduce the following designation

_ aLO'(x7y) _ 8 2 _ 26¢0($7y) _ _
= sz = 67@ [7" ¢a($7y)] =T D 2(y2 — 22)Ps (2, y), (24)

0 [0Ly(z,y) OL,(z,y)
8:1:2[ on ”—i_‘ Ox4 dSy-

03]
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on 0xo o8y +

> _ 0 [O0Ls(x,y)| _ O 8L0(xay)c OLy(7,y)
o B oy )

sinfy] ,
0 [0Ly(x,y)] O 0 o B
axz[ n ] = B3 [ayQ @0 (2,9)] | =
6@0 (xa y) 8(1)0' (.’L’, y) 2 82@0 ($, y)
-9 _ .
Oxa <y2 IQ) 0y o 020y

= _2(I)U(x) y) + 2(y2 - .’1?2)

9 (AL, (z, 0 2
(Lafiy)) = 5un [A (P2 (a)] =

00 (2,y) 0% (2,y)
0y10z2 0y

RAZICH)
0xo
P, (z,y)
Ox2dys

Dy = n

4(y1 — 1) +4(y2 — 2)

Py sin~y|,

0 [0(ALs(z,y)] 0 [9(ALg(w,y)) 0 (ALg(x,y))
"~ Oxy [ on } "~ day { o COSTYE Yo

0 [0(ALy(z,y))] _ O [9(ALs(z,y)) _882<I>g(967y)_482@)0(9673})4r
Oy on Oz Oy 020y y3
PP, (x,y)

PPy (2, y)
Ow20y1 0y dx20y3

In (24), (25), (26), (27), setting y2 = 0 and estimating the resulting integrals, we have

217 7870 3Vm 4Ayme?r 1
Nao () < RavAll 1
20 () (2\/5+ +(\/U7r+4\/g+ N +g )2t
58/mo? o 5 10y/7mo? 4, 60T\ .2
+ (29\/0’7T + Jo ) T3+ 5 Ta + NG Ts + Vo2 e 7"z,
The inequality (18) is proved for i = 2.
From (23) and (28) follows the proof of the inequality (11). Theorem 1 is proved. O

(27)

+4(yr — 1) +4(y2 — x2)

(28)

Corollary 1. With each x € G, the equality holds true

lim U, (z) = U(x) lim OUy(x) _ oU (z)

o—00 o—00 T, ox;

1=1,2.

) )

Let us denote

G, = {(xl,xg) €eG, a>x9 >¢, a:mjz}xh(xl), 0<8<a}.

It is easy to see that the set G. C G is compact.

U, (x
8xi

Corollary 2. If x € G., then the family of functions {U,(z)} and { } converges uni-

formly for o — oo, i.e.:

U, () - oU(x)

UU(:E) = U(‘T), 6.]3 61‘ )

i=1,2.

It should be noted that the sets II. = G'\G. present the boundary lever of this problem, as
in the theory of singular perturbations, where there is no uniform convergence.
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3. An estimate of the stability of the solution to the Cauchy
problem
Consider the set

E={U e CHG)NC3G) : |U(y)|+ ‘{8[<;T(Ly)}’+ |AU (y)|+ H‘?)AaU?;(y)}‘gM M>0, y € T}.

max h(y1) =a, max4{/1l-+ dh \* b
X = X — ] =b.
T Y1 ) T dyl

Theorem 2. Let the function U(y) € E, satisfy the equations (1) and on the part S of the
boundary of the domain G the inequality

We put

oU (y) OAU (y)
A <6, . 2
|U(y)|+H o + |AU (y)| + o yes (29)
Then, for any x € G and o > 0, the following estimate holds
U(@)] < W (o,a2) M2 648, (30)

where U (0, x9) = max (¢ (o, 22) , 9 (0, 232)),

b 19aby/ bla — by/ b
W (0,72) = 3; + 7%0 T | 30a% + 2O ((; z2) | @ 2” + 32% +4a*by/om+

+b\/O'7T (0= 22)+ 21by/om N S5aby/om(a — x2)
4o 4o o

+ 20ab + 8abo+/om(a — x2) + 8a%bo(a — x2)+

4aby/ 2b 16ab+/
+2b(a — x2) + 16abo + —Y T + daPbo /o + 20Taby/or 4 ~oubVoT
ola—z2) o(a—x2)? (a — x9)?
+5by/o 4 48a%bo(a — x9)? + 16a°bo? 4 2a°bo + 182a%bo + 8a’bo/om + 128abo(a — x2)+
24b+/
+42b + 7073 + 4bo(a — x2)* 4+ 16a2bo? (a — 29)* + 16abo(a — x2)* + daby/orm(a — x2)*+

o(a— xo
8aby/ 8a?by/

+40ab(a — .’L‘Q)S + Z ;ﬂ- + 16a2bo? + u(a — 29) + 4bVom(a — z2)+

. o

2by/
+16a?bov/or(a — x2) + on
o

+8abo\/om(a — x9)? + 4b(a — x3)?,

(a — x9)* + 16a>bo?(a — o)+

p (0,29) is determined by the formula (12).

Proof. From Green’s integral formula we have

Ux) = /S {U(y)a(AL”(I’y)) —ALg(x,y)aU(y)} 05, +

on on
AN L P
@
+ [ oo 2D g 25 s,
+ [ [avw et - 1 2500 s,
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From the condition (2) and the inequality (29) we obtain

ol<| [ [ Z D)y p)aLy (o] as, +

0 (ALg(z,y)) U (y
JF/T |:U(y)anAL0(zyy) on :|dSZ/Jr

/S[fz(y)(wjtﬂl(y)%(x,y)} ds, +

(32)
0L, (z,y) 9(AU(y))
_ <
" /T {AU(y) ) L) D s, | < 510, ()] +
AL Lo(
+M< 3(8Lo(z.y)) a( ))’dS +/|AL (2, )| dS, +/’a ”)‘ds +
+ [ Laten)las, ) < 810x @)+ Moto,za)eo,
The estimate used here
< ))‘dS —|—/ |ALq(z,y)| dSy+
+/“’)M%+/uaawm&)<Mﬂmmwaﬂ
T n T
proved in Theorem 1.
Next, estimate |U,(z)|
O (ALy(x, 0Ly (,
U, ()] g/ 9(ALs(z,y) dSy+/ \ALU(x,y)\dSer/ OLo(@.9)| 4g 4
s 871 S s 87’1
+ [ Vo)l dS, = v+ Ax+ Ayt A,
s
Estimating these integrals, we get
ab\/om a2
_ < _ U(I a )
A= [ Lanlas, < (5 + 27 ) e ,
A, :/ aLg(x,y)‘dS < [ 4 2abVom Qab\/mr 9ab 4+ 13a b( )+ 2ab(a — x2) N ab\/mer
g on 20 2 o

3ab

R + by 4 F< m)] o—olat-a?).

Az = / |ALy(z,y)|dS, < {1% OT + 20ab + a2by/oT + 8abo/om(a — x2) +
S

—I—M(a — 29)8a%bo(a — x2) + 2b(a — mg)] e_”(xg_az),
o

A= [
S

2b
ola — x9)?

9(ALs(2,y)) dS, < |16abo + 42ab(a — x2) + 28a%b + bv/on + daby/om
on ola — x3)
16aby/om

+ 4a®bor/om + 20Taby/om + ——— (a—12)?

+ 5by/o + 48abo(a — x9)? + 16a>bo +
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24b/om
o(a—x2)

b
+16a°bo*(a — 22)* + 16abo(a — x2)° + 4aby/om(a — x2)* + 40ab(a — z2)* + M—i—

a — X9
8a’b\/om
o

+2a3bo + 182a%bo + 8a’bo/om + 128abo (a — x3) 4 42b + ———— + 4bo(a — x2)*+

+16a%bo? + 2a°b\/om +
n 16ab\/om n 2by/om
o o

(a — z9) + 4by/om(a — x3) 4+ 16a%bo/om(a — x2)+

(a— 22)? +16a°bo* (a— 22)+ 8abo/om(a— x2)*+ 4b(a— x2)?] e—o(73-a%)

When evaluating the integrals, polar coordinates were introduced and the inequalities were
used

. doysvu? + o
sin 20y \/u2+a2’ < ,
2 1+ 20y2vVu? + o?

2
ﬁ, £L'>O
1+ |z

Adding the estimates obtained, we have

since [sinz| <

Uy (2)] < ¥(o, wa)e (73 -%)

here

1 _
¥ (0,22) = 3b n 9aby/om + 30a%b + 97ab(a — x2) N ab\/aﬂ' + Ja2b/omt
o o

2 2
by/ 21by/ S5aby/ -
+ 4o7r (a —x2) + Tmr + 20ab + 8abov/om(a — xo) + w
o o o

daby/ 2b 16ab
+2b(a — x2) + 16abo + vIT +4a’bo/om + 207Taby/om + ———— Gaby/om

ola—wx2) ofa—w2)? (a—ws)?
+5b\/aT + 48abo(a — x2)? + 16a°bo? + 2a°bo + 182a%bo + 8abo\/om + 128abo(a — x2)+
425+ 24b\/o
ola — x2)
8 b\ﬁ
40ab(a — z9)* + VT

+ 8a*bo(a — z2)+

+4bo(a — x3)* + +16a%bo?(a — x2)? + 16abo(a — 12)> + daby/om(a — 22)*+

8a2by/
+16a%b0? + +22 . Uﬂ-(a — 29) + 4by/om(a — x2)+

Qb\/
16a*bo/om(a — x2) + or (a — x2)? 4+ 16a°bo*(a — x9) + 8abov/om(a — x2)* + 4b(a — x2).
o

From the integral formula (32) and the condition (9) we obtain

|U(2)] < seo (e 7m§)¢(07 T3) + Mep(o, 5172)67””g = V(o,12) (Me*‘””g + 566((127?05)) . (33)

The best estimate for the function |U(z)| is obtained in the case, when

Me—UIS — 660'((12—313)

or

1, M
Substituting the expression for o from the equality (34) into (33) we obtain the proof of the
inequality (30). Theorem 2 is proved. O
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Set
Ugs(z) :/s [fw(y)a(ALgn(%y)) - f35(y)ALU(sc,y)} ds,+

(39)
# [ st 2G5 pus Lot as,

Theorem 3. Let the function U(y) € E on S satisfy the conditions (2) and instead of the
functions f;(y) their approximations fis(y), ©=1,2,3,4 with a given deviation 6 > 0, i.e.

mgx |fi(y) — fis(y)] < 6. (36)

Then, for any x € G and o > 0, the following estimate holds:

22

12
U (2) = Uyps(x)] < W(o,x0) M~ a3 532 (37)
Proof. From (31) and (35) we get

OL,(x,y)

U@) - Unsto)] < )+ 5 [ {[2EEEIDN s (o)) + |2

+ILatelfds,
From Theorems 1 and 2 we obtain

|U(l’)| g \I/(O', .’,EQ) (Meia'm; + 560'0,270-1;3) 7

1. M
and choosing o = — In 5 we obtain the proof of Theorem 3. |
a

Corollary 3. For each x € G the equality
}12% Usps(z) = U(x).
Corollary 4. If x € G., then the family of functions {U,s(z)},
Uys(z) = Ulx)

converges uniformly as 6 — 0.

Ul()

L

Similarly, one can obtain stability estimates for , i = 1,2, and the following corollaries

are true:

Corollary 5. For each x € G , the equality

. O0Uss(x)  OU(x)
}Ll;r(l) 8a:l n 8.131 ’

i=1,2.

Corollary 6. If x € G., then the family of functions

Uo‘(s(x) = U(Z‘), O O ’ )

converge uniformly at § — 0.
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O 3aJa4e Komm JJI 6I/II‘apMOHI/I"IeCKOI‘O YpaBHeHMnA

Huabimon C. Illoanen
CaMmapKaHICKHUI TOCYJapCTBEHHBIN YHUBEPCUTET

Camapkan, Y30eKUCTaH

Awnnoranusi. Pabora mocBsInena ncciieI0BaHNIO IPOIOIXKEHNS M OIEHKH YCTOWIMBOCTHU PEITEHUsT 33~
au Komu mjis 6urapMoHMYIecKOro ypaBHeHus B o0acTu (G O €ro M3BECTHBIM 3HAYEHUSIM Ha TJIAIKON
gactu rpanuibl 0G. PaccmarpuBaeMast 3ajiada OTHOCHUTCST K 3aJiadaM MaTeMaTHIeCKON (DU3NKHU, B KO-
TOPBIX OTCYTCTBYET HENPEPBIBHAS 3aBUCUMOCTH DEIIEHNH OT HAa4YaJIbHBIX JIAHHBIX. B maHHOil pabore c
nomoInbio GyHKImu Kapiaemana BocCTaHaBIMBAETCS HE TOJIBKO caMa OurapMoHUYecKasi (PYHKIIHSI, HO
¥ ee MPOM3BOJHBIE MO JaHHBIM Kormm Ha dacTtyu rpaHuIisl obnactu. [logydeHsl omeHKHM ycTOYMBOCTH
pertenust 3amaun Koimm B KJIaCCUYIECKOM CMBICIIE.

KuarouyeBrble cJjioBa: OGUrapMOHWYECKNE ypaBHeHHs, 3a7ada Ko, HeKOPPEKTHbIE 33734, (OYyHKIH

Kapiiemana, perynsipusoBaHHbIE DEIIeHNs, PEryIApu3aIius, GpopMyJIbl IPOIOIZKEHNUS.
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