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Worst-case optimal join algorithms have gained a lot of attention in the database literature. We now count several algorithms
that are optimal in the worst case, and many of them have been implemented and validated in practice. However, the
implementation of these algorithms often requires an enhanced indexing structure: to achieve optimality one either needs to
build completely new indexes, or must populate the database with several instantiations of indexes such as B+-trees. Either
way, this means spending an extra amount of storage space that is typically one or two orders of magnitude more than what
is required to store the raw data.

We show that worst-case optimal algorithms can be obtained directly from a representation that regards the relations as
point sets in variable-dimensional grids, without the need of any signiicant extra storage. Our representation is a compressed
quadtree for the static indexes, and a quadtree built on the ly that shares subtrees (which we dub a qdag) for intermediate
results. We develop a compositional algorithm to process full join queries under this representation, which simulates navigation
of the quadtree of the output, and show that the running time of this algorithm is worst-case optimal in data complexity.

We implement our index and compare it experimentally with state-of-the-art alternatives. Our experiments show that
our index uses even less space than what is needed to store the data in raw form (and replaces it), and one or two orders of
magnitude less space than the other indexes. At the same time, our query algorithm is competitive in time, even sharply
outperforming other indexes in various cases.

Finally, we extend our framework to evaluate more expressive queries from relational algebra, including not only joins
and intersections but also unions and negations. To obtain optimality on those more complex formulas, we introduce a lazy
version of qdags we dub lqdags, which allow us navigate over the quadtree representing the output of a formula while only
evaluating what is needed from its components. We show that the running time of our query algorithms on this extended set
of operations is worst-case optimal under some constraints. Moving to full relational algebra, we also show that lqdags can
handle selections and projections. While worst-case optimality is no longer guaranteed, we introduce a partial materialization
scheme that extends results from Deep and Koutris regarding compressed representation of query results.

CCS Concepts: · Theory of computation → Database query processing and optimization (theory); Data structures

and algorithms for data management.

Additional Key Words and Phrases: Join algorithms, Compact data structures, Quadtrees, AGM bound

1 INTRODUCTION

The state of the art in query processing has recently been shaken by a new generation of join processing
algorithms with strong optimality guarantees based on the AGM bound of queries: the maximum size of the
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output of the query over all possible relations with the same cardinalities [6]. One of the basic principles of these
algorithms is to disregard the traditional notion of a query plan favoring a strategy that not only takes into
account the size of the relations in the database but can also take advantage of the structure of the query [31, 34].

Our focus is on join processing algorithms that compute all answers of a given query over a database instance,
and speciically in those algorithms that are guaranteed to run in time bounded by the AGM bound of the query.
Several of these algorithms have been implemented and tested in practice with positive results [16, 35], especially
when handling queries with several joins. Because they difer from what is considered standard in relational
database systems, the implementation of these algorithms often requires additional data structures, a database
that is heavily indexed, or heuristics to compute the best computation path given the indexes that are present.
For example, algorithms such as Leapfrog [41], Minesweeper [32], or InsideOut [19] must select a global order on
the attributes, and assume that relations are indexed in a way that is consistent with this order [35]. However, an
ordering that is good for one query may induce a sub-optimal performance on a diferent query [32]. Thus, in
practice, these algorithms need to work with several possible attribute orderings, which is commonly achieved
with several combinations of B+ trees or other indexes [16]. On the other hand, more involved algorithms such as
Tetris [18] or Panda [20] require heavier data structures that allow reasoning over potential tuples in the answer,
and as far as we know there is no evidence that these heavier structures can be successfully deployed in practice.
Our goal is to develop worst-case optimal join algorithms that eliminate the need to store additional indexes

in the database and compete in practice with the current alternatives. The key here is the combination of
good theoretical and practical performance: current worst-case optimal solutions depending on heavily indexed
databases would remain optimal if the indexes were built on-the-ly before evaluating each query (it usually takes
linear time in data complexity to do so). Such index construction, however, is in practice orders of magnitude
slower than indexed query evaluation (minutes to hours versus milliseconds to seconds, see our experiments).
Practical solutions are thus forced to compute and store the indexes beforehand so as to achieve competitive
query evaluation times. We address this issue by resorting to compact data structures [27]: representations
using a nearly-optimal amount of space śindeed, almost none on top of compactly storing the raw dataś while
supporting all operations we need to answer join queries in worst-case optimal time, without any need of further

indexing.
We show that worst-case optimal algorithms can be obtained when one assumes that the input data is

represented as quadtrees, and stored under a compact representation for cardinal trees [9]. Quadtrees are
geometric structures used to represent data points in grids of size ℓ × ℓ (which can be generalized to any
dimension). Thus, a relation R (A) with attributes A = {A1, . . . ,Ad } can be naturally viewed as a set of points
over grids of dimension d , one point per tuple of R: the value of each attribute Ai is the i-th coordinate of the
corresponding point.
To support queries under this representation, our main tool is a new version of quadtrees, which we denote

qdags, where some nodes may share complete subtrees. Using qdags, we can reduce the computation of a full join
query J = R1 Z · · · Z Rn with d attributes, to an algorithm that irst extends the quadtrees for R1, . . . ,Rn into
qdags of dimension d , and then intersects them to obtain a quadtree. Our irst result shows that such algorithm is
indeed worst-case optimal:

Theorem 1.1. Let R1 (A1), . . . ,Rn (An ) be n relations. We can then represent each relation Ri using |Ai |+2+o(1)
words per entry, so that the join R1 Z · · · Z Rn can be computed in Õ (AGM) time1.

Note that just storing the tuples in every Ri requires |Ai | words per entry, thus our representation adds only a
small extra space of basically two words per tuple. Instead, any classical index on the raw data (such as hash

1The notation Õ hides poly-log S factors, S being the total input size, as well as factors that just depend on d (the number of attributes) and
n (the query size), which are assumed to be constant. We provide a precise bound in Section 3.3.
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tables or B+-trees) would pose a linear extra space, O ( |Ai |) words, often multiplied by a non-negligible constant
(especially if one stores multiple indexes on the data).

Our join algorithm works in a rather diferent way than the most popular worst-case optimal algorithms.
To illustrate this, consider the triangle query J = R (A,B) Z S (B,C ) Z T (A,C ). The most common way of
processing this query optimally is to follow what Ngo et al. [34] deine as the generic algorithm: select one of the
attributes of the query (say A), and iterate over all elements a ∈ A that could be an answer to this query, that is,
all a ∈ πA (R) ∩ πA (T ). Then, for each of these elements, iterate over all b ∈ B such that the tuple (a,b) can be an
answer: all (a,b) in (R Z πB (S )) Z πA (T ), and so on. Instead, with quadtrees we divide the output space (which
if the domain of the attributes is [0, ℓ − 1] corresponds to a grid of size ℓ3) into 8 subspaces (or subgrids of size
(ℓ/2)3), and for each of these we recursively evaluate the query. This can be regarded as traversing the output
space, while computing only what is needed from the joined relations in order to proceed at each step.

In general, the algorithm of Ngo et al. [34] chooses a subset of the attributes at each step, not necessarily one.

Our algorithm can also be understood as splitting each attribute Ai into log ℓ binary attributes2 A1
i , . . . ,A

log ℓ
i

that hold the highest to the lowest bit of Ai , and then using the generic algorithm by choosing all the attributes
A1
i together, for all i , then all the attributes A2

i , and so on. As it turns out, this strategy is as good as the generic
strategy deined by Ngo et al. [34] on the original attributes, with the advantage that it can always use the same
ordering.3

Our join algorithm boils down to two simple operations on quadtrees: an Extend operation that lifts the
quadtree representation of a grid to a higher-dimensional grid, and an And operation that intersects trees. The
strategy can be extended to other relational operations. For example, the synchronized Or of two quadtrees gives
a compact representation of their union, and complementing the quadtree values implements a Not operation.
We integrate all these operations in a single framework, and use it to answer more complex queries given by the
combination of these expressions, in a fully compositional form.
To support these more complex queries in optimal time we traverse the output space using lazy evaluation.

The idea is to be able to delay the computation of an expression until we know such computation is needed
to navigate the output. For this purpose we introduce lazy qdags, or lqdags for short, in which nodes may be
additionally labeled with query expressions. To analyze our framework we extend the idea of a worst-case optimal
algorithm to arbitrary queries: If a worst-case optimal algorithm to compute the output of a formula F takes time
t over relations R1, . . . ,Rn of a database D, then there exists a database D ′ with relations R′1, . . . ,R

′
n of sizes

|R′i | = O ( |Ri |), and their complements of sizes |R′i | = O ( |Ri |), where the output of F over R′1, . . . ,R
′
n is of size

Ω(t ). Our framework remains worst-case optimal with lqdags considering joins, union, and negation operators
under some conditions:

Theorem 1.2. Let R1 (A1), . . . ,Rn (An ) be n relations. Let F be a relational algebra formula composed by join,

union and complement operations over the relations Ri , for all 1 ≤ i ≤ n, and where no relation appears both

complemented and not complemented in F . Each relation Ri can then be represented using |Ai | + 2 + o(1) words per
entry, so that F can be evaluated in worst-case optimal time in data complexity.

Consider, for example, the query J ′ = R (A,B) Z S (B,C ) Z T (A,C ), which joins R and S with the complement
T of T . One could think of two ways to compute this query. The irst is just to join R and S and then see which of
the resulting tuples are not in T . But if T is dense (T is small), it may be more eicient to irst compute T and
then proceed as on the usual triangle query. Seen at a very high level, our algorithm is optimal because it can
choose locally between both strategies: by dividing the output into quadrants it inds dense regions ofT in which

2Our logarithms are to the base 2 by default.
3The algorithm Tetris [18] also works with a geometrical representation, but uses it to reine the search for new tuples, not as a way to
recursively divide the output space.
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computing T is cheaper (and it only works towards those few cells that exist in T ), while in sparse regions the
algorithm irst computes the join of R and S (i.e., it only works towards those few cells that exist in R Z S).

We also show that our framework can be extended to handle the full relational algebra, though in this case worst-
case optimality is not guaranteed. However, using lqdags to process relational algebra queries has other potential
advantages: instead of fully materializing the output, we provide a parameterizable compressed representation,
from which the results can be later retrieved with bounded delay. This extends previous results [10] to the full
relational algebra.
Our framework is the irst in combining worst-case time optimality with the use of compact data structures.

The latter can lead to improved performance in practice, because relations can be stored in faster memory, higher
in the memory hierarchy [27]. This is especially relevant when the compact representation its in main memory
while a heavily indexed representation requires resorting to the disk, which is orders of magnitude slower. For
systems that maintain the database in the aggregate main memory of a cluster, a compact representation leads to
using fewer computers, thus reducing hardware, communication, and energy costs, while improving performance.

In practice. To evaluate how our approach fares in practice, we provide a prototype implementation of the join
algorithm mentioned in Theorem 1.1. Our implementation stores data as compressed quadtrees, and computes
the compressed quadtree representing the result of the joins.
We test our prototype using two diferent benchmarks for graph databases, namely the wikidata SPARQL

benchmark [16] and a set of queries taken from SNAP [35]. Graph databases give us a good way of testing
worst-case optimal algorithms in practice, because graph queries usually involve several joins [35]. Further, the
selected benchmarks provide a wide range of complex join queries, and have already been used to test other
worst-case optimal join implementations.

We compare against other worst-case optimal implementations [1, 16], as well as some leading graph database
systems. The advantage of using compact data structures is immediately seen when comparing the size of our
representation against all other options: We reduce the storage size used by graph systems by a factor of 10ś20,
and this factor is around 250 for EmptyHeaded [1].

Our results show that our implementation of the qdag join algorithm is competitive, in terms of performance,
with other worst-case optimal implementations, outperforming standard graph systems in many cases. Qdags
excel on queries involving up to 4 attributes, outperforming more sharply the non-wco systems on cyclic queries.
Considering the amount of storage space that is gained by using quadtrees, we ind these results remarkable.
On the other hand, we observe that the performance of our implementation quickly degrades as the number
of join attributes increases, becoming much slower and with much higher variance than the alternatives. This
is somewhat expected, because our query times depend exponentially on the dimension. All of this suggests
that qdags excel in applications in which the number of join attributes is low, or perhaps as a component of a
more involved algorithm dealing with tree-decomposition of queries, such as EmptyHeaded [1]. We leave these
questions, as well as the implementation of lqdags and of dynamic versions supporting insertions and deletions
of tuples, for future work.

Organization of the paper. In Section 2 we ix the notation on quadtrees and explain their compressed repre-
sentation. The algorithm for multiway join queries is introduced together with qdags in Section 3, and our full
framework is introduced together with lazy qdags, irst in Section 4 for Boolean queries and then in Section 5
for the complete relational algebra. Section 6 describes our implementation of the multiway join algorithm over
qdags and Section 7 its experimental comparison with other state-of-the-art systems and prototypes. We conclude
in Section 8. Appendix A compares this article with its conference version; the others give more detailed data on
implementation and experiments.

ACM Trans. Datab. Syst.
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Fig. 1. A quadtree representing R (A,B) = {(4, 3), (7, 2), (5, 6), (6, 4), (3, 12), (6, 12), (6, 13), (7, 12), (7, 13), (8, 5), (14, 1), (15, 0)}.
(a) Representation of R (A,B) in a 24 × 24 grid, with the hierarchical partition defining the quadtree. The black cells correspond
to points in R. (b) The quadtree representing R. The integers are in the last level, and the internal nodes are grayed. The
shadowed integer 1 of the tree corresponds to the point (a,b) = (3, 12), highlighted in red in the grid. Concatenating the
labels in the path down to the integer yields the bit-string ‘01011010’ which encodes the first (resp., second) coordinate of
(a,b) in the bits at odd (resp., even) positions (a = 3 = 0011,b = 12 = 1100).

2 QUADTREES

A Region Quadtree [12, 37] is a data structure used to store (pairwise diferent) points in two-dimensional grids
of size ℓ × ℓ. We focus on the variant called MX-Quadtree [37, 43], which can be described as follows. Assume for
simplicity that ℓ is a power of 2. If ℓ = 1, then the grid has only one cell and the quadtree is an integer 1 (if the cell
has a point) or 0 (if not). For ℓ > 1, if the grid has no points, then the quadtree is a leaf. Otherwise, the quadtree
is an internal node with four children, each of which is the quadtree of one of the four ℓ/2 × ℓ/2 quadrants of the
grid.

Assume each data point is described using the binary representation of each of its coordinates (i.e., as a pair of
log ℓ-bit strings). We order the grid quadrants so that the irst contains all points with coordinates of the form
(0 · ca , 0 · cb ), for log ℓ − 1 bit vectors ca and cb , the second contains points (0 · ca , 1 · cb ), the third (1 · ca , 0 · cb ),
and the last quadrant stores the points (1 · ca , 1 · cb ), where ‘·’ denotes concatenation of bits. If the corresponding
children of internal nodes are labeled 00, 01, 10, and 11, then the concatenation of the labels leading from the root
to the node storing the integer 1 of a point (a,b) interlaces the ℓ-bit representations of the coordinates a and b.
The path then implicitly represents the point (a,b). Figure 1 shows a grid and its deployment as a quadtree.

Quadtrees can be generalized to higher dimensions. A quadtree of dimension d is a tree representing data
points in a d-dimensional grid G of size ℓd . In this case, a nonempty grid with side ℓ > 1 corresponds to an
internal node with 2d children, which represent the 2d subspaces spanning from combining the irst bit of each
dimension. Generalizing the case d = 2, the children are ordered using the Morton [25] partitioning of the grid: a
sequence of 2d subgrids of size (ℓ/2)d in which the i-th subgrid of the partition, for 0 ≤ i < 2d , labeled with the
binary encoding li of i , is deined by all the points with coordinates (bc1 , . . . ,bcd ) in which the word formed by
concatenating the irst bit of each string bc j is precisely the string li .
A quadtree with p points has p integers 1 in its last level, and thus at most p log ℓ internal nodes (along the

paths of length log ℓ leading from the root to those integers). Since each internal node can be distinguished from
its siblings with its label of d bits, pd log ℓ bits are suicient in principle to encode the quadtree structure. Note
that this is also the space needed by a plain representation of p points of d coordinates in [0, ℓ − 1].

Indeed, each point is uniquely identiied by the sequence of log ℓ d-bit labels in the path leading from the root
to its integer 1. For the point (3, 12) in Figure 1, this sequence is 01 01 10 10 = 1122. A trie built on the p resulting
sequences then corresponds to the gray and the integer-1 nodes of the right of Figure 1. We store this trie using a

ACM Trans. Datab. Syst.
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compact representation for cardinal trees introduced by Benoit et al. [7, Thm. 4.3], which requires essentially
d + 2 + o(1) bits per node and performs the needed tree traversal operations in constant time.

Lemma 2.1. (cf. Benoit et al. [7], Thm. 4.3) Let Q be a quadtree storing p points in d dimensions with integer

coordinates in the interval [0, ℓ − 1]. Then, there is a representation of Q that uses (d + 2 + o(1))p log ℓ +O (logd )
bits, can be constructed in linear expected time,4 and supports constant time parent-children navigation on the tree.

More precisely, this representation provides integer identiiers for the quadtree nodes so that, given the identiier of a

node and the label of a desired child, it returns in constant time the identiier of that child, if it exists, and a null

value otherwise.

Note that the space overhead of this representation, on top of the dp log ℓ bits needed to represent the raw data,
is essentially 2 extra numbers (of log ℓ bits) per point. Further, this structure can replace the raw data, because it
can recover the points without the need of storing them separately.

From now on, by quadtree we refer to this compact representation. Next, we show how to represent relations
using quadtrees and evaluate join queries over this representation.

3 MULTI-WAY JOINS USING QDAGS

We assume for simplicity that the domain D (A) of an attribute A consists of all binary strings of length log ℓ,
representing the integers in [0, ℓ − 1], and that ℓ is a power of 2.

A relation R (A) with attributesA = {A1, . . . ,Ad } can be naturally represented as a quadtree: simply interpret
each tuple in R (A) as a data point over a d-dimensional grid with ℓd cells, and store those points in a d-
dimensional quadtree. Thus, using quadtrees one can represent the relations in a database using compact
space. The convenience of this representation to handle restricted join queries with naive algorithms has been
demonstrated practically on RDF stores [3]. In order to obtain a general algorithm with provable performance,
we introduce qdags, an enhanced version of quadtrees, together with a new algorithm to eiciently evaluate join
queries over the compressed representations of the relations.

We start with an example to introduce the basics behind our algorithms and argue for the need of qdags. We
then formally deine qdags and explore their relation with quadtrees. Finally, we provide a complete description
of the join algorithm and analyze its running time.

3.1 The triangle query: quadtrees vs qdags

Let R (A,B), S (B,C ), T (A,C ) be relations over the attributes {A,B,C}, and consider the triangle query R (A,B) Z
S (B,C ) Z T (A,C ). The basic idea of the algorithm is as follows: we irst compute a quadtree Q∗R that represents
the cross product R (A,B) × All(C ), where All(C ) is a relation with an attribute C storing all elements in the
domain [0, ℓ − 1]. Likewise, we compute Q∗S representing S (B,C ) × All(A), and Q∗T representing T (A,C ) × All(B).
Note that these quadtrees represent points in the three-dimensional grid that has a cell for every possible value
in D (A) × D (B) × D (C ), where we assume that the domains D (·) of the attributes are all [0, ℓ − 1]. Finally, we
traverse the three quadtrees in synchronization, building a new quadtree that represents the intersection of Q∗R ,
Q∗S , and Q

∗
T . This quadtree represents the desired output because

R (A,B) Z S (B,C ) Z T (A,C ) = (R (A,B) × All(C )) ∩ (S (B,C ) × All(A)) ∩ (T (A,C ) × All(B)).

Though this algorithm is correct, it can perform poorly in terms of space and running time. The size of Q∗R ,
for instance, can be considerably bigger than that of R, and even than the size of the output of the query. If, for
example, the three relations have N elements each, the size of the output is bounded by N 3/2 [6], while building

4The construction time is expected because it involves perfect hash functions on N elements, providing O (1) time evaluation within O (N )

bits. Although they [7] only consider the (easy and practical) randomized construction of such functions, those can be built deterministically
in O (N log5 N ) worst-case time if desired [2].

ACM Trans. Datab. Syst.
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Fig. 2. An illustration of a qdag for S∗ ({A,B,C}) = All(A) × S (B,C ), with S (B,C ) = {(3, 4), (6, 4), (6, 5), (7, 4), (7, 5)}. (a) A
geometric representation of S (B,C ) (let), and S∗ ({A,B,C}) (right). (b) A quadtreeQS for S (B,C ) (let), and the directed acyclic
graph induced by the qdag (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]), which represents S∗ ({A,B,C}). The red cell in (a) corresponds to
the point (4, 3, 4). The leaf representing that point in the qdag can be reached following the path highlighted in (b). Note the
relation between the binary representation (100,011,100) of (4, 3, 4), and the Morton codes 101, 011, 010 of the nodes in the
path to its integer 1.

Q∗R costs Ω(N ℓ) time and space. This ineiciency stems from the fact that quadtrees are not powerful enough
to represent relations of the form R∗ (A) = R (A ′) × All(A \ A ′), where A ′ ⊂ A, using space close that of a
quadtree representing R (A ′). Due to its tree nature, a quadtree does not beneit from the regularities that appear
in the grid representing R∗ (A). To remedy this shortcoming, we introduce qdags, quadtree-based data structures
that represent sets of the form R (A ′) × All(A \ A ′) by adding only constant additional space to the quadtree
representing R (A ′), for any A ′ ⊆ A.

A qdag is an implicit representation of a d-dimensional quadtree Q (that has certain regularities) using only a
reference to a d ′-dimensional quadtree Q ′, with d ′ ≤ d , and an auxiliary mapping function that deines how to
use Q ′ to simulate navigation over Q . Qdags can then represent relations of the form R (A ′) × All(A \A ′) using
only a reference to a quadtree representing R (A ′), and a constant-space mapping function (more precisely, with
2d entries).

To illustrate how a qdag works, consider a relation S (B,C ), and letQ∗S be a quadtree representing S∗ (A,B,C ) =
All(A) × S (B,C ). Since Q∗S stores points in the ℓ3 cube, each node in Q∗S has 8 children. As All(A) contains all ℓ
elements, for each original point (b, c ) in S , S∗ contains ℓ points corresponding to elements (0,b, c ), . . . , (ℓ−1,b, c ).
We can think of this as extending each point in S to a box of dimension ℓ × 1 × 1. With respect to Q∗S , this implies
that, among the 8 children of a node, the last 4 children will always be identical to the irst 4, and their type (leaf,
internal, or integer) will be the same as that of the corresponding nodes in the quadtree QS representing S . In
other words, each of the four subgrids 1a1a2 is identical to the subgrid 0a1a2, and these in turn are identical to
the subgrid a1a2 in QS when projected to dimensions B,C (see Figure 2 for an example). Thus, we can implicitly
represent Q∗S by the pair (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]) as follows: the types of the roots of Q∗S and QS are the
same; if they are integer nodes then both have the same content, and if they are internal nodes then the i-th child
of the root of Q∗S is represented recursively by the pair (Qi ,M ) where Qi is theM[i]-th child of the root of QS .

3.2 Qdags for relational data

We now introduce a formal deinition of the qdags, and describe the algorithms that allow the evaluation of
multijoin queries in worst-case optimal time.

Deinition 3.1 (Qdag). Let d > 0 be an integer. A d-dimensional qdag Q is a pair (Q ′,M ) in which Q ′ is a
d ′-dimensional quadtree, for d ′ ≤ d , andM : [0, 2d − 1]→ [0, 2d

′

− 1] is a mapping function.

A d-dimensional qdag can be used to simulate diferent d-dimensional quadtrees. In particular, we are interested
in the quadtree obtained by the recursive procedure deined below.

ACM Trans. Datab. Syst.
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Algorithm 1 Value (Q)

Require: A qdag Q = (Q ′, M ) with grid side ℓ.

Ensure: The integer 1 if the grid is a single point, 0 if the grid is
empty, and ½ otherwise.

1: if ℓ = 1 then return the integer Q ′

2: if Q ′ is a leaf then return 0

3: return ½

Algorithm 2 Child (Q, i )

Require: A qdag Q = (Q ′, M ) on a grid of dimension d and side
ℓ, and a child number 0 ≤ i < 2d . Assumes Q ′ is not a leaf or
an integer.

Ensure: A qdag Qi = (Q ′′, M ) corresponding to the i-th child of
Q.

1: return (Q[M (i )], M )

Deinition 3.2 (Completion of a qdag). Let d,d ′ be integers such that d ′ ≤ d , letQ ′ be a d ′-dimensional quadtree,
and let Q = (Q ′,M ) be a d-dimensional qdag. The completion Q∗ of Q is the unique d-dimensional quadtree
recursively deined as follows:

(1) If Q ′ represents a single unit-size cell (i.e., the root of Q ′ is an integer node), then the root of Q∗ is also an
integer node of the same type (either 0 or 1).

(2) If Q ′ represents an empty grid of points (i.e., the root of Q ′ is a leaf), then Q∗ has also as root a leaf
representing an empty grid.

(3) Otherwise, the root r ′ of Q ′ must be an internal node, and Q∗ has then as root an internal node r ∗ such
that, for all 0 ≤ i < 2d , the i-th child of r ∗ is the completion of the qdag (Q ′[M (i )],M ), whereQ ′[j] denotes
the j-th child of r ′.

Deinition 3.3 (Identity Mapping). LetA be a set of attributes. Theidentity mapping ofA, denoted Id(A), is the
mapping functionM : [0, 2 |A | − 1]→ [0, 2 |A | − 1] such thatM (i ) = i , for all 0 ≤ i < 2 |A | .

We say that a qdag represents the same relation R (A) represented by its completion. Note that, for any
d-dimensional quadtree Q representing R (A), one can generate a qdag whose completion is Q by simply using
the pair (Q, Id(A)). Note also that we can use mappings to represent any desired reordering of the attributes.

In terms of representation, a qdag can abstract from the actual representation used for the respective quadtree,
as long as there is a way to refer to any node in the quadtree. For instance, when quadtrees are stored using
Lemma 2.1, the references to quadtree nodes consist of a pointer to the data structure representing the quadtree,
plus the integer identiier of the corresponding trie node in that structure.

For a qdag Q = (Q ′,M ), we denote by |Q| the number of internal nodes in the base quadtree Q ′, and by | |Q| |
the number of internal nodes in the completion of Q.

Algorithms 1 and 2, based on Deinition 3.2, allow us to simulate the navigation over the completion of a qdag
in a way that abstracts from the representation of the inner quadtree. Operation Value yields a 0 if and only if the
subgrid represented by the qdag is empty (thus the qdag’s root is a leaf or an integer 0), a 1 if the qdag represents
a full single cell (i.e., the qdag’s root is the integer 1), and ½ if its root is an internal node. Operation Child lets us
descend by a given child from internal nodes representing nonempty grids. The operations łinteger Q ′ž, łQ is a
leafž, and łQ ′[j]ž are implemented in constant time on the compact representation of Q ′: Q ′[j] corresponds to
descending to the child of Q ′ by label j. If there is no such child, the structure of Lemma 2.1 returns a null value,
which we interpret as an integer node 0 if its subgrid has a single cell, and as a leaf otherwise (in both cases, as a
node with Value 0). Finally, a non-null node representing a single cell corresponds to the integer node 1 (with
Value 1).

3.2.1 Operation Extend. We introduce an operation to obtain, from the qdag representing a relation R, a new
qdag representing the relation R extended with new attributes.
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Algorithm 3 Extend (Q,A)

Require: A qdag Q = (Q ′, M ′) representing a relation R (A′), and a set A such that A′ ⊆ A.
Ensure: A qdag (Q ′, M ) whose completion represents the relation R (A′) × All(A \ A′).

1: create array M[0, 2d − 1]
2: d ← |A |, d ′ ← |A′ |
3: for i ← 0, . . . , 2d − 1 do
4: md ← the d-bits binary representation of i
5: md′ ← the projection ofmd to the positions in which the attributes of A′ appear in A

6: i′ ← the value in [0, 2d
′
− 1] corresponding tomd′

7: M[i]← M ′[i′]

8: return (Q ′, M )

Deinition 3.4. Let A ′ ⊆ A be sets of attributes, let R (A ′) be a relation over A ′, and let QR = (Q,M ′) be
a qdag that represents R (A ′). The operation Extend(QR ,A) returns a qdag Q∗R = (Q,M ) that represents the
relation R × All(A \ A ′).

To provide intuition on its implementation, letA ′ be the set of attributes {A,B,D} and letA = {A,B,C,D}, and
consider R (A ′), QR and Q∗R from Deinition 3.4. Each node of (the completion of) QR has 8 children, while each
node of (the completion of) Q∗R has 16 children. Consider the child at position i = 12 of Q∗R . This node represents
the grid with Morton codem4=‘1100’ (i.e., 12 in binary), and contains the tuples whose coordinates in binary start
with 1 in attributes A,B and with 0 in attributesC,D. This child has elements if and only if the child with Morton
codem3=‘110’ of QR (i.e., its child at position j = 6) has elements; this child is in turn the M ′[6]-th child of Q .
Note thatm3 results from projectingm4 to the positions 0,1,3 in which the attributesA,B,D appear in {A,B,C,D}.
Since the Morton code ‘1110’ (i.e., 14 in binary) also projects tom3, it holds that M[12] = M[14] = M ′[6]. We
provide an implementation of the Extend operation for the general case in Algorithm 3. The following lemma
states the time and space complexity of our implementation of Extend. For simplicity, we count the space in
terms of computer words used to store references to the quadtrees and values of the mapping functionM .

Lemma 3.5. Let |A| = d in Deinition 3.4. Then, the operation Extend(QR ,A) can be supported in time O (2d )
and its output takes O (2d ) words of space.

Proof. We show that Algorithm 3 meets the conditions of the lemma. The computations ofmd and i ′ are
immaterial (they just interpret a bitvector as a number or vice versa). The computation ofm′

d
is done with a

constant table (that depends only on the database dimension d) of size O (22d ): given the d bits ofmd and other d
bits telling which attributes of A are in A ′, the table stores the corresponding bitvectorm′

d
. A naive algorithm

without this table runs in time O (d2d ). □

3.3 Join algorithm

Now that we can eiciently represent relations of the form R (A ′) × All(A \ A ′), for A ′ ⊆ A, we describe a
worst-case-optimal implementation of joins over the qdag representations of the relations. Our algorithm follows
the idea discussed for the triangle query: we irst extend every qdag to all the attributes that appear in the query,
so that they all have the same dimension and attributes. We then compute their intersection, building a quadtree
representing the output of the query; see Figure 3 for an illustration. The implementation of this algorithm
is surprisingly simple (see Algorithms 4 and 5), yet worst-case optimal, as we prove later on. Using qdags is
essential for this result; this algorithm would not be at all optimal if computed over relational instances stored
using standard representations such as B+ trees. First, we describe how to compute the intersection of several
qdags, and then analyze the running time of the join.
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Fig. 3. A graphical representation of the MultiJoin algorithm for R (A,B) Z S (B,C ) Z T (A,C ).

Algorithm 4 MultiJoin (R1, . . . ,Rn )

Require: Relations R1, . . . , Rn , stored as
quadtrees Q1, . . . , Qn ; each relation Ri is over
attributes Ai and A =

⋃

Ai .
Ensure: A quadtree representing the output of J =

R1 Z . . . Z Rn .

1: for i ← 1, . . . , n do

2: Let Qi be the qdag (Qi , Id(Ai ))

3: Q∗i ← Extend(Qi , A)

4: return And(Q∗1, . . . , Q
∗
n )

Algorithm 5 And (Q1, . . . ,Qn )

Require: n qdags Q1, . . . ,Qn representing relations R1 (A), . . . , Rn (A).
Ensure: A quadtree representing the relation

⋂n
i=1 Ri (A).

1: m ← min{Value(Q1), . . . , Value(Qn ) }
2: if ℓ = 1 then return the integerm

3: if m = 0 then return a leaf
4: for i ← 0, . . . , 2d − 1 do
5: Ci ← And(Child(Q1, i ), . . . , Child(Qn, i ))

6: if max{Value(C0), . . . , Value(C2d−1) } = 0 then return a leaf

7: return a quadtree with children C0, . . . , C2d−1

3.3.1 Operation And. We introduce an operation And, which computes the intersection of several relations
represented as qdags.

Deinition 3.6. Let Q1, . . . ,Qn be qdags representing relations R1, . . . ,Rn , all over the attribute setA. Operation
And(Q1, . . . ,Qn ) returns a quadtree Q that represents the relation R1 ∩ · · · ∩ Rn .
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We implement this operation by simulating a synchronized traversal among the completions C1, . . . ,Cn of
Q1, . . . ,Qn , respectively, obtaining the quadtree Q that stores the cells that are present in all the quadtrees Ci

(see Algorithm 5). We proceed as follows. If ℓ = 1, then all Ci are integers with values 0 or 1, and Q is an integer
equal to the minimum of the n values. Otherwise, if any Qi represents an empty subgrid, then Q is also a leaf
representing an empty subgrid. Otherwise, every Ci is rooted by a node vi with 2d children, and so is Q , where
the j-th child of its root v is the result of the And operation of the j-th children of the nodes v1, . . . ,vn . However,
we need a inal pruning step to restore the quadtree invariants (line 6 of Algorithm 5): if Value(vi ) = 0 for all the
resulting children of v , then v must become a leaf and the children be discarded. Note that once the quadtree
is computed, we can represent it succinctly in linear expected time (Lemma 2.1) so that, for instance, it can be
cached for future queries involving the output represented by Q .

3.3.2 Analysis of the algorithm. We compute the outputQ ofAnd(Q1, . . . ,Qn ) in timeO (2d · ( | |Q1 | |+· · ·+ | |Qn | |)).
More precisely, the time is bounded byO (2dn · |Q+ |), whereQ+ is the quadtree that would result from Algorithm 5
if we removed the pruning step of line 6. We call this quadtree Q+ the non-pruned version of Q . Although the size
of the actual output Q can be much less than that of Q+, we can still prove that our time is optimal in the worst
case. We start with two technical results, the irst one (Lemma 3.7) bounding the running time of Algorithm 5
in terms of the maximum numberm of internal nodes of some level in Q+, and the second one (Lemma 3.8)
boundingm by the output size of Algorithm 5 over an instance of similar size.

Lemma 3.7. Let Q1, . . . ,Qn be qdags representing relations R1, . . . ,Rn , all over the attribute set A, and let h be

the height of the completions of Q1, . . . ,Qn . Then the operation Q = And(Q1, . . . ,Qn ) can be supported in time

O (m · 2dn · h), wherem is the maximum number of internal nodes in any level of Q+, the non-pruned version of Q .

Proof. We show that Algorithm 5 meets the conditions of the lemma. Letmk be the number of nodes of depth
k in Q+, and thenm = max0≤k<hmk . The number of steps performed by Algorithm 5 is clearly bounded by
n · (
∑

0≤k<hmk · 2d ) ≤ n ·m · h · 2d : at each depth we continue traversing all qdags Q1, . . . ,Qn as long as they
are all nonempty, and we generate the corresponding nodes in Q+ (even if at the end some nodes will disappear
in Q). The cost incurred in leaves and integer nodes of Q+ can be charged to their internal parent node. □

Lemma 3.8. Let Q1, . . . ,Qn be n qdags representing relations R1 (A1), . . . ,Rn (An ), respectively, and let A =
⋃

Ai . Let Q = And
(

Extend(Q1,A), . . . ,Extend(Qn ,A)
)

, let Q+ be the non-pruned version of Q , and letm be

the maximum number of internal nodes at any level of Q+. Then there exist relations R′1 (A1), . . . ,R
′
n (An ) such that:

• |R′i | ≤ |Ri |, for all 1 ≤ i ≤ n;

• If the qdagsQ ′1, . . . ,Q
′
n representR

′
1 (A1), . . . ,R

′
n (An ), respectively, then the quadtreeQ

′
= And

(

Extend(Q ′1,A), . . . ,Extend(Q ′n ,

has at leastm integer-1 nodes.

Proof. Let the maximum number m of internal nodes be reached at depth 0 ≤ j < log ℓ of Q+. We con-
struct the relations R′i , for 1 ≤ i ≤ n, as follows: For a binary string c , let pre(c, j ) denote the irst j bits
of c . Then, for each relation Ri and each tuple (c1, . . . , cdi ) in Ri , where di = |Ai |, let R′i contain the tuples
(0log ℓ−jpre(c1, j ), 0log ℓ−jpre(c2, j ), . . . , 0log ℓ−jpre(cdi , j )), corresponding to taking the irst j bits of each coordi-
nate and prepending them with a string of log ℓ − j 0s. While this operation may send two tuples in an original
relation to a single tuple in the corresponding new one, we still have that each relation R′i contains at most as
many tuples as relation Ri .

Let us show that the quadtreeQ ′ = And
(

Extend(Q ′1,A), . . . ,Extend(Q ′n ,A)
)

has at leastm integer-1 nodes.
Imagine that we represent each R′i using a qdag Q

′
i . Because the irst log ℓ − j bits of every tuple component in R′i

are all 0, in the top log ℓ − j levels of (the completion of) Q ′i there will be only one internal node per level, with
only the irst child of each of these not being a leaf. Moreover, the remaining j levels at the bottom of Q ′i will
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Fig. 4. A graphical representation of the construction for the proof of Lemma 3.8. a) An illustration of the
top j-th levels of the qdags Q1, . . . ,Qn representing R1, . . . ,Rn , respectively, and the top j-th levels of Q =

And
(

Extend(Q1,A), . . . ,Extend(Qn ,A)
)

. b) The qdags Q ′1, . . . ,Q
′
n representing respectively the relations R′1, . . . ,R

′
n

generated, and the quadtree Q ′ = And
(

Extend(Q ′1,A), . . . ,Extend(Q ′n ,A)
)

.

be exactly the same as the top j levels of Qi , except for the last one, in which the internal nodes of Qi become
integer-1 nodes in Q ′i , and the leaves representing empty grids become integer-0 nodes (see Figure 4 for an
illustration).
Now suppose that we run Algorithm 5 over Extend(Q ′1,A), . . . ,Extend(Q ′n ,A), and let Q ′ be its output

quadtree. Note that, as before, in the top log ℓ − j levels of Q ′ there will be only one internal node per level, with
only the irst child of each of these nodes not being a leaf. Then, since the j levels at the bottom of Q ′i are the
same as the top j levels of Qi , for all 1 ≤ i ≤ n, the remaining j levels at the bottom ofQ ′ will be exactly the same
as the top j levels of Q , except for the last one, in which the internal nodes of Q at the j-th level become integer-1
nodes in Q ′. Therefore, Q ′ must have at leastm integer-1 nodes at the last level. □

Since the running time of Algorithm 4 is dominated by the execution of Algorithm 5, we can use the bounds
established in Lemmas 3.7 and 3.8 to prove the worst-case optimality of Algorithm 4. We do this in Theorem 3.9.
For a join query J on a database D, we use 2ρ

∗ (J ,D ) to denote the AGM bound [6] of the query J over D, that is,
the maximum size of the output of J over any relational database having the same number of tuples as D in each
relation.

Theorem 3.9. Let J = R1 Z . . . Z Rn be a full join query over a database D with schema {R1, . . . ,Rn }, let d be the

number of diferent attributes in D, and assume the domains of all the attributes are in [0, ℓ − 1]. LetAi be the set of

attributes of Ri , for all 1 ≤ i ≤ n, N =
∑

i |Ri | be the total number of tuples in the database, and S =
∑

i |Ai | · |Ri | its
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total number of tuple components. The relations R1, . . . ,Rn can then be stored within S log ℓ + 2N log ℓ +o(S log ℓ) +
O (n logd ) bits, so that later the output for J can be computed in time O (2ρ

∗ (J ,D ) · 2dn logmin(ℓ, S )) = Õ (2ρ
∗ (J ,D ) ).

Proof. First, assume that log ℓ isO (log S ). The space bound can be achieved by storing the relations R1, . . . ,Rn
as quadtrees Q1, . . . ,Qn , respectively. When these quadtrees are stored using the data structure of Lemma 2.1,
the total space used is

∑

i ( |Ai | + 2 + o(1)) |Ri | log ℓ + O (n logd ) = S log ℓ + (2 + o(1))N log ℓ + O (n logd ) bits,
which is within the claimed space bound. These quadtrees are built during the initialization of the database
D, and not as part of the query evaluation algorithm. To solve the join query J we irst create the qdags
(Q1, Id(A1)), . . . , (Qn , Id(An )), which takes constant time per relation. Then we use these qdags as parameters
for Algorithm 4 to compute the result of the query.
We now show that Algorithm 4 runs in time within the bound of the theorem. The cost of the Extend

operations is only O (2dn), according to Lemma 3.5, so the main cost of Algorithm 4 owes to the And operation.
Let Q be the quadtree resulting from step 4 of Algorithm 4, let Q+ be its non-pruned version, and letm be the
maximum number of internal nodes at any level of Q+. By Lemma 3.7 we know that the running time of this step
isO (m ·2dn · log ℓ), which isO (m ·2dn · logmin(ℓ, S )) since log ℓ isO (log S ). Furthermore, by Lemma 3.7 we know
that there are relations R′1 (A1), . . . ,R

′
n (An ) with |R′i | ≤ |Ri |, for all 1 ≤ i ≤ n, such that if the qdags Q ′1, . . . ,Q

′
n

represent R′1 (A1), . . . ,R
′
n (An ), respectively, then the quadtree Q ′ = And

(

Extend(Q ′1,A), . . . ,Extend(Q ′n ,A)
)

has at leastm integer-1 nodes. Since running Algorithm 4 over R′1 (A1), . . . ,R
′
n (An ) returns Q ′, the output of the

query R′1 Z . . . Z R′n has at leastm tuples. Therefore,m = O (2ρ
∗ (J ,D ) ) and the running time of Algorithm 4 over

R1, . . . ,Rn is O (2ρ
∗ (J ,D ) · 2dn logmin(ℓ, S )).

Now, let us consider the case when log S is o(log ℓ) (e.g., when the attribute values are ixed-length strings).
In this case, if we proceed as before we will still meet the space bound, but the height of the quadtrees storing
the relations could be ω (log S ), and then Algorithm 4 would not run in the claimed time because of Lemma 3.7.
With a slight variation on how we store the relations, however, we can convert O (log ℓ) to O (log S ) in the
time complexity of this algorithm while preserving the space bound. First we store the values of the attributes
appearing in any relation in an auxiliary data structure (e.g., an array), and associate an O (log S )-bits identiier
to each diferent value in [0, ℓ − 1] that appears in D (e.g., the index of the corresponding value in the array).
Then, we represent the relations R1, . . . ,Rn in quadtrees using the data structure of Lemma 2.1, but this time
storing the identiiers of the attribute values instead of the values themselves. This representation requires at
most S log ℓ bits for the representation of the distinct attribute values, and S log S + (2+ o(1))N log S +O (n logd )
bits for the quadtrees, which is o(S log ℓ) + O (n logd ). The total is then within the claimed space. As already
mentioned, this representation is computed during the initialization of the database D, and is not part of the
query evaluation algorithm. The analysis of the running time of Algorithm 4 is the same as in the previous case,
but this time when reporting the output we must map the O (log S )-bits identiier of an attribute value to its
original O (log ℓ)-bits value. This can be done by adding only a constant-time overhead per output (e.g., when
the auxiliary data structure is an array, the O (log S )-bits identiier is directly the position in this array where its
corresponding attribute value is stored). Thus, the space and running time bound claimed also hold for this case,
which completes the proof. □

In a practical implementation of Theorem 3.9, given a database D with n relations and d attributes in total, we
only store the relations as quadtrees, a lookup table of size O (22d ) to support the Extend operation eiciently
(as described in the proof of Lemma 3.5), and an array or hash table to store the original values of attributes
requiring more than ω (log S ) bits in their representation (e.g., string-valued attributes). Thus, the initialization of
the database consists of building the n quadtrees and computing the lookup table. We assumed in Theorem 3.9
that the domain of all the attributes is the same, but one can overcome this restriction in practice by combining
the two diferent representations described in the proof of the theorem. With respect to the output of the queries
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note that, although Algorithms 4 and 5 return a quadtree representing the output, they can be easily modiied to
just report the values found. For instance, in Algorithm 5 it is enough to remove lines 6-7, and replace the return
statement in line 2 by one reporting the output tuple corresponding to the leaf found. In this case, the working
memory used by Algorithms 4 and 5 is O (logmin(ℓ, S )), which is the height of the quadtrees representing the
relations.

We present and describe in depth a practical implementation in Section 6, and compare its performance with
state-of-the-art alternatives in Section 7.

3.4 Beter space and time on clustered datasets

As noted in Section 2, storing p points in a quadtree requires at most p log ℓ internal nodes, because each point
stored at an integer-1 node induces a path of log ℓ internal nodes leading to it. This is, however, an upper bound,
because those paths are not disjoint; see in Figure 1 the paths leading to (6, 12), (7, 12), (6, 13), and (7, 13). It is
not hard to show that the quadtree has indeed fewer nodes on clustered data (cf. Gagie et al. [13, Thm. 1] for two
dimensions).

Lemma 3.10. A quadtree in dimension d containing p points distributed along c clusters, with the i-th cluster

containing pi points inside a subgrid of size si
d , has O (c · 2d log ℓ +

∑

i pi log si ) internal nodes.

Proof. It is suicient to count the number of ancestors of the nodes in each cluster separately. Consider the
i-th cluster, within a hypercube of size si d . Since the quadtree nodes at depth hi = ⌊log(ℓ/si )⌋ span a subgrid of
size at least sdi , the cluster hypercube intersects at most two such nodes in each dimension, for a total of 2d nodes.
Adding up their ancestors, it turns out that the cluster has at most 2d log(ℓ/si ) ancestors of depth hi or less. In
addition, each of the pi points of the cluster has pi (log ℓ −hi ) < pi (1 + log si ) ancestors deeper than hi . Summing
up we have the upper bound O (c · 2d log ℓ +

∑

i pi log si ). □

This reduction directly impacts on the space required to store quadtrees. Indeed, quadtrees have been shown
to work well in applications such as RDF stores or web graphs, where data points are distributed in clusters
[3, 9]. We can further show that clustering also impacts positively on query times if we represent the data using
quadtrees: by combining their space analysis with the technique we used to prove Theorem 3.9, we obtain better
time bounds, and a small reinement of the AGM bound itself. Those improvements will show up empirically in
Section 7.
Consider again the triangle query R (A,B) Z S (B,C ) Z T (A,C ), and assume the points in each relation are

distributed in c clusters, each of them itting in a square grid of width at most s and size at most s × s , and with
p points in total. Then, at depth log(ℓ/s ), the quadtrees of T , R, and S have at most 22 = 4 internal nodes per
cluster: at this level one can think of the trimmed quadtree as representing a coarser grid of cells of size s × s , and
therefore each cluster can intersect at most two of these coarser cells per dimension. Thus, letting Q ′R , Q

′
S , and

Q ′T be the quadtrees for R, S and T trimmed up to level log(ℓ/s ) (and where internal nodes take value 1), then
the proof of Theorem 3.9 yields a bound for the number of internal nodes at level log(ℓ/s ) of the non-pruned
quadtree Q+ of the output: this number must be bounded by the AGM bound of the instances given by Q ′R , Q

′
S

andQ ′T , which is at most (c · 22)3/2 = 8c3/2. Going back to the data for the quadtreeQ+, the bound on the number
of internal nodes means that the points of the output are distributed in at most 8c3/2 clusters of size at most s3.
In turn, the maximal number of 1s in the answer is bounded by the AGM bound itself, which here is p3/2. This
means, by Lemma 3.10, that the size ofQ+ is bounded byO (c3/2 log ℓ +p3/2 log s ), and so is also the running time
of the algorithm. This is an important reduction from the general bound O (p3/2 log ℓ) if the number c of clusters
and their width s are small, as we now multiply the number of answers by log s instead of log ℓ.
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Corollary 3.11. If, in the scenario of Theorem 3.9, the points in each relation are distributed in c clusters of width

s , then the join algorithm works in timeO
(

(2ρ
∗ (J ,Ds ) log(ℓ/s ) + 2ρ

∗ (J ,D ) log s ) · 2dn), where Ds denotes the database

with all the values trimmed to their highest ⌊log(ℓ/s )⌋ bits and thus 2ρ
∗ (J ,Ds ) ≤ c · 2

∑

i |Ai | ≤ c · 2dn .

Proof. Assume s is a power of 2, by increasing it to the closest one if needed, and call di = |Ai |. Let Rsi be
the relations resulting out of trimming the values in Ri to their highest h = log(ℓ/s ) bits, and Ds be the instance
given by the relations {Rs1, . . . ,R

s
n }. Every empty (resp., nonempty) subgrid of size sdi of the quadtree of Ri then

becomes an integer-0 (resp., integer-1) leaf of the quadtree of Rsi . Further, every cluster of size sdi in Ri results in
at most 2di points in Rsi , and thus |Rsi | ≤ c · 2di .

Now consider the non-pruned quadtreeQ+ built during the application of Algorithm 5. The number of nodes at
depth h correspond to the last-level nodes of the output of the query J applied on Ds , that is, at most 2ρ

∗ (J ,Ds ) . The
total number of internal nodes in Q+ can then be bounded by splitting them into two parts: (i) the nodes at depth
h in Q+ and their ancestors, and (ii) the deeper nodes in Q+. While the irst part is clearly O (2ρ

∗ (J ,Ds ) log(ℓ/s )),
the second part can be bounded as in Theorem 3.9: take the level of Q+ with the maximum numberm of nodes,
which is at most 2ρ

∗ (J ,D ) , and multiply it by the log ℓ − h = log s levels that are accounted for in (ii). The result
then follows by charging the O (2dn) cost incurred by the intersection algorithm on each node of Q+. The
last inequality follows from the fact that the n restricted relations Rsi are of maximum cardinality c · 2di and
2ρ
∗ (J ,Ds ) ≤ Πi |R

s
i | ≤ c · 2

∑

i di ≤ c · 2dn . □

3.4.1 Geometric interpretation. As quadtrees have a direct geometric interpretation, it is natural to compare
them to the algorithm based on gap boxes proposed by Khamis et al. [18]. In a nutshell, this algorithm uses a data
structure that stores relations as a set of multidimensional cubes that contain no data points, which the authors
call gap boxes. Under this framework, a data point is in the answer of the join query R1 Z · · · Z Rn if the point is
not part of a gap box in any of the relations Ri . The authors then compute the answers of these queries using an
algorithm that inds and merges appropriate gap boxes covering all cells not in the answer of the query, until no
more gap boxes can be found and we are left with a covering that misses exactly those points in the output of the
query. Such an algorithm is subject of a iner analysis: the runtime of queries can be shown to be bounded by a
function of the size of a certiicate of the instance (and not its size). The certiicate in their case is simply the
minimum amount of gap boxes from the input relations that is needed to cover all the gaps in the answer of
the query. Finding such a minimal cover is NP-hard, but a slightly restricted notion of gap boxes maintains the
bounds within an O (logd ℓ) approximation factor.

While any index structure can be thought of as providing a set of gap boxes [18], quadtrees provide a particularly
natural and compact representation. Each leaf or node valued 0 in a quadtree signals that there are no points in
its subgrid, and can therefore be understood as a d-dimensional gap box. Now let J = R1 Z · · · Z Rn be a join
query over d attributes, and let R∗i denote the extension of Ri to the attributes of J . As in Khamis et al. [18], a
quadtree certiicate for J is a set of gap boxes (i.e., empty d-dimensional grids obtained from any of the R∗i s) such
that every coordinate not in the answer of J is covered by at least one of these boxes. LetC J ,D denote a certiicate
for J of minimum size; then we can reinterpret the running time of Theorem 3.9 as follows.

Corollary 3.12. Given multijoin J on a database D, Algorithm 4 runs in time O (( |C J ,D | + |J (D) |) · 2dn log ℓ),
where J (D) is the output of the query J over D.

Now, one can easily construct instances and queries such that the minimal certiicate C J ,D is comparable to
2ρ
∗ (J ,D ) . So this will not give us instance-optimality results, as discovered [18, 32] for acyclic queries or queries

with bounded treewidth. This is a consequence of increasing the dimensionality of the relations. Nevertheless,
the bound does yield a good running time when we know that C J ,D is small, as evidenced in Corollary 3.11. It is
also worth mentioning that our join algorithm directly computes the only possible representation of the output
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as gap boxes (because its boxes come directly from the representation of the relations). This means that there is a
direct connection between instances that give small certiicates and instances for which the representation of the
output is small.

4 EXTENDING WORST-CASE OPTIMALITY TO BOOLEAN QUERIES

Next we turn to design worst-case optimal algorithms for more general queries of the relational algebra. We start
in this section with the Boolean queries: we already studied the intersection (which corresponds to operation
And over the qdags), and will show that union (operation Or) and complement (operation Not) can be solved
optimally as well. What is most intriguing, however, is whether we can obtain worst-case optimality on combined
relational formulas. We introduce a notion of worst-case optimality that generalizes the AGM bound on multijoin
queries, and then design a worst-case optimal algorithm (in data complexity) to evaluate formulas that combine
join, union, and complement operations. We refer to those formulas as JUC queries5; note that the intersection is
a particular case of join.

Deinition 4.1. Let F be a formula in the relational algebra over relations R1 (A1), . . . ,Rn (An ) from a databaseD.
We deine F (D)∗ as the maximum size of the output of F over instances D ′ with relations R′1, . . . ,R

′
n of respective

sizes |R′i | = O ( |Ri |), and their complements of sizes |R′i | = O ( |Ri |), for all 1 ≤ i ≤ n. An algorithm to evaluate F
is said to be worst-case optimal if it evaluates F in time O (F (D)∗), and worst-case optimal in data complexity if it
evaluates F in time Õ (F (D)∗), which is O (F (D)∗) multiplied by factors that depend only on the size |F | of the
formula, the total number d = | ∪i Ai | of attributes, and at most polylogarithms of the data and domain sizes.

The guard about the sizes of R′i is important when Ri appears negated in F , to avoid the complement of R′i to be

very large and induce a poor bound F (D)∗. For instance, let F = R1 ∩ R2 and |R2 | = ℓ
d −O (1), so every possible

output of F is of size O (1). Yet, if we can choose a relation R′2 with |R
′
2 | = |R2 |/2 = O ( |R2 |), then the output of F

on R′2 can be of size up to ℓd/2 +O (1), and hence F (D)∗ = Θ(ℓd ). Our deinition avoids this by enforcing that

|R′2 | = O ( |R2 |) = O (1). We do not need to enforce this condition on the relations Ri that do not appear negated in
F .

In the particular case where F is a multijoin formula J (no negations), we have F (D)∗ = 2ρ
∗ (J ,D ) , and we have

achieved the corresponding worst-case optimality (in data complexity) in Theorem 3.9. The key technique to
obtain worst-case optimality on more complex queries is to deal with them in a lazy form, allowing unknown
intermediate results so that all the components of a formula are evaluated simultaneously. To do this we introduce
lazy qdags (or lqdags), an alternative to qdags that can navigate over the quadtree representing the output of
a formula without the need to entirely evaluate the formula. We then give a worst-case optimal algorithm to
compute the completion of an lqdag, that is, the quadtree of the grid represented by the lqdag.

4.1 Lqdags for relational formulas

To support worst-case optimal evaluation of relational formulas we introduce two new ideas: we add łfull leavesž
to the quadtree representation to denote subgrids full of 1s, and we introduce lqdags to represent the result of a
formula as an implicit quadtree that can be navigated without fully evaluating the formula.
While the last-level nodes of quadtrees represent a single cell and store its value, 0 or 1, quadtree leaves at

higher levels always represent subgrids full of 0s. We now generalize the representation, so that those quadtree
leaves at higher levels also store an integer, 0 or 1, which is the value of all the cells in the subgrid represented by

5Strictly speaking, JUC queries are incomparable to relational algebra because complement operations can only be simulated with diference
when the domain of the relations coincides with the active domain. However, to streamline the comparison between boolean queries
and relational algebra, we assume that the domain and active domain of relations coincide, and therefore complement and diference are
interchangeable.
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Algorithm 6 Value on extended qdags

Require: A qdag (Q, M ) with grid side ℓ.
Ensure: Value 0 or 1 if the grid represented by Q is totally empty or full, respectively, otherwise ½.

1: if Q is a leaf then return the integer 0 or 1 associated with Q

2: return ½
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Fig. 5. (a) A grid representing the complement R (A,B) of the relation R (A,B) in Fig 1. (b) The quadtree representing R. The
integers can now appear at any level, and they represent either empty or full subgrids. The internal nodes are grayed.

the leaf. This generalization is introduced in order to complement empty subgrids in constant time; see Figure 5.
It is now more convenient to call leaves all the quadtree nodes, in the last level or higher, whose subgrids are all
0s or all 1s, and thus storing the corresponding integer (see Figure 5). The generalization impacts on the way
to compute Value, as depicted in Algorithm 6. We will not use qdags in this section, however; the lqdags build
directly on quadtrees.
In terms of the compact representation, this generalization is implemented by resorting to an impossible

quadtree coniguration: a string shorter than log ℓ in the trie structure of Lemma 2.1 will be used to denote the
path of a quadtree node ending at a leaf full of 1s. We emphasize that we are allowed to use leaves with value 1
when possible, but not forced: quadtrees with those nodes partially or fully expanded are also valid and equivalent,
in the sense that they represent the same set of points. A relation can then be represented by diferent quadtrees.

The second novelty, the lqdags, are deined as follows.

Deinition 4.2 (lqdag). An lqdag L is a pair ( f ,o), where f is a functor and o is a list of operands, recursively
built using the following rules. The rules also deine the completion of L, which is a quadtree QR representing a
relation R (A); we also say that L represents R.

(1) L = (QTREE,QR ).
(2) L = (NOT,QR ), where QR is a quadtree representing the complement of R;
(3) L = (AND,L1,L2), where L1 and L2 are lqdags, and QR represents the intersection of their completions;
(4) L = (OR,L1,L2), where L1 and L2 are lqdags, and QR represents the union of their completions;
(5) L = (EXTEND,L1,A), where L1 is an lqdag representing a relation R′(A ′), A is a set of attributes such

that A ′ ⊆ A, and R (A) = R′(A ′) × All(A \ A ′).

To illustrate the deinition of lqdags, consider the triangle query R (A,B) Z S (B,C ) Z T (A,C ), with A =
{A,B,C} and the relations represented by quadtrees QR , QS , and QT . This query can then be represented as the
lqdag

(AND, (AND, (EXTEND, (QTREE,QR ),A), (EXTEND, (QTREE,QS ),A)), (EXTEND, (QTREE,QT ),A)).
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Fig. 6. Illustration of the syntax tree of an lqdag for the formula (R (A,B) Z S (B,C )) Z T (A,C ). The quadtrees QR ,QS ,QT
represent the relations R, S,T , respectively.

Lqdags as syntax trees. An lqdagL = ( f ,o) can be interpreted as a syntax tree of the formula F that it represents.
The leaves of this tree correspond to the lqdags with functors QTREE and NOT (i.e., those having a quadtree as
their operand) present in L, while its internal nodes correspond to lqdags with functors OR, AND, and EXTEND (i.e.,
those having lqdags as their operands). The root of the syntax tree for L is a node corresponding to the functor f ,
and there is an edge from a node for an lqdag L1 to a node for an lqdag L2 if and only if L2 is an operand of L1

(see Figure 6 for an illustration). The lqdags corresponding to each node of this syntax tree are called fnodes of L.

Deriving other functors and the limitations of the NOT operand. For a quadtree QR representing a relation R (A ′),
and a set of attributesA such thatA ′ ⊆ A, the qdag (QR ,MA ) that represents the relation R (A ′) ×All(A \A ′)
can be expressed as the lqdag (EXTEND, (QTREE,QR ),A). In this sense, lqdags are extensions of qdags. Note also
that JUC queries, and even other more general formulas, can be expressed as lqdags. While UNION and COMPLEMENT
are equivalent to OR and NOT, respectively, one can deine other operations, like JOIN and DIFF, by composing
the operations introduced in Deinition 4.2:

(JOIN,L1 (A1),L2 (A2)) = (AND, (EXTEND,L1,A1 ∪ A2), (EXTEND,L2,A1 ∪ A2)) (1)

(DIFF,L1 (A),L2 (A)) = (AND,L1, (NOT,L2)) (2)

Note that in the deinition of the lqdag for NOT, the operand is a quadtree instead of an lqdag, and then, for
example, L2 should be a quadtree in the deinition of DIFF in Eq. (2), in principle. We can get around that
restriction by pushing down the NOT operators until the operand is a quadtree or the NOT is cancelled with another
NOT. We formalize this process in Lemma 4.3. Proceeding in this way, however, does limit the types of formulas
for which we achieve worst-case optimality, as shown later in Section 4.2.

Lemma 4.3. Let L = ( f ,o) be an lqdag, and let k be the total number of functors that appear in L, including f and

all those present recursively in o. Let NOT∗ (L) denote the quadtree representing the complement of the completion of

L. Then there is an lqdag L = ( f ′,o′) whose completion is NOT∗ (L), and contains k functors in total (i.e., including

f ′ and those present recursively in o′).

Proof. We prove the lemma by induction on k . When k = 1, L must be either (QTREE,o) or (NOT,o), with o

being a quadtree. In this case L ′ = (NOT,o), or L ′ = (QTREE,o), respectively.
When k > 1, f must be either AND, or OR, or EXTEND. For L = (AND,L1,L2), the number of functors k1,k2

present in L1,L2, respectively, must be less than k . Thus, by induction there are lqdags L1,L2, containing
exactly k1,k2 functors, respectively, and whose completions are NOT∗ (L1), NOT∗ (L2). By the de Morgan law, the
completion of the lqdag L = (OR,L1,L2) is NOT∗ (L). Moreover it contains exactly 1 + k1 + k2 = k functors in it,
and thus the statement is true for this case. Analogously, when L = (OR,L1,L2), L = (AND,L1,L2) contains k
functors and has NOT∗ (L) as its completion.
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We are left with the case whenL = (EXTEND,L1,A). SinceL1 must contain k−1 functors, there is by induction
an lqdag L1 containing exactly k1 functors and whose completion is NOT∗ (L1). We can show that the completion
of L = (EXTEND,L1,A) is precisely NOT∗ (L). By Deinition 4.2, the completion of L1 must represent a relation
R′(A ′) with A ′ ⊆ A, while the completion of L must represent a relation R (A) = R′(A ′) × All(A \ A ′). Let

R (A),R′(A ′) denote the complements of R (A),R′(A ′), respectively. Let tX denote the projection of a tuple t to

a set of attributes X . Note that R (A) can be written as

R (A) = {t ∈ All(A) | tA′ < R
′(A ′) or tA\A′ < All(A \ A

′)}.

Since the complement of All(A \ A ′) is empty, R (A) = {t ∈ All(A) | tA′ ∈ R′(A ′)}, which is the same as

R (A) = R′(A ′) × All(A \ A ′). By Deinition 4.2, this is the relation represented by the completion of the lqdag
L = (EXTEND,L1,A), thus completing the proof. □

Laziness of lqdags. To understand why we call lqdags lazy, consider the operation Q1 And Q2 over quadtrees
Q1,Q2. If either Value at the roots ofQ1 orQ2 is 0, then the result of the operation is for sure a leaf with Value 0.
If either Value is 1, then the result of the operation is the other quadtree. However, if both roots have Value ½,
one cannot be sure of the Value of the resulting root until the And between the children of Q1 and Q2 has been
computed. Solving this dependency eagerly would go against worst-case optimality: it forces us to fully evaluate
parts of the formula without considering it as a whole. To avoid this, we allow the Value of a node represented
by an lqdag to be, apart from 0, 1, and ½, the special value ^. This indicates that one cannot determine the value
of the node without computing the values of its children.
As we did for qdags, in order to simulate the navigation over the completion Q of an lqdag L we need to

describe how to obtain the value of the root of Q , and how to obtain an lqdag whose completion is the i-th
child of Q , for any given i . We implement those operations in Algorithms 7 and 8, both constant-time. Note that
Child can only be invoked when Value = ½ or ^. The base case occurs when L = (QTREE,Q ) or L = (NOT,Q ),
where we enter the quadtree and resort to the algorithms based on the compact representation of Q . As per
Algorithm 6, Value(Q ) returns ½ for internal nodes, and thus the implementation of Value for EXTEND is trivial
in Algorithm 7.

Note that the recursive calls of Algorithms 7 and 8 traverse the fnodes of the lqdag, and terminate immediately
upon reaching an fnode of the form (QTREE,Q ) or (NOT,Q ). Therefore, their time complexity depends only on
the size of the formula represented by the lqdag. We show next how, using these implementations of Value and
Child, one can eiciently evaluate a relational formula using lqdags.

4.2 Evaluating JUC queries

To evaluate a formula F represented as an lqdag LF , we compute the completion QF of LF , that is, the quadtree
QF representing the output of F (as detailed in Algorithm 9).

To implement this we introduce the idea of non-pruned completion of an lqdag. The non-pruned completionQ+F
of LF is the quadtree induced by navigating LF , and interpreting the values ^ as ½ (as in Algorithm 9 omitting
lines 4 and 5). Note that, by interpreting values ^ as ½, we are disregarding the possibility of pruning resulting
subgrids full of 0s or 1s and replacing them by single leaves with values 0 or 1 inQF . Therefore,Q+F is a non-pruned
quadtree (just as Q+ in Section 3.3) that nevertheless represents the same points of QF . Moreover, Q+F shares
with QF a key property: all its nodes with value 1, including the last-level leaves representing individual cells,
correspond to actual tuples in the output of F .

To see how lqdags are evaluated, let us consider the query F = R (A,B) Z S (B,C ) Z T (A,C ). This corresponds
to an lqdag LF :

(AND, (AND, (EXTEND, (QTREE,QR ),A), (EXTEND, (QTREE,QS ),A)), (EXTEND, (NOT,QT ),A)).
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Algorithm 7 Value (L)

Require: An lqdag L
Ensure: Value of the root of L.

1: if L = (QTREE, Q ) then

2: return Value(Q )

3: if L = (NOT, Q ) then

4: return 1 − Value(Q )

5: if L = (AND, L1, L2) then

6: if Value(L1) = 0 or Value(L2) = 0 then return 0

7: if Value(L1) = 1 then return Value(L2)

8: if Value(L2) = 1 then return Value(L1)

9: return ^

10: if L = (OR, L1, L2) then

11: if Value(L1) = 1 or Value(L2) = 1 then return 1

12: if Value(L1) = 0 then return Value(L2)

13: if Value(L2) = 0 then return Value(L1)

14: return ^

15: if L = (EXTEND, L1, A) then

16: return Value(L1)

Algorithm 8 Child (L, i)

Require: An lqdag L (A) and an integer 0 ≤ i < 2|A| .
Ensure: An lqdag for the i-th child of L.

1: if L = (QTREE, Q ) then

2: return (QTREE, Child(Q, i ))

3: if L = (NOT, Q ) then

4: return (NOT, Child(Q, i ))

5: if L = (AND, L1, L2) then

6: if Value(L1) = 1 then return Child(L2, i )

7: if Value(L2) = 1 then return Child(L1, i )

8: return (AND, Child(L1, i ), Child(L2, i ))

9: if L = (OR, L1, L2) then

10: if Value(L1) = 0 then return Child(L2, i )

11: if Value(L2) = 0 then return Child(L1, i )

12: return (OR, Child(L1, i ), Child(L2, i ))

13: if L = (EXTEND, L1 (A
′), A) then

14: d ← |A |, d ′ ← |A′ |
15: md ← the d-bits binary representation of i
16: md′ ← the projection of md to the positions in which the

attributes of A′ appear in A

17: i′ ← the value in [0, 2d
′
− 1] corresponding tomd′

18: return (EXTEND, Child(L1, i
′), A)

Assuming that some of the quadtrees involved in LF have internal nodes, the non-pruned completion Q+F irst
produces 8 children. Suppose the grid ofT is full of 1s in the irst quadrant (00). Then the irst child (00) ofQT has
value 1, which becomes value 0 in (NOT,QT ). This implies that (EXTEND, (NOT,QT )) also yields value 0 in octants
000 and 010. Thus, when function Child is called on child 000 of QF , our 0 is immediately propagated and Child
returns 0, meaning that there are no answers for F on this octant, without ever consulting the quadtreesQR andQS

(see Figure 7 for an illustration). On the other hand, if the value of the child 11 ofT is 0, then (EXTEND, (NOT,QT ))

will return value 1 in octants 101 and 111. This means that the result on this octant corresponds to the result of
joining R and S ; indeed Child towards 101 in QF returns

(AND,Child((EXTEND, (QTREE,QR ),A), 101),Child((EXTEND, (QTREE,QS ),A), 101)).

If Child((EXTEND, (QTREE,QR ),A), 101) and Child((EXTEND, (QTREE,QS ),A), 101) are trees with internal nodes,
the resulting AND can be either an internal node or a leaf with value 0 (if the intersection is empty), though not a
leaf with value 1. Thus, for now, the Value of this node is unknown, a ^. See Figure 7 for an illustration.

Note that the running time of Algorithm 9 isO ( |Q+F |). Lines 4 and 5 compactQ+F to obtainQF , without afecting
the complexity of traversing Q+F . Thus, bounding |Q

+

F | yields a bound for the running time of evaluating F . While
|Q+F | can be considerably larger than the actual size |QF | of the output, we show that |Q+F | is bounded by the
worst-case output size of formula F for a database with relations of approximately the same size.

We will not use the ^ values in the proof, because these are not needed when all we want is to materialize the
output of the query; we can just replace them all by ½ in that case. The ^ values are useful, instead, to evaluate
the formula progressively, for example to provide an iterator over the output.

4.2.1 Analysis of the algorithm. Let LF be an lqdag for a formula F , and consider the syntax tree corresponding
to LF . We call atomic expressions of LF the lqdags associated with the leaves of this tree (i.e., the fnodes with
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Fig. 7. Illustration of the evaluation of
an lqdag for the formula (R (A,B) Z

S (B,C )) Z T (A,C ). The quadtrees
QR ,QS ,QT represent the relations R, S,T ,
respectively. We show the top values of
Q+
F
on top and of QT on the botom. The

gray upward arrows show how the value
1 in the quadrant 00 of QT becomes 0s
in octants 000 and 010 of Q+

F
without ac-

cessingQR orQS . The red upward arrows
show how the value 0 in the quadrant 11
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ofQ+
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depend only on their let child (and,

assuming their value is ½, becomes a ^
in Q+

F
).

Algorithm 9 Completion (LF )

Require: An lqdag LF whose completion represents a formula F over relations with d attributes.
Ensure: The completion QF of LF .

1: if Value(LF ) ∈ {0, 1} then return a leaf with value Value(LF )

2: for i ← 0, . . . , 2d − 1 do
3: Ci ← Completion(Child(LF , i ))

4: if max{Value(C0), . . . , Value(C2d−1) } = 0 then return a leaf with value 0

5: if min{Value(C0), . . . , Value(C2d−1) } = 1 then return a leaf with value 1

6: return a quadtree with value ½ and children C0, . . . , C2d−1

functors QTREE and NOT, see Figure 6 again). We say that two atomic expressions L1 and L2 are equal if both
their functors and operands are equal. For example, in the formula

F = (OR, (AND, (QTREE,QR ), (QTREE,QS )), (AND, (QTREE,QR ), (QTREE,QT )))

there are three diferent atomic expressions, (QTREE,QR ), (QTREE,QS ), and (QTREE,QT ), while inF ′ = (AND, (QTREE,QR ), (NOT,QR ))

there are two atomic expressions. Notice that in formulas like F ′, where a relation appears both negated and not
negated, the two occurrences are seen as diferent atomic expressions. We return later to the consequences of
this deinition.

The following lemma is key to bound the running time of Algorithm 9 for evaluating a formula.

Lemma 4.4. Let F be a JUC query represented by an lqdag LF in dimension d , and let Q+F be the non-pruned

completion of LF . Let R1 (A1), . . . ,Rn (An ) be the relations that appear in F , and assume F does not contain

subexpressions (QTREE,Q ) and (NOT,Q ) for a same quadtree Q . Letm be the maximum number of internal nodes in

any level ofQ+F . Then, there is a database D
′ with relations R′1 (A1), . . . ,R

′
n (An ) of sizes |R

′
i | = |Ri | for all 1 ≤ i ≤ n,

such that the output of F evaluated over D ′ has size Ω(m).

Proof. Letmk be the number of internal nodes in level k of Q+F and j be a level wherem =mj is maximum.
Let A1, . . . ,An be the distinct atomic expressions of LF and Q1, . . . ,Qn their corresponding quadtrees (note that
this is the number of relations intervening in F , because both subexpressions (QTREE,Q ) and (NOT,Q ) cannot
appear for the same Q). Let Q ′1, . . . ,Q

′
n be the quadtrees that result from trimming the levels at depths higher
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than j − 1 from Q1, . . . ,Qn , respectively, and replacing each node with value ½ in level j by a leaf valued 0 or 1
depending on whether the functor of Ai is NOT or QTREE, respectively. We irst show that Q ′1, . . . ,Q

′
n represent

relations R′1, . . . ,R
′
n with |R′i | ≤ |Ri | such that, when F is evaluated over these relations, the output of the formula

is at leastm. Then we complete the proof by showing how to augment R′i so that |R′i | = |Ri |, while preserving an
output size of at leastm when F is evaluated over the new relations.

From internal nodes to output tuples. Let Q+F
′ be the non-pruned completion of LF when evaluated over

Q ′1, . . . ,Q
′
n . We will show that Q+F

′ has at leastm nodes with value 1 at the last level (the j-th), and thus the
output of F over the relations represented by Q ′1, . . . ,Q

′
n is at leastm.

First, consider the completion A∗i of Ai evaluated over Qi , and the completion A∗i
′ of Ai evaluated over Q ′i , for

all 1 ≤ i ≤ n. We say that A∗i ≤ A∗i
′ if both have the same topology up to the last level of A∗i

′, and the value of
each node in A∗i

′ is not smaller than that of its homologous node in A∗i .
The value of a node in the quadtree resulting from an AND or OR operand is monotonic on the values of the

homologous nodes of the operands (i.e., when a node value in an operand is increased, the value in the homologous
node of the result never decreases). A simple inductive argument on the syntax tree of LF shows that the value
of each node in Q+F is also monotonic on the values of the homologous nodes from the quadtrees A∗i involved in
its computation. Thus, if we show that A∗i ≤ A∗i

′ for all i , we prove that Q+F ≤ Q+F
′. This implies that Q+F

′ has at
leastm nodes with value 1 in its last level: in Q+F there are at leastm internal nodes at level j that become leaves
in the last level of Q+F

′, and since their values cannot be 0 due to monotonicity, they must be 1.
If Ai is of the form (QTREE,Qi ), showing that A∗i ≤ A∗i

′ is easy: the values in the irst j − 1 levels of A∗i are
respectively equal to those in the j − 1 levels of A∗i

′, and the only change in the j-th level is that the values ½
were increased to 1 when converting every Qi to Q ′i .

When Ai = (NOT,Qi ), we show instead that A∗i
′ is equivalent to a quadtreeQ ′i (i.e., both represent the negation

of Q ′i ) such that A∗i ≤ Q ′i . When we convert the nodes at level j with value ½ in Qi to leaves with value 0 in Q ′i ,
we may create nodes v in Q ′i whose descendant leaves are all of value 0, and thus those nodes v would become
leaves with value 0 themselves. This changes the topology of A∗i

′ with respect to A∗i , and it is the reason why we

instead compare A∗i with a quadtree Q ′i equivalent to A
∗
i
′. We construct Q ′i by using the same topology of Q ′i , and

complementing the values 0 and 1 of every leaf (see Figure 8). In addition, we expand up to level j all those new
leaves v of Q ′i that were created via pruning (which is valid because the leaves we expand in Q ′i are of value 1).

After this expansion, Q ′i has the same topology of A∗i up to level j , its node values are never smaller than those of

the corresponding nodes in A∗i , and thus A∗i ≤ Q ′i .
So far, we showed how to obtain n relations over the same set of attributes as the original ones such that, when

F is evaluated over them, the output size is Ω(m). Moreover, since each quadtree Q ′i is obtained by trimming
Qi at some level, we know these quadtrees represent relations R′i such that |R′i | ≤ |Ri |. The values in R′1, . . . ,R

′
n

belong, however, to a smaller universe of j-bit values. This is remedied by simply appending (log ℓ − j ) 0s at the
beginning of the binary representation of these values. Restoring the size of the universe also gives space to
augment the generated relations so that their cardinalities coincide with the original ones. We show next how to
achieve this.

Augmenting the relations. After appending the (log ℓ − j ) 0s at the beginning of the binary representation of
each value in R′i , the points represented by each Q ′i are distributed in a subgrid of size 2d j from the total space of
size 2d log ℓ

= ℓd . There are 2d log ℓ/2d j = 2dc such subgrids in the domain of Ri , for c = log ℓ − j > 0. Thus, we
have 2dc − 1 > 0 empty subgrids where we can add spurious points in order to increase the size of R′i . We show
that the amount of points within these subgrids is enough to augment R′i so that |R′i | = |Ri |.
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Fig. 8. An illustration of the construction of Q ′i and Q
′
i in the proof of Lemma 4.4 for an atomic expression Ai = (NOT,Qi ).

The number inside each node represents its value, and the relations ≥ and ≤ drawn between trees apply to the value of each
pair of corresponding nodes. The figure assumes that the maximum number of internal nodes inQi occurs at the fourth level.
The red node in Qi has been compacted into a leaf with value 0 since their children had all value 0 ater the transformation

of values ½ to 0. These nodes are un-compacted back in Q ′i to ensure Qi and Q
′
i have the same topology up to level four.

We irst consider the case when Ai = (NOT,Qi ). For the purpose of the proof, assume Qi has leaves with value
1 whenever possible.6 The points of Ri can be classiied into the points Oi represented by a node with value 1 at
level k ≤ j in Qi , and the points Ii represented by a node that descends from a ½-valued node at level j of Qi .
Thus |Ri | = |Oi | + |Ii |, and:

• Each node valued 1 at level k ≤ j in Qi induces 2d (j−k ) points in R′i and 2d (log ℓ−k ) points in Ri ; therefore
there are 2dc points in Oi per point in R′i . Those are all the points in R′i , so to match |Oi | we must insert
2dc − 1 further points for each point in R′i .
• For every empty cell in R′i there can be up to 2dc − 1 points in Ii , because if the 2dc points existed in the
subgrid of Ri corresponding to the cell of R′i , then they would have induced a 1 at level j of Qi , not a ½.
Therefore, to match |Ii | we must insert up to 2dc − 1 further points for each empty cell in R′i .

Summing up both cases, it suices to add 2dc − 1 points for each of the 2d j cells of R′i , full or empty. Then, we
have suicient space in all the other 2dc − 1 > 0 subgrids, each of 2d j cells, to add the spurious points needed to
make R′i of size |Ri |.
The case of Ai = (QTREE,Qi ) follows easily from the previous case. Let R′′i be a relation represented by the

quadtree Q ′′i generated via trimming at the j-th level for the atomic expression (NOT,Qi ). Then, |R′i | = |R
′′
i | +m

because in Q ′i them internal nodes in the j-th level are converted into nodes with value 1, while in Q ′′i they
become leaves with value 0. We already know that there is enough room in the new subgrids to augment R′′i so
that |Ri | = |R′′i |, and therefore the same can be achieved for R′i , which requires fewer points. □

6Alternatively, when generating Q ′i , we convert to 1, not to 0, the values ½ whose descendant leaves are all 1s.
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For a formula F represented as a d-dimensional lqdag LF that involves relations R1, . . . ,Rn , we can bound
the time needed to compute the non-pruned completion Q+F of LF using the same reasoning as in Section 3.3.
Sincem is the maximum number of internal nodes in a level of Q+F , the number of internal nodes in Q+F is at
mostm log ℓ. Now, each internal node in Q+

LF
results from the application of |F | operations on each of the 2d

children being generated, all of which take constant time. Thus the non-pruned completion can be computed in
timeO (m · 2d |F | log ℓ). On the other hand, by Deinition 4.1, it holds that F (D)∗ = Ω(m), and therefore the query
F can be computed in time O (F (D)∗ · 2d |F | log ℓ). This means that the algorithm is worst-case optimal in data
complexity. By using the same technique of Theorem 3.9 to convert log ℓ into logmin(ℓ, S ), we obtain the result.

Theorem 4.5. Let F be a JUC query on the relations {R1, . . . ,Rn } of a database D, with d attributes in total,

and where the domains of the relations are in [0, ℓ − 1]. Let Ai be the set of attributes of Ri , for all 1 ≤ i ≤ n,

N =
∑

i |Ri | be the total number of tuples in the database, and S =
∑

i |Ai | · |Ri | its total number of entries. The

relations R1, . . . ,Rn can then be stored within S log ℓ + 2N log ℓ + o(S log ℓ) +O (n logd ) bits so that, if the lqdag
of F does not contain both subexpressions (QTREE,Q ) and (NOT,Q ) for some Q , its output can be computed in time

O (F (D)∗ · 2d |F | logmin(ℓ, S )) = Õ (F (D)∗).

This result generalizes Theorem 3.9, where F (D)∗ = 2ρ
∗ (F ,D ) and |F | = Ω(n). Moreover, it does not matter how

we write our formula F to achieve worst-case optimal evaluation. For example, our algorithms behave identically
on ((R Z S ) Z T ) and on (R Z (S Z T )).

Lemma 4.4 requires that no single quadtreeQi appears in both forms, (QTREE,Qi ) and (NOT,Qi ), in the formula,
because for each of those atoms we create diferent versions of Q ′i to construct the worst-case database D ′.
This restriction carries over to Theorem 4.5. To see why it is necessary, consider again our example formula
F ′ = (AND, (QTREE,QR ), (NOT,QR )). While the answer of this query is always empty, and therefore |QF ′ | = 0, it
holds |Q+

F ′
| = Ω( |R |/2d ) for every R, and our algorithm will take time Ω( |R |). Our algorithm is then worst-case

optimal only if we consider the possible output size of amore general formula,F ′′ = (AND, (QTREE,QR ), (NOT,Q
′
R )).

This impacts in other operations of the relational algebra: we can write them all as lqdags, but for some of them
we will not ensure their optimal evaluation.

In case the formula F contains (after pushing down the NOT operators) both atomic subexpressions (QTREE,Q )

and (NOT,Q ) for the same Q , Theorem 4.5 can still yield an upper bound on a more relaxed formula F ′, where
the occurrences of (NOT,Q ) are replaced by (NOT,Q ′) and Q ′ is a copy of Q . Note, however, that the optimality
in the evaluation of F ′ does not imply the optimality on F , because a worst-case instance of F ′ may choose
diferent instances for Q and Q ′.

5 FULL RELATIONAL ALGEBRA ON LQDAGS

Lqdags can be elegantly extended to handle the full relational algebra, even if in general we cannot provide
optimality guarantees when the remaining operations are included. We consider in the sequel the operations not
covered in Section 4 (recall that set diference is handled as in Eq. (2), and its optimality holds under the same
conditions of Theorem 4.5).

First, note that attribute renaming, ρAi /Aj
(L), requires no computation in our framework: we retain the same

lqdag of L (A) but interpret it as L (A ′), where A ′ = A \ {Ai } ∪ {Aj }, assuming that the dimension of L that
represented Ai now represents Aj . Relation renaming is also immaterial. Note that renaming can be used to
alter the order of the attributes in a relation, and to include it with various orders in the same formula. This
is supported in our framework with various qdags (Q,Mi ) referring to the same quadtree and with diferent
permutationsMi of its attributes.
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Fig. 9. An illustration of Qθ for the predicate θ : A < B, with A,B atributes. a) A representation in a grid of the tuples
matching θ when ℓ = 24. b) The quadtree that represents the tuples matching θ .

5.1 Selection and θ -join

The selection operation in relational algebra, σθ (F ), takes a subexpression F and a predicate θ , which is a logical
expression on the attributes of F . This can be written with our lqdags as

(SELECT,LF (A),θ ) = (AND,LF (A),pred (θ ,A)), (3)

where LF is an lqdag representing F , and pred (θ ,A) is a virtual lqdag on A whose cells are exactly those that
satisfy the predicate θ . For example, a simple predicate like θ ≡ (Ai = a), which ixes the value of the attribute
Ai , can be written as

pred ((Ai = a),A) = (EXTEND, (QTREE, ⟨a⟩),A \ {Ai }),

where ⟨a⟩ is a quadtree in one dimension, on attribute Ai , with a single cell with value a. Logical disjunctions,
conjunctions, and negations in θ can be handled by using the lqdag operations OR, AND, and NOT, respectively. All
those pred (θ ,A) lqdags can then be easily formed from very small quadtrees and the Boolean lqdag operations.

However, θ can be in general a logical formula over more complex conditions than an attribute being equal to a
constant: two attributes, or an attribute and a constant, can be compared with any operator in {=,,, ≤, ≥, <, >}. A
general way to handle any such predicate is to set pred (θ ,A) = (QTREE,Qθ ) without building an actual quadtree
Qθ on A (see Figure 9 for an example of Qθ ). Instead, we simulate the navigation through Qθ , keeping track of
the subgrid boundaries as we descend, and returning Value for the current node as follows:

• 0 if θ does not hold for any cell in the current subgrid;
• 1 if θ holds for every cell in the current subgrid;
• ½ otherwise.

Whether θ holds for some or for all cells in a given subgrid of the output can be easily determined in time
O ( |θ |) for the logical formulas comparing attributes and constants we have discussed above (e.g., as in Figure 9,
A < B holds somewhere if sa < eb and it holds everywhere if ea < sb , where [sa , ea] and [eb , sb ] are the
ranges of values of the attributes A and B, respectively, in the subgrid). For a formula F represented by the lqdag
LF = (SELECT,L,θ ), if we count |θ | as a part of |F |, then we can compute the output of LF in timeO ( |Q+F | ·2

d |F |),
whereQ+F is the super-completion of LF . This complexity is indeed worst-case optimal when θ selects tuples from
a single relation R: the AGM bound for LF = (AND, (QTREE,R), (QTREE,Qθ )) is F (D)∗ = min( |R |, |Qθ |) because
there exists a relation R′ with |R | points placed at the coordinates that satisfy θ , unless of course there are fewer
of the latter. The quadtree Q+F we virtually traverse, on the other hand, contains exactly the ancestors of the
leaves of the quadtree of R that also belong to Qθ , of which there are at most O (F (D)∗ logmin(ℓ, S )). We then
obtain the same bounds of Theorem 4.5.
The complexity of evaluating our formula might not be worst-case optimal, however, when θ combines

attributes from two or more tables, because |Q+F | may no longer be bounded by F (D)∗ in that case. To see this, let
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LR ,LS be lqdags representing relations R (A,B), S (B,C ), respectively, and consider the lqdag

LF = (SELECT, (JOIN,LR ,LS ),A = C ).

Because each value of A in R can now match only one value of C in S , F (D)∗ is linear in the size of R and S . In
terms of lqdags, however, computing Q+

LF
amounts to intersecting the lqdag (JOIN,LR ,LS ) with a virtual tree

QA=C of dimensions {A,C} and whose points lie on the diagonal where A = C . The problem is that checking
whether a point in (JOIN,LR ,LS ) intersects with this diagonal may require inspecting all the way down to the
leaves of this lqdag. This implies that the size of the non-pruned completion Q+F is actually bounded by |R Z S |.

In terms of our results, if we apply Theorem 4.5 on the formula of Eq. (3), then F (D)∗ is allowed to replace Qθ

by any other relation of the same cardinality on A. In the example above, the running time for σA=C (R Z S ) is
bounded by the worst case running time of the join of R, S and any other binary relation with ℓ tuples.

Therefore, we can retain worst-case optimality upon selections whenever the predicates can be pushed down
to the leaves of the syntax tree, that is, to the individual relations. Otherwise, our technique still handles them
correctly, though not optimally. The same happens if θ is an arbitrary formula whose validity can only be tested
for individual cells; in this case we can only evaluate F and discard one by one the cells that do not satisfy θ .

The Cartesian product is a variant of the join where the relations have no common attributes; our join formula
in Eq. (1) actually computes the Cartesian product in this case. The θ -join selects the tuples from the Cartesian
product that satisfy the predicate θ . We can then deine

(THETAJOIN,L1,L2,θ ) = (SELECT, (JOIN,L1,L2),θ ),

which also allows the relations to share attributes. Once again, our lqdag evaluation of this expression is correct
but not worst-case optimal.

5.2 Projection and derivatives

The projection, πA′ (F ), takes a subexpression F on attributes A and projects it onto A ′ ⊆ A. We deine the
corresponding lqdag L = (PROJECT,LF (A),A ′) as follows. Let |A| = d , |A ′ | = d ′, and LF be an lqdag for F .
If Value(LF ) is 0 or 1 then Value(L) = Value(LF ), otherwise Value(L) = ^. In the latter case, the root of
the non-pruned completion Q+

LF
of LF has 2d children, and the root of the non-pruned completion of Q+

L
of

L has 2d
′

children. The i-th child of Q+
L
is computed as the OR of all children j of Q+

LF
such that the projection

of the d-bit representation of j to the positions in which attributes in A ′ appear in A is precisely the d ′-bit
representation of i (see Figure 10 for an illustration). For example, if Value(LF ({A,B,C})) is not 0 or 1 and
L = (PROJECT,LF , {A,B}), we have that

Child(L, 0) = (PROJECT, (OR,Child(LF , 0),Child(LF , 1)), {A,B});

Child(L, 1) = (PROJECT, (OR,Child(LF , 2),Child(LF , 3)), {A,B});

Child(L, 2) = (PROJECT, (OR,Child(LF , 4),Child(LF , 5)), {A,B});

Child(L, 3) = (PROJECT, (OR,Child(LF , 6),Child(LF , 7)), {A,B}).

Supporting projection on lqdags then enables the remaining operations of the relational algebra:

(SEMIJOIN,L1 (A1),L2 (A2)) = (PROJECT, (JOIN,L1,L2),A1)

(ANTIJOIN,L1 (A1),L2 (A2)) = (PROJECT, (JOIN,L1, (NOT,L2)),A1)

(DIVISION,L1 (A1),L2 (A2)) = (DIFF,L ′1, (PROJECT, (DIFF, (JOIN, (L
′
1,L2),L1),A1 \ A2))

where L ′1 = (PROJECT,L1,A1 \ A2) and A2 ⊆ A1
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Fig. 10. An illustration of the Child operation for a 2-dimensional lqdag with functor PROJECT. a) A relation R (A,B) in a
two dimensional grid (let), its projection to B in a 1-dimensional grid (center), and the quadtree QF that represents the
projection (right). b) An lqdag L = PROJECT((QTREE,QR ), {B}) whose completion is Q , with QR denoting the quadtree that
represents R (A,B). Note that Q1,Q2 in a) are the completions of L1,L2 in b), respectively. Thus, Child(L, 0) = L1, and
Child(L, 1) = L2.

Just as in the case of selection, our strategy to handle projections does not ensure worst-case optimality either.
Consider, for example, the projection F represented by the lqdag

LF = (PROJECT, (JOIN,LR ,LS ), {A}),

where LR ,LS are lqdags representing relations R (A,B), S (B,C ), respectively. Since its output is of dimension 1,
F (D)∗ ≤ ℓ. We have, essentially, the same problem encountered for the case of selection: As we navigate LF to
project out values in the lqdag (JOIN,LR ,LS ), we may have to inspect all the way down to the leaves. In total,
the non-pruned completion Q+

LF
of LF may be of size |R Z S |.

A projection L = (PROJECT,LF (A),A ′) from a d-dimensional lqdag LF to d ′ dimensions has one further
problem: its Child translation makes the resulting formula to grow by 2d−d

′

elements every time we move to
a child in Q+

L
. Thus, during a traversal of Q+

L
, the lqdag L may grow up to size |L| · 2c (d−d

′) for nodes at level
c , possibly becoming as large as QLF . Therefore, the size |L| cannot be anymore considered constant in data
complexity when projections are considered.
A consequence of the non-optimality of our strategy in this section is that, unlike in Section 4, the way in

which the formula is written does matter. For example, if we rewrite LF in the preceding example as

(PROJECT, (JOIN,LR , (AND, (PROJECT,LR , {B}), (PROJECT,LS , {B}))), {A}),
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then we have |Q+
LF
| ≤ |R | + |S |. On the other hand, as noted, evaluating each node ofQ+

LF
can be more expensive

now because the formula may grow due to the internal projections.

5.2.1 Yannakakis’ algorithm. Having deined the projection, a natural question is whether one can use it to
obtain iner bounds for acyclic queries or for queries with bounded treewidth. For example, even though the
AGM bound for R (A,B) Z S (B,C ) is quadratic, one can use Yannakakis’ algorithm [44] to compute it in time
O ( |R | + |S | + |R Z S |). This is commonly achieved by irst computing πB (R) and πB (S ), intersecting them, and
then using this join to ilter out R and S . Unfortunately, expressing this strategy directly in our lqdag framework,
even if we push down the projections,

(JOIN, (JOIN,LR ,I), (JOIN,LS ,I))

where I = (AND, (PROJECT,LR , {B}), (PROJECT,LS , {B})),

would still give us a quadratic algorithm, even for queries with small output, because after extending I it may
take quadratic time to compute the join.

More generally, this also rules out the possibility to achieve optimal bounds for queries with bounded treewidth
or similar measures. We return to this point in the Conclusions.

5.3 Partial materialization of query results

The algorithms we have described can generate the outputQ of the formula F explicitly, in the same compressed
quadtree format of the input relations, and as such they can be used compositionally. It is worth reminding that
the output of a join query can be considerably larger than the input relations, which is particularly relevant
in the context of using little space for query processing. In this section we show another advantage of using
quadtrees for representing the query results: Because the output is a function of the input relations, it can be not
only represented as a compressed quadtree, but also materialized only partially, as long as one is willing to pay
extra time to navigate such output. This parameterizable materialization of the query output, where we can trade
space for traversal time, is inspired by a similar result by Deep and Koutris [10].

We compute a partial quadtree representation Q̃ that contains |Q̃ | ≤ min( |Q |, |Q+ |/τ ) nodes, for any parameter
τ ≥ 1 ixed at query time, and allows us to traverse the result with delayO (τ · 2dV (F ) logmin(ℓ, S )), whereV (F )

is the time to compute Value on F using Algorithm 7. The time to produce Q̃ is the same as for generating Q
using Algorithm 9, that is, O ( |Q+ | · 2dV (F )).

Our partial result Q̃ is a version of Q where some subtrees are pruned. The quadtree representation we use for
Q̃ is a slight extension of the one we have been using. In this case, leaves may have Value 0, 1, or ½. A leaf node
with value ½ means that the result Q has elements below that node but these are not stored in Q̃ , and thus must
be recomputed (see Figure 11 for an illustration). In terms of the representation of Lemma 2.1, a leaf with value ½
is seen as an internal node with no children, a coniguration that cannot occur in the basic quadtrees but that the
compact representation allows.
The key is that leaves v with value ½ in Q̃ will be produced only when, in a DFS traversal of Q+ below v , (1)

the number of internal nodes of Q+ visited between any two consecutive internal nodes of Q is at most τ , and
(2) the number of internal nodes of Q+ visited before the irst and after the last internal node of Q , are at most
τ/2. This then guarantees the promised delay when rerunning the intersection algorithm to recover the values
omitted below v in Q̃ .
To produce Q̃ instead of Q , we modify Algorithm 9 so that every recursive call may, after computing the

subtree of Q below a node v in line 6, choose to return instead a leaf with value ½. In case it returns a leaf, the
algorithm accompanies it with the following numbers:
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Fig. 11. A comparison between Q,Q+, and Q̃ . The quadtree Q is obtained by pruning from Q+ the subtrees explored by

Algorithm 9 that did not produce an output tuple. Similarly, Q̃ is obtained from Q by pruning the subtrees of Q for which, to
produce an output tuple, Algorithm 9 does not traverse more than τ internal nodes before finding it. We call the subtrees
meeting this property output-dense zones.

• For a leaf with Value = 0, the number c of internal nodes ofQ+ visited below v (this is the number of times
it reached line 2 in further recursive calls).
• For a leaf with Value = ½, the numbers l and r of internal nodes ofQ+ visited before the irst internal node
of Q and after the last internal node of Q , respectively.
• For a leaf with Value = 1, the numbers l = r = 0.

The algorithm decides as follows whether to return a quadtree with children C0, . . . ,C2d−1 or to prune them
and return instead a leaf with value ½. If its children are integer nodes (i.e., the last level), it always prunes them
because it can be recomputed in time O (2dV (F )), which is within our time budget. Otherwise, if some child is
not a leaf, the algorithm never prunes the node: if the child was not converted into a leaf, it is because the delay τ
cannot be guaranteed below it. Otherwise, if all the children Ci are leaves, the algorithm may choose to prune
the node, as follows. Let Ci j be the children leaves with Value = ½ or 1, for 0 ≤ i1 < · · · < ik < 2d . Then, if

l = *
,

i1−1
∑

s=0

c (Cs )+
-
+ l (Ci1 ) ≤ τ/2, (4)

r = r (Cik ) +
*.
,

2d−1
∑

s=ik+1

c (Cs )
+/
-
≤ τ/2, and (5)

r (Ci j ) +
*.
,

i j+1−1
∑

s=i j+1

c (Cs )
+/
-
+ l (Ci j+1 ) ≤ τ for all j = 1, . . . ,k − 1,

the algorithm prunes the node and returns instead a leaf with value ½, accompanied with the values l and r

computed in Eqs. (4) and (5).
The way to traverse the full result Q from Q̃ is to execute Algorithm 9 as an iterator, which also traverses Q̃ in

synchronization. Every time we reach a leaf v with value 0 or 1 in Q̃ , we skip the recursion of Algorithm 9 at v ,
because we know that Q has no results (0) or is full of results (1) in the subgrid of v . If, instead, we arrive at a
leaf v of Q̃ with value ½, we traverse all the subtree of v in Q using Algorithm 9 as an iterator, knowing that
the promised delay is attained below v : we obtain a true internal node of Q every, at most, τ internal nodes we
traverse in Q+.
The space guarantee is obtained by considering that, on the one hand, the nodes of Q̃ are a subset of the

internal nodes of Q . On the other hand, if we regard the internal nodes of Q in DFS order, then for each internal
node of Q we include in Q̃ there are more than τ/2 internal nodes of Q+ and not in Q̃ preceding or following it,
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therefore Q̃ contains less than 4|Q+ |/τ internal nodes of Q (so we can build our structures with 4τ instead of τ to
obtain our precise promised bounds).7

By representing Q̃ with the data structure of Lemma 2.1, and since wemay have to traverse up to 2d logmin(ℓ, S )
nodes of Q between two consecutive leaves with value 1 (i.e., two consecutive output elements), we obtain the
following result.

Corollary 5.1. Assume lqdags can compute the output of a relational formula F in time V (F ) per node of Q+F .

Then, given a parameter τ chosen at query time, we can compute a partial representation of the output in time

O ( |Q+F | · 2
dV (F )), which takes O ( |Q+F | · d/τ ) bits using the encoding of Lemma 2.1, and retrieves the successive

elements of the output of F with a delay of O (τ · 2dV (F ) logmin(ℓ, S )).

This corollary then extends to the full relational algebra the result Deep and Koutris [10] had obtained for join
queries. We remark that V (F ) = O ( |F |) if F does not contain projections, and that |Q+F | ≤ F (D)∗ logmin(ℓ, S ) for
JUC queries.

6 ENGINEERING AND IMPLEMENTATION

We implemented our representation and multijoin algorithm described in Section 3, plus the simplest selection
described in the beginning of Section 5.1. This section describes the algorithm engineering and implementation,
and the next one its experimental evaluation.

6.1 Space-eficient qdags

We do not use the tries [7] of the theoretical proposal (Lemma 2.1) to implement the quadtrees, but the simpler
kd -trees of Brisaboa et al. [9] with parameter k = 2. Such a kd -tree represents each internal quadtree node as the
2d bits telling which of its quadrants is empty (0) or nonempty (1). Note that, for the deepest internal nodes, this
coincides with the values corresponding to its children, which are integer nodes. Leaves and integer nodes are
then not represented, because their data is deduced from the corresponding bit of their parent. We exploit the
simplicity of kd -trees to enable speedups and direct compressed construction of the output, as described in the
sequel.
The kd -tree is just a bitvector V concatenating the 2d bits that represent every internal node in levelwise

order. Each node is identiied with the irst position of its 2d bits in this concatenation, the irst position being
1. Bitvector V supports navigating towards a node’s children using a succinct data structure to support rank
operation: rank(V , i ) counts the number of 1s in V [1..i]. This operation can be computed in O (1) time using
o( |V |) additional bits on top of V [26]. With the rank operation at hand we can then simulate the traversal of
the kd -tree: For an internal node x (i.e., whose description starts at V [x]), its j-th child (0 ≤ j < 2d ) is (i.e., its
description starts in V at position) child(x , j ) = 2d · rank(V ,x + j ) + 1; this is computed in O (1) time.
In practice, the bitvector V is cut in two parts, V = T · L, where L concatenates the 2d -bit descriptions of the

deepest-level internal nodes, andT those of the higher nodes. That is, L stores the content of all the integer nodes
(see Figure 12 for an example). This is advantageous because the rank operation must only be supported on T ,
whereas for L we only need to support access.

On a quadtree in dimension d storing p points, the length of the bitvectorV is |V | ≤ 2dp log ℓ, which increases
exponentially with d . In high dimensions, this is much more than the (d + 2 + o(1))p log ℓ bits used in Lemma 2.1.
A practical alternative to reduce the space in higher dimensions is to exploit the fact thatV has at most p log ℓ 1s,
one per ancestor of each integer-1 node. A sparse bitvector representation [36] then also uses (d + 2+o(1))p log ℓ

7Every node in Q̃ has τ /2 nodes not in Q̃ preceding or following it, but those can be the same τ /2 nodes that follow the previous node of Q̃
or that precede the next node of Q̃ , respectively. Thus we can exclusively assign only τ /4 nodes not in Q̃ to each node in Q̃ . Therefore,
Q̃ ≤ |Q+ |/(τ /4).
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Fig. 12. A k2-tree representing the same relation R (A,B) of Figure 1. (a) Representation of R (A,B) in a 24 × 24 grid. (b) A
quadtree representing R, and the respective k2-tree nodes. A 1-bit is assigned to every internal and integer-1 node of the

quadtree, and a 0-bit to every leaf and integer-0 node. The k2-tree combines the 2d children of a node of the quadtree into
one node. The k2-tree nodes are highlighted as shaded rectangles with dashed borders. The integer-1 node of the quadtree
in bold correspond to (a,b) = (3, 12), highlighted in red in the grid. (c) The k2-tree represents R using only the bitvector
V = T · L, where T represents the bits of the nodes at all levels but the last, in level-wise order, and L stores the bits of the
botom level. The identifier of each node is represented as a small gray number on top of each node. The nodes highlighted
in red, and the bolder bits within, correspond to the root-to-leaf path encoding the tuple (3, 12).

bits, though it supports rank in time O (d ). We choose not to implement this option, as we were focusing only on
relatively low dimensions. However, this is an interesting direction for future work.

In practice, not all the domains are of the same size ℓ. We extend them all to the next common power of 2. This
does not pose a signiicant overhead because the points are clustered within a subgrid of the actual size.

6.1.1 Our kd -tree Implementation. Contrary to the typical kd -tree representation just described (for k = 2), we
use a set of b = log ℓ bit vectors B0,B1, . . . ,Bb−1 to store each level of the quadtree separately. This will facilitate
appending new nodes as we compute the join, so that we can produce the output directly in compressed form.
Each bitvector Bi stores the nodes at depth i , using the 2d -bit encoding explained above. It is easy to see that the
j-th child of a node x at depth i < log ℓ starts at position 2d · rank(Bi ,x + j ) + 1 in Bi+1. Again, bitvector Bb−1
needs not support rank.

Although there are highly-optimized and practical approaches to support operation rank [14], we obtain good
results with the following ad-hoc scheme, optimized for current processors ofw = 64 bit words. For a bitvector
B[1..N ], we store a precomputed table P such that P[j] = rank(B,w · j ), for j = 0, . . . , ⌊N /w⌋. If 32-bit integers
are used for the cells of P , then it takes N /2 bits on top of B. Operation rank(B,x ) is computed as P[⌊x/w⌋]
plus the number of 1s within B[1 + ⌊x/w⌋ ·w,x]. The latter is computed using a popcount operation within the
w-bit word storing B[x]. In our particular implementation, withw = 64, we use the special popcount operation
from the SSE 4.2 instruction set. This supports rank eiciently: almost twice as fast as the highly-optimized
implementation from the sdsl library [14]. The precomputation of P takes O (N /w ) time.

6.2 Implementing extensions

To compute the join R1 (A1) Z · · · Z Rn (An ), each Rr (Ar ) represented with a qdag Qr = (Tr , Ir ), we must irst
compute operation Extend(Qr ,A \ Ar ), for A = ∪nr=1Ar . We regard the attributes Aj as integer identiiers in
0, . . . , |A| − 1, and use them to give an order in A. Along with Qr , we represent the attribute set Ar using an
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integer ar with the corresponding attribute identiiers: We precompute ar starting with ar ← 0 and then, for each
Aj ∈ Ar , do ar ← ar | (1 ≪ (Aj − 1)), where operators | and ≪ denote bitwise-or and shift-left, respectively.
Then, line 6 of Algorithm 3, which is run for i = 0, . . . , 2 |A | −1, is implemented as i ′ ← i & a′, where a′ represents
A ′ and & denotes bitwise-and. This encodes in i ′ the projection of i to the positions in which the attributes of
A ′ appear in A, which can then be used in line 7 of Algorithm 3. The time complexity of this implementation is
O (2 |A | ) under the assumption that |A| = O (w ); otherwise we can obtain O (2 |A | · |A|/w ) time by representing
the numbers using multiple computer words.

6.3 Implementing multiway intersections

Once we have extended every qdaq Qr = (Tr , Ir ) representing Rr to Q∗r = (Tr ,Mr ) = Extend(Qr ,A \ Ar ) in
order to compute the join R1 (A1) Z · · · Z Rn (An ), we proceed to intersect the qdags Q∗r by traversing them all
in synchronization, as explained.
The recursive traversal algorithm takes the current node xr in each qdag Q∗r , as well as the current level (or

depth) v they have in the tree. It is invoked with v = 0 and x1 = · · · = xn = 1, the qdag roots. At each step, for
j = 0, . . . , 2d − 1, it recurses on the j-th child of every xr if the n children are not null; otherwise the traversal is
pruned and a leaf in the resulting quadtree is written. Formally, we recurse on the j-th child of x1, . . . ,xn if it
holds that Tr .Bv [xr +Mr [j]] = 1 for all 1 ≤ i ≤ n. Checking this naively takes O (2dn) time per node (as it shows
up in Theorem 3.9), which is ineicient whenMr maps to the same child in Tr for many diferent values of j.

6.3.1 Materializing nodes. We now introduce a more eicient approach to reduce this O (2dn) cost. The main
idea is to quickly materialize the 2d children of every node xr ∈ Q∗r , and then intersect the n sets of children
using bit-parallel operations, instead of computing the intersection child-wise.
Recall that, for each qdag Q∗r , we only store explicitly the kdr -tree of the base quadtree Tr ; the traversal on

the virtual kd -tree representing Q∗r is simulated through mapping Mr . Therefore, the sequence of 2d bits that
describes the children of xr in Q∗r is a function of the 2dr children of xr ∈ Tr (which are contiguous in its kdr -tree
representation) and of the mappingMr .
To quickly materialize the 2d children of xr ∈ Q∗r , we precompute a table Cr on which the 2dr -bit encoding e

of the children of xr ∈ Tr is used as an index to obtain in Cr [e] the corresponding 2d -bit encoding of the children

of xr ∈ Q∗r . Table Cr has 22
dr

entries, the number of possible encodings of 2dr bits (see Figure 13 for an example).

Each entry stores the corresponding 2d -bit encoding, so the overall size of Cr is 22
dr +d bits. We build all the

tables Cr , for r = 1, . . . ,n, on the ly, before running the intersection, in time O (22
dr +d ), by obtaining each bit of

each entry usingMr . The extra time and space,
∑n

r=1O (22
dr +d ), is O (22

d
+dn) in the worst case, yet in general it

is considerably smaller. These tables can be discarded once the intersection is completed.
Once the tables Cr are built, the traversal takes only O (⌈2d/w⌉n) time per recursion step, where w is the

number of bits in the computer word. We then obtain aw-fold speedup compared to the naive algorithm (typically
w = 64, but it can be larger if we use broadword operations). Being at nodes x1, . . . ,xn during the traversal, we
extract in constant time the 2dr contiguous bits encoding the children of each xr ∈ Tr , er = Bv [xr ..xr + 2dr − 1],
and lookup inCr its extended version of 2d bits, e∗r = Cr [er ]. We then intersect the bitvectors e∗r using bitwise-and
operations (&), which operatew bits inO (1) time, e∗ = e∗1 & · · ·& e∗n . This takesO (⌈2d/w⌉n) time (we stop earlier
if the result is all zeros before operating all the e∗r s).

Finally, we must recurse on the children j of all x1, . . . ,xn whenever e∗[j] = 1. To obtain each such 1 from e∗

in constant time, we use the __builtin_clz built-in function of gcc compilers to count the number of leading
zeroes in e∗, hence inding its most-signiicant bit set. This built-in function is implemented by hardware in most
modern CPU architectures, yet it can also be easily implemented [21] if not provided by the processor. This
constant time can then be charged to each child we visit.
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Fig. 13. Materialization of the kd -tree nodes of the extended relations using lookup tables. (a) Three relations R (A,B),
S (B,C ) and T (A,C ). We denote by QR , QS and QT the k2-trees representing R, S,T , respectively. (b) The lookup tables
CR ,CS ,CT for the materialization of extended nodes when computing R (A,B) Z S (B,C ) Z T (A,C ). (c) The relations
R∗ (A,B,C ) = R (A,B) × All(C ), S∗ (A,B,C ) = S (B,C ) × All(A), T ∗ (A,B,C ) = T (A,C ) × All(B). We denote by Q∗

R
, Q∗

S
and Q∗

T

the (virtual) k3-trees representing R∗, S∗,T ∗, respectively. (d) The k3-tree nodes corresponding to the roots of Q∗
R
,Q∗

S
,Q∗

T
are

looked up in CR ,CS ,CT , respectively, using the root node of QR ,QS ,QT as the index in the table. The bits highlighted in red
belong to the intersection of the root nodes of Q∗

R
,Q∗

S
,Q∗

T
since 00110000& 01010101& 01011010 = 00010000.

In our experiments it holds that 2dr ≤ w , and therefore we can handle the indices in Cr in constant time as
if they were numbers. The tables Cr are also reasonably small and fast to build. For larger dr values, we can
split the bitvectors er into chunks of a maximum allowed size c ≤ w , er = e1r · · · e

s
r for s = ⌈2

dr /c⌉, and create
tables C1

r , . . . ,C
s
r for each chunk, such that each Ct

r has 2
c entries storing 2d bits, where only those activated by

the t-th chunk of er are set. We then simulate Cr [e] = C1
r [e

1
r ] | · · · | C

s
r [e

s
r ] in time O (⌈2d/w⌉s ), using bitwise-or

operations ( | ). We now spend O (
∑n

r=1⌈2
dr /c⌉2c+d ) ⊆ O ((2c+2d/c )n) time and bits to build the tables. Note

that the superexponential growth is now controlled using c . In exchange, we spend O (
∑n

r=1⌈2
dr /c⌉ ⌈2d/w⌉) ⊆

O (22d/(cw ) n) time per recursion step, a slowdown factor of O (2d/c ).

6.3.2 Writing the output. We generate the output of the intersection directly in the form of a kd -tree T . Because
we traverse the n quadtrees Q∗r in depth-irst and left-to-right form, we can append the 2d bits of each new node
of level v to the corresponding bitvector T .Bv of the output.

We maintain one cursor per output bitvector T .Bv . Once we compute the bitvector e∗, we recurse on the 1s of
e∗ as explained. For each e∗[j] = 1, we recursively enter into the j-th children of x1, . . . ,xn . If that recursive call
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returns that the subgrid is empty, we set e∗[j] = 0. If, after all the recursive calls to children j, the bitvector is
e∗ = 0, we return to the recursion parent indicating that the whole subgrid is empty, and do not modify T .Bv .
Otherwise, we append e∗ toT .Bv , increase its cursor by 2d positions, and return to the recursion parent indicating
that the subgrid is nonempty.
In this way, although we can work more than what is needed to produce the output T , we do not allocate

more space than what is needed to represent T , because we only write the bits when we know that the subgrid is
nonempty. The recursion stack is of maximum depth log ℓ, so it requires at most O (2dn log ℓ) bits of space.
Once T is built, if we want to further operate on it, we must (1) prepare its bitvectors T .Bv for fast rank

operations in O ( |T |/w ) time, and (2) convert it into a qdag Q = (T , Id), Id being the identity mapping on d

attributes (Def. 3.3), in O (2d ) time.

6.4 Some special cases

Our implementation also handles some speciic extensions in order to support the queries in the chosen bench-
marks; we describe those in this section.

6.4.1 Simple selections. Our implementation supports simple selections σθ (L), in particular the following gener-
alization of predicate θ ≡ (Ai = a) discussed in Section 5.1. For an attribute Ai and a set of constant values V , we
support predicates of the form θ ≡ (Ai ∈ V ), which can be expressed using lqdag notation as

pred (Ai ∈ V ,A) = (EXTEND, (QTREE, ⟨V ⟩),A \ {Ai }),

whereA is the attribute set of subexpression L and ⟨V ⟩ is the quadtree in one dimension with |V | cells and values
in V . Our implementation uses, however, qdags instead of lqdags. Thus, we build a compressed quadtree QV for
V , to then form the corresponding qdag QV = (QV , Id) by just adding the identity mapping Id. Then, we extend
it to Q∗V = Extend(QV ,A \ {Ai }) using Algorithm 3, to inally use Algorithm 5 to compute the AND of Eq. (3),
which will yield the desired selection. The construction of pred (Ai ∈ V ,A) then takes time O ( |V | log ℓ + 2 |A | ).

6.4.2 Self-joins. Graph patterns usually involve several self-joins. Our framework can be extended to eiciently
compute that kind of queries without any overhead.
Consider, for example, a graph whose edges are represented as one relation R (S,O ), and a query looking to

retrieve all tuples (a,b, c ) of elements forming a triangle in the graph. In order to express this query in relational
algebra, we create three diferent renamings of R: R1 (A,B), R2 (B,C ) and R3 (C,A). Then, the triangle query is
expressed as J = R1 (A,B) Z R2 (B,C ) Z R3 (C,A). We can do this without actually creating any physical copy of
R, relying instead on mappings. More precisely, we intersect three qdags: (QR ,MAB ), (QR ,MBC ), and (QR ,MCA),
where QR is the quadtree representing R (A,B) and the mappings extend it to three dimensions (A,B,C ) in
diferent ways:8

MAB = [0, 0, 1, 1, 2, 2, 3, 3], MBC = [0, 1, 2, 3, 0, 1, 2, 3], MCA = [0, 2, 0, 2, 1, 3, 1, 3].

By Theorem 3.9, this strategy is worst-case-optimal, as the running time matches 2ρ
∗ (J ,D ) , the worst-case size

of the triangle query when we regard the join as operating on diferent relations R1 (A,B), R2 (B,C ), and R3 (C,A).
This bound may overestimate the actual worst-case output size of a self-join, though in the case of the triangle
query, they difer only by a constant factor that depends on the query [15] (and this is the best known bound for
queries with self-joins).

8The mappings are obtained by listing the identiiers of the octants a0b0c0, a0b0c1, a0b1c0, a0b1c1, a1b0c0, a1b0c1, a1b1c0, a1b1c1, where
the identiiers are 0, 1, 2, or 3 depending on the quadrant of R referred by the octant, for example in R2 (B, C ) the quadrants are 0 = b0c0,
1 = b0c1, 2 = b1c0, 3 = b1c1 and thus the sequence is as shown in MBC .
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6.5 A parallel version

Algorithm 5 is easily parallelizable, because it traverses the independent subgrids of the output. As a proof of
concept, we explore a simple way to parallelize its computation: given p processors available, we ind the irst
level ℓ′ such that Q+ has at least p nonempty nodes, and from there an independent thread computes the points
in the subgrid of each nonempty node at that level.
Note that, because of our mechanism to lift the dimension of the input quadtrees, many sub-trees of the

extended qdags share the same subtrees of the input quadtrees, and then those may be accessed simultaneously
by various processes when running the intersection. The corresponding parts of the output relation, instead, are
written independently by each process. At the end, their output bitvectors T .Bv must be concatenated for each v ,
to form the inal result.

This strategy does not ensure a theoretical speedup, because all the nodes inQ+ may be concentrated in one of
the subgrids; a more robust parallelization is a matter of future work. Even so, in practice this simple technique
produced a signiicant speedup, as we show in Section 7.

7 EXPERIMENTAL RESULTS

In this section we report the results of the experimental comparison of our implementation of qdags with various
other prototypes and systems, both in terms of index space and query time.

All our experiments ran on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores and 12 hyperthreads, 15
MB of cache, and 96 GB of RAM. Our source codes were compiled using g++ with lags -std=c++11, -O3, and
-msse4.2. Our parallel versions then use p = 12 threads.

7.1 The Wikidata SPARQL Benchmark

We test irst the Wikidata Graph Pattern Benchmark (WGPB) introduced by Hogan et al. [16]. This corresponds
to a Wikidata [42] sub-graph with 81,426,573 RDF triples (subject,predicate,object) featuring 2,101 diferent
predicates. We store the triples as binary relations, according to the predicates: for each triple (s,p,o), the pair
(s,o) is stored in the binary relation corresponding to predicate p. This benchmark provides 17 query patterns
of diferent widths and shapes, including acyclic and cyclic queries, as shown in Figure 14. Each pattern is
instantiated with 50 diferent random queries9 involving random Wikidata predicates, so that the query results
are nonempty. We execute the 850 resulting queries in random order.

We compare our Qdags with the following prototypes and database systems:

EmptyHeaded: An implementation [1] of NPRR [33]. Each predicate is stored as a separate relation. For
each, EmtpyHeaded creates two diferent tries, which must be maintained in main memory during query
evaluation.

Apache Jena: A reference implementation of the SPARQL standard. We use TDB, with B+-trees indexes in
three orders: spo, pos, and osp. For a fair comparison, and since predicates are constant in our queries, we
disregard the osp order.

Jena LTJ: An implementation [16] of the wco leapfrog trie join algorithm (LTJ) on top of Jena TDB. All six
diferent orders are indexed in B+-trees, though we again disregard the space usage of orders osp and sop.

RDF-3X: The reference scheme [30] that indexes a single table of triples in a compressed clustered B+-tree.
The triples are sorted and those in each B+-tree leaf are diferentially encoded.

Virtuoso: A widely used graph database hosting the public DBpedia endpoint, among others [11]. It provides
a column-wise index of quads with an additional graph (д) attribute, with two full orders (psog, posg)
and three partial indexes (so, op, gs) optimized for patterns with constant predicates (like the ones in our
queries).

9https://github.com/GQgH5wFgzT/benchmark-leapfrog/tree/gh-pages/benchmark/queries/bgps
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(a) P2. (b) P3. (c) P4. (d) T2. (e) Ti2. (f) T3. (g) Ti3. (h) J3.

(i) T4. (j) Ti4. (k) J4. (l) Tr1. (m) Tr2. (n) S1. (o) S2. (p) S3. (q) S4.

P2 P3 P4 T2 Ti2 T3 Ti3 J3

353.60 114.50 111.34 175.50 236.92 29.60 127.74 142.18

T4 Ti4 J4 Tr1 Tr2 S1 S2 S3 S4

63.08 81.88 110.00 11.62 14.90 10.60 28.32 38.34 4.50

Fig. 14. The 17 query paterns for the Wikidata Graph Patern Benchmark and, below, their average number of results per
query.

Blazegraph: The graph database system [40], hosting the oicial Wikidata Query Service [23]. We run the
system in triples mode wherein B+-trees index three orders: spo, pos, and osp.

7.1.1 Sorting out the database. Since our index assumes that the attribute values are integers in a range [0, ℓ − 1],
we must assign integer identiiers to the distinct strings appearing in the triples.

We can do this assignment in any convenient way. As already mentioned in Section 3.4, the clustering of the
points across the underlying hypercube is crucial for the eiciency of quadtrees, both in terms of space usage
and of running time. An oline optimization we attempt here is to assign the integer identiiers so as to improve
the clustering of the resulting points within the hypercube. Similar strategies have been used on binary matrices
[17], graphs [1], and inverted indexes [5]. In the particular case of Wikidata triples, we enumerate the subject s
and object o of each RDF triple (s,p,o) of Wikidata, thus generating the 2-dimensional points that are further
indexed using qdags. We try the following strategies for enumerating subjects and objects:

Original Order (Qdag Original): Subjects and objects are enumerated using the original order of the triples
in the Wikidata dataset.

Lexicographic Order of Predicates (Qdag Lex): We irst sort the triples lexicographically by predicates,
and then carry out the enumeration of subjects and objects using this order. The rationale is that, if each
predicate tends to connect a small subset of subjects and objects, then the resulting matrices will be
clustered.

BFS Order (Qdag BFS): Consider the graph where subjects and objects are the nodes, and predicates are
directed edges from subjects to objects. We then number the nodes of this graph by running several BFS
traversals until enumerating all the nodes. The traversals are started according to an initial lexicographic
order of the nodes. The resulting node ordering is the integer assignment to subjects and objects; the aim is
to give consecutive identiiers to the objects assigned to the same subjects, thereby inducing clusters.

Appendix C illustrates the efect of those node orderings on the point distribution of grids. As it can be seen,
Lex and BFS yield a less scattered distribution (e.g., in BFS, points tend to lie on the diagonal of the grid). As
anticipated in Section 3.4, this clustering will impact positively on the space of the index and the time performance
of the multijoin queries.
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Table 1. Index space, in bytes per tuple, and construction time, in elapsed minutes, on the Wikidata benchmark. Qdags and
EmptyHeaded build the indexes from the numeric tuples, so we have added to those the 13.12 minutes it took us to parse
the strings and convert them to integers. Further, we added to the Lex and BFS versions the time it took us to reorder the
identifiers.

System (Data + Indexes) Space Build time

Qdag Original 6.76 18.90
Qdag Lex 4.75 17.86
Qdag BFS 4.90 25.47
Qdag BFS, non-compact 205.71 30.31

EmptyHeaded 1292.28 61.39
Jena 48.42 101.47
Jena LTJ 96.83 107.43
RDF-3X 107.65 16.41
Virtuoso 104.89 14.42
Blazegraph 99.86 58.28

7.1.2 Space usage. Table 1 shows the space usage (in bytes per tuple) for the diferent systems and algorithms
we tried, as well as their construction time, in elapsed minutes. As it can be noted, Lex and BFS orders yield
considerably improved space usage when compared to the original order. Qdag Lex and Qdag BFS use about
1/10 of the space of Jena, the one that uses the least space among the competing schemes. Recall that within this
space usage we include data and indexes, which means that all the compact Qdag versions use less than the 8
bytes per tuple needed to just represent the dataset if we separate the triples by predicate and represent each pair
(s,o) with two 32-bit integers. The Lex and BFS orders not only reduce the index space, but also the construction
time of Qdag variants: once the integers of the triples are generated in the appropriate order, Original takes 4.26
microsecs/tuple, Lex takes 3.49, and BFS takes 3.67. Note this is 5ś6 minutes total construction time from the
sorted integer triples. The qdags are also built within space close to their inal size, 5.51 bytes per tuple for Lex
and 5.66 bytes per tuple for BFS.

7.1.3 Comparing Qdag variants. We irst compare the diferent Qdag variants, testing the parallel implementation
from Section 6.5, a non-compact Qdag baseline we describe in Appendix B, and the clustering approaches proposed
in Section 7.1.1. Figure 15 summarizes the query times for the 17 query patterns of Figure 14.
As it can be seen, the orders Lex and BFS yield improved query time, as expected from the discussion in

Section 3.4. In general,BFS outperforms Lex andOriginal, both in the sequential and parallel versions.10 Parallelism
yields important speedups, except where the sequential version is already very eicient and thus the overhead
introduced by parallelism does not pay of. The average speedup is 3.24. Finally, the non-compact version (of
which we show only the BFS variant) is not only 40 times larger than the serial compact BFS version, but also
about 130 times slower on average, which shows the beneicial efects of compact representations in reducing the
cache faults in main memory.

7.1.4 Comparison against others. Figure 16 compares the query times of Qdag BFS and Qdag Par BFS, the best
performing variants in Section 7.1.3, with the prototypes and systems listed at the beginning of Section 7.1, on
the 17 query patterns of Figure 14 (see Appendix D for the full detail). We note that EmptyHeaded, Jena, Jena

10A disadvantage of those convenient orders is that, in the more general setting that allows selections, predicates with inequalities make no
sense if one reorders the identiiers. This has no efect on the equijoin queries we study in these experiments.
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Fig. 15. uery times (in seconds and logscale) for the diferent variants of Qdags on the Wikidata benchmark.

LTJ, and Blazegraph use several processors, like Qdag Par BFS, while RDF-3X and Virtuoso are sequential. We
observe the following facts:

• Qdags are the fastest alternative on almost all patterns with three nodes: P2, T2, Tr1, and Tr2, and is only
slighlty outperformed by EmptyHeaded on Ti2, the remaining pattern with three nodes in the benchmark.
This is in line with the theoretical bounds presented in Section 3: patterns with three nodes implies qdags
with only three dimensions, and since the running time is exponential in the dimension, it is expected that
our algorithm excels in low-dimensional queries. To put times in context with respect to the space usage,
the next-best alternative, EmptyHeaded, uses 264 times the space of Qdag BFS, as noted in Table 1. The
same table shows that Jena, the next least-memory contender, uses 10 times the space of our approach. Note
that Qdags do not need to load a diferent index order from secondary storage upon query optimization,
because they have only one index.
• Let us consider next the patterns P3 and P4, representing paths. For the case of P3, a pattern with 4
nodes, Qdags are close to the best time, given by EmptyHeaded. On the other hand, neither Qdags nor
EmptyHeaded are competitive for P4, but the best algorithms are Jena LTJ, the other worst-case optimal
algorithm we tested against, and the standard engine of Jena. We speculate that systems based on Jena have
an edge because they are able to consistently ind a better variable ordering for this type of queries (see
Hogan et al. [16] for a discussion on orderings). On the other hand, Qdags are not dependent on variable
orderings, but as we mentioned our index becomes less competitive as the dimension of queries increases.
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Fig. 16. uery times (in seconds) of the best Qdag variants and state-of-the-art prototypes and database systems, on the
Wikidata benchmark.

• The next queries we discuss are the so-called star queries, with T3, Ti3 and J3 having one central node
connected to three external nodes, and T4, Ti4, and J4 having a central node connected to four external
nodes. The behaviour we see is consistent with the other set of queries. For queries with four nodes Qdags
remain competitive, being the fastest for T3, but outperformed for Ti3 and J3. Interestingly, EmptyHeaded,
the usual contender and the best alternative for Ti3 and J3, does not perform well on T3. On the other
hand, Qdags do not fare well on the star queries with 5 nodes. It turns out that, in these types of star
queries, worst case algorithms in general are outperformed by traditional graph database systems, although
EmptyHeaded is still the best alternative for Ti4.11

• Finally, we discuss the square queries S1, S2, S3, and S4. Once again, worst-case optimal algorithms take
the lead, with Qdags and EmptyHeaded earning the best time in two queries each. Note the large diference
between the non-parallel and parallel versions in S2. Upon inspecting the intermediate results of these
queries, we found that they were demanding Qdags to focus on poorly-clustered parts of the graph, and
therefore parallelism was more important since more distant portions of the qdags needed to be analyzed.

11Since the benchmark is constructed out of random walks, the probability of inding a star query with 3 or more leaves in which all joins are
equally selective is quite low. Thus, we conjecture that traditional systems are able to achieve good times simply by a careful planning of the
join order, beating wco algorithms and Yannakakis, which may end up doing more excess work if a bad order is chosen.
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One can notice how BFS do not take advantage of clustering when processing queries in S2 by looking
again at Figure 15: the times for Original and BFS are virtually the same.

7.1.5 String identifiers. Our implementation of Qdags works directly on datasets and queries where the identiiers
are already mapped to integers. This can be seen as unfair to the database systems managing strings, because
reporting strings may induce additional time overhead and their space can be signiicant compared to the integer
triples. In our Wikidata subgraph, for example, the strings occupy 1,427 MB, nearly 150% of the 932 MB used by
the integer triples in plain form. Blazegraph, Jena, Jena-LTJ, RDF-3X, and Virtuoso include this overhead, while
EmptyHeaded and Qdags do not.

We can largely diminish the impact of the strings by storing them in succinct dictionaries [24], which map from
strings to integers (to translate the queries) and back (to translate the solutions) in a few microseconds per string.
For example, using the variant HTFC-rp with sampling 64 [24], the strings in our benchmark are compressed to
17%, or 235 MB (3 additional bytes per triple) and an identiier is translated to its string in about 3 microseconds.
The total impact of translating the identiiers back to strings adds at most 0.003 seconds in Figure 16.

7.2 Benchmark on SNAP Graphs

Our second test uses the benchmark by Nguyen et al. [35], which includes several patterns on SNAP graphs [22].
The benchmark includes both cyclic and acyclic queries, and allows one to regulate the selectivity of each pattern.
The detailed experimental setup and results are given in Appendix E. Table 2 summarizes the results by showing,
for each kind of query and each competing implementation, the proportion of queries where Qdags perform
better or worse than the competitor, as follows:

• Qdag << X : Qdags are 10 times, or more, faster than the other, or only the other gives time-out or
out-of-memory.
• Qdag < X : Qdags are more than twice, but less than 10 times, faster than the other.
• Qdag = X : both times are within a factor of two of each other.
• Qdag > X : Qdags are more than twice, but less than 10 times, slower than the other.
• Qdags >> X : Qdags are 10 times, or more, slower than the other, or only Qdags give time-out.

For the case where a given time is zero, we round it up to 1 in order to consider proportions. The cases where
both indexes give time-out or out-of-memory are disregarded.
We separate the queries into cyclic, acyclic on small graphs (with more and less selectivity), and acyclic on

large graphs (here, selectivity did not make an important diference). We can see that:

• In general, Qdags are outperformed by wco schemes like EmptyHeaded (EH), LTJ, and MS, and tend to
outperform those that are not: MonetDB, Virtuoso, and Neo4j. The situation is mixed for PSQL.
• On cyclic queries, where being wco is most relevant, Qdags perform similarly to the other wco approaches
in about half of the cases, and sharply outperform the non-wco schemes in most queries.
• On acyclic queries, Qdags perform similarly to the other wco approaches in half to a quarter of the queries,
worsening as the output size increases. Qdags still outperform MonetDB and Neo4j most of the time.

We remind that Qdags obtain these mixed results using one or two orders of magnitude less space than the
competing schemes (in particular, they use 6ś200 times less space than EmptyHeaded). This can make the Qdag
attractive, for example, as a companion index to non-wco systems where, for a very modest increase in space, a
Qdag may speed up cyclic queries considerably. Qdags can also be a relevant solution when the extra space of
other wco data structures cannot be aforded.
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Table 2. Summary of the results on querying the SNAP benchmark, depending on the fraction of queries where Qdags
performed much beter, beter, similarly, worse, or much worse than each other index.

EH LTJ MS PSQL MonetDB Virtuoso Neo4j

Cyclic

Acyclic
small
selective

Acyclic
small less
selective

Acyclic
larger

8 CONCLUSIONS

We have introduced the irst index for multijoin queries that is simultaneously time-optimal and nearly space-
optimal. More precisely, it achieves worst-case-optimal time in data complexity while storing only 2 + o(1) extra
words per tuple. Our index regards relations on d attributes as point sets in a d-dimensional hypercube, which are
represented with compressed quadtrees. The join algorithm uses a new structure we dub qdag, which simulates a
dimensionality-lifted quadtree, and then generates the result in the form of a compressed quadtree by virtually
traversing the output space. We prove that such a simple traversal does reach the AGM bound. A lazy version of
qdags, dubbed lqdags, support the full relational algebra, and retain for Boolean queries an extended notion of
worst-case optimality, while requiring no space for intermediate results.

The evaluation of join queries using qdags provides a competitive alternative to current worst-case optimal
algorithms [18, 20, 32, 33, 41]. Regarding space, qdags require only a few extra words per tuple in the worst case,
and in practice they even manage to compress the database representation, as shown in our experiments. This is
generally much less than what standard database indexes require, and deinitely less than the space required
by current worst-case optimal algorithms (e.g., [18, 33, 41]). Moreover, in both NPRR [33] and leapfrog [41], the
required index structure only works for a speciic ordering of the attributes. Thus, in order to eiciently evaluate
any possible query using these two algorithms, a separate index is required for every possible attribute order.
In contrast, all we need to store is one quadtree per relation, and that works for any query. In our experiments,
which include only binary relations (i.e., alternative indexes need to store just two attribute orders), the least
space-consuming index, Apache Jena, uses 10 times more space than our Qdag index, whereas EmptyHeaded
uses about 250 times more space.

Time complexity. Regarding time, the irst comparison that stands aside is the logN factor, present in our
solution (as well as in, e.g., Hogan et al. [16]) but not in others like NPRR [33] and leapfrog [41]. Note, however,
that NPRR assumes to be able to compute a join of two relations R and S in time O ( |R | + |S | + |R Z S |), which is
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only possible when using a hash table and when time is computed in an amortized way or in expectation [33,
footnote 3]. This was also noted for leapfrog [41, Section 5], where they state that their own logN factor can be
avoided by using hashes instead of tries, but they leave open whether this is actually better in practice. More
involved algorithms such as Panda [20] build upon algorithms to compute joins of two relations, and therefore
the same logN factor appears if one avoids hashes or amortized running time bounds.

Our algorithm also incurs in an additional 2d factor in time when compared to NPRR or leapfrog, similarly to
other worst-case optimal solutions based on geometric data structures [18, 32]. While this factor does not depend
on the data, it is relevant in practice, as shown in our experiments: Qdags excel in queries yielding relations of 3
attributes and fare well on 4, but cease being competitive on 5 or more attributes. This slowdown, the price we
pay for using so little space, is partly compensated by the fact that our indexes are compressed, and thus might it
in faster memory: our experiments show that a non-compact version of our index is 40 times larger and 2ś1000
times slower.

Usage scenarios. One important beneit of our framework is that the answers to queries can be built directly in
their compressed representation. As such, we can iterate over them, or store them, or use them as materialized
views, either built eagerly as quadtrees, or in lazy form as lqdags, or in partially materialized form with bounded
delay, as incomplete quadtrees.

Aside from their standalone use, one could take advantage of the low storage cost of quadtrees and add them
as a companion to a more traditional database setting. Simple queries could be handled by the database, while
multijoins could be processed faster over the quadtrees.
Using a simple proof-of-concept, we also show that our multijoin algorithm is easily parallelizable to obtain,

without sophisticated techniques, average speedups over 3 with 6 cores. This opens the door to a deeper study of
quadtrees in the setting of parallel computation (see, e.g., Suciu [39]).

Dynamism. We have only discussed the static scenario in this article, where tuples cannot be added or removed
from the relations. In order to enable dynamism, we only need to replace the quadtree representation of Lemma 2.1
by a data structure that supports insertions and deletions of points. The qdags and lqdags then stay automatically
up to date upon changes on their underlying quadtrees. A dynamic quadtree can be obtained via its kd -tree
representation described in Section 6.1. For the dynamic case, we rather represent the bitvector V , which is
of length |V | ≤ 2dp log ℓ and has v ≤ p log ℓ 1s, as the sequence of v diferences x j = pj − pj−1 between the
consecutive positions p1, . . . ,pv of the 1s, with p0 = 0. Operation rank(V , i ) is then equivalent to operation
search(j ) = max{j,pj ≤ i} = max{j,

∑j
t=1 xt ≤ i}, andV [j] = search(j ) − search(j − 1). A dynamic representation

of partial sums [29, Lem. 1.4] using, say, δ -codes [38] to encode the values x j , takes dp log ℓ(1 + o(1)) bits of
space and implements search in time O (log |V |/ log log |V |) ⊆ o(d + logp + log log ℓ). Within the same time, it
can insert and remove values xi , which suices to emulate insertion and deletion of points in the kd -tree (using
O (log ℓ) such operations) [8]. Therefore, we can insert or delete tuples in time o((d + logp + log log ℓ) log ℓ). The
price is an o(d + logp + log log ℓ) slowdown factor with respect to the times given in Lemma 2.1, Theorem 3.9
(where the times are still in Õ (2ρ

∗ (J ,D ) )), and Theorem 4.5 (where the times are still in Õ (F (D)∗)).

Beyond wco. Finally, an important direction for future work is to go beyondworst-case optimality. EmptyHeaded
[1] may outperform the AGM bound for multijoin queries and approach their fractional hypertreewidth. It
structures the query graph, which is cyclic in general, as a tree where each node is a cyclic subquery. Each
node is then solved within the AGM bound, and the resulting materialized relations are inally processed with
Yannakakis’ algorithm. While, as discussed in Section 5.2.1, a direct application of lqdags would not obtain the
same complexity, we can use qdags to process each tree node in worst-case optimal time and materialize the
resulting relation, so as to apply Yannakakis’ algorithm on those. A clear advantage of using our representation is
that those intermediate materialized relations, which can be large, are represented in compact form as quadtrees,
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thereby making this algorithm much more practical. Further, the qdags would typically have to produce relations
of lower dimension, a case where they perform signiicantly better. The Panda algorithm [20] takes this further,
and can process queries in time bounded by the submodular width bound. Again, an interesting direction for
future work is to understand how to use Qdags in combination with Panda.

Epilogue. We continued pursuing the line initiated in this article, about compact data structures able to
implement wco joins. After the conference version of this paper, we developed with other coauthors a new
compact data structure called the ring [4], which supports wco joins for the speciic case of labelled graphs (or,
equivalently, a relation formed by triples). The ring is not compositional: the outcome of a multijoin query is not
anymore a ring. In exchange, it ofers more stable times than qdags, though qdags still outperform the ring in
queries with few nodes. The qdags we implement here are more space-eicient than the most compressed ring
representation.
What is most interesting is how both structures evolve as the dimension d of the relations grow. Our qdags

always need one copy of the database, though their query time grows as O (2d ). The ring, instead, requires one
copy only in the particular case of d = 3. Multidimensional rings, though not yet implemented, are shown to
require Ω(2dd−1/2) copies of the database, though in exchange their query time grows as O (d2). Space translates
into update time in the dynamic scenario, however: the time to insert/delete tuples in qdags grows as O (d ), as
we have seen, whereas it is Ω(2dd1/2) on rings. A very interesting question is how to develop compact data
structures that can more gracefully trade space for time in this exponential dependence on d , or that can eliminate
it completely.
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A APPENDIX: COMPARISON WITH THE CONFERENCE VERSION

This article is the extended version of the ICDT’20 paper łOptimal Joins Using Compact Data Structures" [28].
We have revised and extended the original paper as summarized below:

• We implemented a prototype of our index, and compared it experimentally with state-of-the-art alternatives.
We added a new section on the choices we made during the implementation, and on the variants of our
index that were implemented. We also added a section on the experimental analysis of these variants,
and more importantly on the comparison between our solution and other state-of-the-art systems on two
diferent benchmarks.
• We improved, proved theoretically, and validated in practice, the bounds on the space and running time of
our solution on clustered datasets. These results were added as an extension to the section on multi-join
queries.
• We reined the deinition of worst-case optimality for formulas composed of join, union and complement
(JUC) operations so that upper bounds for formulas containing complement operations are more meaningful.
As a consequence, we had to revise and update the proof of the worst-case optimality of lazy qdags for JUC
queries so that it remained valid. Our main result on JUC queries is now stronger than in its conference
version.
• We extended our framework of lazy qdags (lqdags) to evaluate more expressive queries from relational
algebra. We added a new section showing how to extend lqdags to allow renaming the attributes of a
relation, and to support selection and projection operations. By combining these three with the join, union,
and complement operations, lqdags can now evaluate any formula of the relational algebra. Although
for these extended formulas we can no longer guarantee worst-case optimality, we introduce a partial
materialization scheme that subsumes and extends results from Deep and Koutris regarding compressed
representation of query results with enumeration delay guarantees.
• Finally, we improved the completeness and readability of the paper by adding every non-obvious full proof
to theorems and lemmas of the conference paper, and including new igures and examples to illustrate the
description of our solution.

B APPENDIX: A NON-COMPACT QDAG BASELINE

Using a compact representation of quadtrees increases the constants in the running time of accessing the value
of a node, or its children: while in a non-compact representation these can be stored directly within the node, the
compact representation resorts to compact data structures to compute them. Using a compact representation,
however, also increases the probability of having the memory required by the CPU to perform an operation
already in the processor’s cache. Given that cache memory is considerably faster than main memory, it should
mitigate or eliminate the efect of higher constants in accessing the value or children of a compact quadtree node.
To investigate this trade-of, we also implemented a non-compact version of our index. We then compared the
running times of join queries over these two diferent representations, changing only the storage scheme of the
quadtrees, and keeping exactly the same algorithm.

The non-compact quadtree representation consists of just two arrays, F andC . Each node of the tree is identiied
by an id, the root’s being 0. For a node x with id i , F [i] stores the id of its irst child, while the id of the j-th
non-empty child of x is F [i]+ j . Moreover, the k-th least signiicant bit ofC[i] is 1 if the k-th child of x represents
a non-empty subgrid. Each value of F is a 64-bit integer; the length of each value of C depends on the number
of attributes in the relation being represented by the quadtree (e.g., for two and three attributes with use 8-bit
integers). Thus, for a quadtree with N nodes this representation uses at least (64 + 8)N bits. For two-dimensional
quadtrees, for instance, this wastes at least 4 bits for each node because the smallest basic type in the language
we used (C++) is the byte. Moreover, if the relation is small, using 64 bits to identify each node also incurs waste.
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Fig. 17. Point distribution of the grids corresponding to predicates P352, P3417, P2888, and P935 of the Wikidata dataset.
The figure shows the original order (top), lexicographic order (middle), and BFS order (botom). The images corresponding to
the distributions with high clusterization seem to have fewer points because multiple ones are rendered in the same pixel
due to lack of resolution.

C APPENDIX: EFFECT OF NODE ORDERING ON THE POINT DISTRIBUTIONS

Figure 17 shows the point distribution of the grids corresponding to predicates P352, P3417, P2888, and P935 of
the Wikidata dataset12, using the original order (top), lexicographic order (middle), and BFS order (bottom). These
relations correspond to the join P352(A,B) Z P3417(A,C ) Z P2888(D,B) Z P935(D,C ) from query pattern S2.
For this pattern, this particular query is the one that yields the maximum relative diference between Original
and BFS order.

D APPENDIX: RESULTS ON WIKIDATA WITH COMPLETE TIME INTERVAL

Figure 18 shows the complete time intervals for the experimental results of Figure 16, on the Wikidata benchmark.

E APPENDIX: FULL DETAILS ON THE SNAP BENCHMARK

We describe the setup and detailed results on the benchmark by Nguyen et al. [35], which includes several
patterns on SNAP graphs [22].

12Available at https://www.wikidata.org/wiki/Property:X , where X ∈ {P352, P3417, P2888, P935}.
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Fig. 18. uery times (in seconds) of the best qdag variants and state-of-the-art prototypes and database systems, on the
Wikidata benchmark.

E.1 Experimental setup

Table 3 shows the graphs tested, along with the number of nodes, edges, and triangles of each graph, and the
space used by Qdags BFS. According to the number of nodes, the graphs are classiied as small (top ones in the
table), medium-size (middle), and large (bottom) [35].
We run only Qdags Par BFS and EmptyHeaded in this comparison. Let edge denote the binary relation

representing the graph edges. Note then that all the queries will be self-joins, which we handle as described in
Section 6.4.2.

For this benchmark, we test the following cyclic queries:

3-Clique (Triangle): edge(A,B) Z edge(B,C ) Z edge(C,A);
4-Clique: edge(A,B) Z edge(B,C ) Z edge(C,D) Z edge(D,A) Z edge(A,C ) Z edge(B,D);
4-Cycle: edge(A,B) Z edge(B,C ) Z edge(C,D) Z edge(D,A).

For queries 3-Clique and 4-Clique, graphs are regarded as undirected.
We also consider the following acyclic queries:

3-Path: V1 (A) Z edge(A,B) Z edge(B,C ) Z edge(C,D) Z V1 (D);
4-Path: V1 (A) Z edge(A,B) Z edge(B,C ) Z edge(C,D) Z edge(D,E) Z V2 (E);
1-Tree: V1 (A) Z edge(A,B) Z edge(A,C ) Z V2 (C );
2-comb: edge(A,B) Z edge(A,C ) Z edge(B,D) Z V1 (C ) Z V2 (D).
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Table 3. Graphs used in the SNAP benchmark: small (top), medium-size (middle), and large (botom) graphs. We also include
the bytes per tuple used by Qdag BFS and EmptyHeaded (EH).

Graph Nodes Edges Triangles Space Space EH

wiki-vote 7,115 103,689 608,389 1.68 43.48
p2p-Gnutella31 62,586 147,892 2,024 3.37 57.36
p2p-Gnutella04 10,876 39,994 934 0.29 60.53
loc-Brightkite 58,228 428,156 494,728 1.28 38.29
ego-Facebook 4,039 88,234 1,612,010 1.27 32.59
email-Enron 36,692 367,662 727,044 0.97 41.98
ca-GrQc 5,242 28,980 48,260 0.64 60.49
ca-CondMat 23,133 186,936 173,361 0.91 41.37

ego-Twiter 81,306 2,420,766 13,082,506 1.19 21.85
soc-Slashdot0902 82,168 948,464 602,592 1.65 45.34
soc-Slashdot0811 77,360 905,468 551,724 1.61 38.30
soc-Epinions1 75,879 508,837 1,624,481 1.95 42.71

soc-Pokec 1,632,803 30,622,564 32,557,458 4.42 25.72
soc-LiveJournal1 4,847,571 68,993,773 285,730,264 3.61 29.57
com-Orkut 3,072,441 117,185,083 627,584,181 3.96 23.66

Here, unary relations V1 and V2 represent subsets of the graph nodes. These are used to select a particular subset
of nodes on which we want to query the corresponding pattern. For instance, for 3-Path, we query for all directed
paths of length 3 that start in some node a ∈ V1, and end in some node b ∈ V2. This kind of query allows us to
test in practice our implementation of the select operator from Section 6.4.1. By choosing the size of V1 and V2,
we can also regulate the query selectivity. For instance, let us consider query 3-Path. For a given target selectivity
s , we build V1 (A) by choosing every node a in πA (edge(A,B)) with probability 1/s [35]. We proceed similarly
for V2 (D). After building V1 (A) and V2 (D), we proceed as explained in Section 6.4.1 to obtain the corresponding
extended qdag needed to carry out the intersection. In our experiments, for small graphs we test with selectivity
8 and 80, which select (at random) 12.5% and 1.25%, respectively, of the graph nodes. For medium-size and large
graphs, we use selectivity 10, 100, and 1000.

E.2 Results

Table 4 shows the times for cyclic queries, Table 5 for small acyclic queries, and Table 6 for large acyclic queries. We
use a timeout of 1800 seconds and carry out count queries (i.e., we do not materialize the output; we just compute
its size). We also include the times obtained by Nguyen et al. [35], as a comparison point. In particular, they
compare LeapFrog Trie Join (LTJ), Minesweeper (MS), postgresql (PSQL), MonetDB, Virtuoso, and Neo4J. Their
processor is similar to ours, though slightly faster: an Intel(R) Xeon(R) E5-2670 at 2.60GHz, with 8 hyperthreads
(recall ours is an E5-2630 at 2.30GHz). We put in gray the times obtained directly from their paper.
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Table 4. uery times (in seconds, rounded to the nearest integer) for cyclic queries on SNAP. TO stands for timeout (>1800 secs), whereas OM indicates
an out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].
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3-Clique Qdag 0 0 0 0 0 0 0 0 3 4 3 3 596 956 TO

EmptyHeaded 0 0 0 0 0 0 0 0 2 0 0 0 5 12 73
LTJ 0 0 0 0 0 0 0 0 5 1 1 1 75 165 742
MS 1 1 0 2 1 3 0 1 23 7 5 6 282 TO TO

PSQL 1446 6 2 TO 575 TO 10 348 TO TO TO TO TO TO TO

MonetDB TO 3 3 945 947 TO 22 98 TO TO TO TO TO TO TO

Virtuoso 18 2 1 17 23 46 1 4 296 75 68 158 TO TO TO

Neo4j 348 19 6 212 250 418 4 32 TO 1441 1308 1745 TO TO TO

4-Clique Qdag 26 47 5 37 20 29 0 2 351 698 616 450 TO TO TO

EmptyHeaded 6 0 0 4 12 5 0 1 29 2 2 5 61 OM TO

LTJ 3 0 0 11 9 4 0 1 427 4 4 13 644 TO TO

MS 11 1 0 10 31 25 1 2 288 39 32 96 TO TO TO

PSQL TO 52 10 TO TO TO 1021 TO TO TO TO TO TO TO TO

MonetDB TO 17 15 TO TO TO 1219 TO TO TO TO TO TO TO TO

Virtuoso 447 2 0 364 1240 968 2 38 TO 1247 1273 TO TO TO TO

Neo4j TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

4-Cycle Qdag 3 1 0 70 21 59 0 4 136 1430 923 221 TO TO TO

EmptyHeaded 22 1 0 14 11 29 0 2 350 OM OM OM OM OM OM

LTJ 11 1 0 4 8 7 0 1 171 31 29 34 1416 TO TO

MS 24 3 1 17 23 59 0 3 587 183 156 268 TO TO TO

PSQL 309 4 1 1394 539 TO 47 112 TO TO TO TO TO TO TO

MonetDB 502 1 1 657 347 TO 19 60 TO TO TO TO TO TO TO

Virtuoso TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Neo4J TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO
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Table 5. uery times (in seconds, rounded to the nearest integer) for acyclic queries on small SNAP graphs, using selectivity 8 and 80. TO stands for
timeout (>1800 secs), whereas OM indicates an out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].

wiki-vote Gnutella31 Gnutella04 Brightkite Facebook Enron GrQc CondMat

80 8 80 8 80 8 80 8 80 8 80 8 80 8 80 8

1-Tree Qdag 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
EmptyHeaded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LTJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

PSQL 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0
MonetDB 4 5 1 1 0 0 TO TO TO TO TO TO 0 0 1 1

2-Comb Qdag 0 8 19 29 1 4 44 206 0 1 12 115 0 0 3 12
EmptyHeaded 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0

LTJ 0 6 0 0 0 0 1 20 0 3 1 50 0 0 0 2
MS 0 0 0 1 0 0 1 3 0 0 1 2 0 0 1 1

PSQL 0 51 0 0 0 0 2 206 0 29 3 553 0 0 0 6
MonetDB 388 478 3 3 1 1 TO TO TO TO TO TO 5 5 53 62

3-Path Qdag 0 6 5 17 0 2 39 198 0 0 10 114 0 0 2 12
EmptyHeaded 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0

LTJ 0 2 0 0 0 0 1 20 0 0 1 40 0 0 0 2
MS 0 1 0 0 0 0 1 4 0 0 1 3 0 0 1 1

PSQL 0 12 0 0 0 0 2 203 0 3 3 556 0 0 0 7
MonetDB 128 131 1 1 0 0 993 1036 45 56 TO TO 6 5 57 68
Virtuoso 1 16 0 0 0 0 18 319 0 4 37 719 0 1 1 10

Neo4j 4 71 1 2 0 1 82 633 4 19 163 1584 1 4 6 42
4-Path Qdag 21 690 513 1725 19 154 TO TO 0 10 TO TO 1 4 278 TO

EmptyHeaded 1 2 0 0 0 0 7 OM 1 4 OM OM 0 1 1 3
LTJ 4 193 0 0 0 0 44 1155 1 9 75 TO 1 5 6 59
MS 1 1 0 1 0 0 4 9 0 1 4 7 0 0 2 4

PSQL 3 1099 0 1 0 0 299 TO 0 102 914 TO 0 39 4 437
MonetDB TO TO 3 4 1 2 TO TO TO TO TO TO 230 321 TO TO

Virtuoso 30 1363 0 1 0 0 1664 TO 5 189 TO TO 4 29 37 577
Neo4j 161 TO 1 7 0 3 TO TO 105 437 TO TO 23 109 201 1309

A
C
M

T
ran

s.D
atab.Syst.



O
p
tim

al
Jo
in
s
u
sin

g
C
o
m
p
ressed

u
ad

trees
•

111:51
Table 6. uery times (in seconds, rounded to the nearest integer) for acyclic queries on medium-size and large SNAP graphs, using selectivity 10, 100,
and 1000. TO stands for timeout (>1800 secs), whereas OM indicates an out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].

Twiter Slashdot0902 Slashdot0811 Epinions1 Pokec LiveJournal1 Orkut

1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10

1-Tree Qdag 0 0 2 0 1 7 0 1 5 0 0 1 49 530 TO 201 TO TO TO TO TO

EmptyHeaded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 35
LTJ 0 0 2 0 0 1 0 0 1 0 0 0 1 3 30 1 7 82 2 32 443
MS 1 2 2 1 1 1 1 1 1 0 1 1 28 32 46 55 64 97 79 100 152

PSQL 0 1 44 0 0 4 0 0 1 0 0 2 1 17 160 25 36 513 2 106 TO

MonetDB 88 78 95 TO TO TO TO TO TO 12 11 10 TO TO TO TO TO TO TO TO TO

2-Comb Qdag 2 59 363 8 400 TO 7 264 TO 1 30 300 TO TO TO TO TO TO TO TO TO

EmptyHeaded 0 1 1 0 1 2 0 1 2 0 0 1 1 2 18 4 6 391 6 TO TO

LTJ 1 15 180 1 8 117 1 11 101 0 5 41 11 140 1780 66 1161 TO 395 TO TO

MS 2 7 12 1 4 6 1 4 6 1 1 3 64 156 272 128 282 507 312 575 TO

PSQL 2 205 TO 0 5 1014 0 6 936 0 3 288 14 196 TO 153 1111 TO 162 TO TO

MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

3-Path Qdag 2 55 391 10 364 TO 6 258 TO 1 30 328 TO TO TO TO TO TO TO TO TO

EmptyHeaded 0 0 2 0 1 2 0 1 2 0 0 1 1 3 7 4 5 263 5 21 560
LTJ 1 13 144 1 8 98 1 8 110 0 5 27 9 120 1521 61 1035 TO 60 825 TO

MS 1 5 18 1 4 10 1 4 10 0 1 4 25 129 408 68 259 TO 111 451 TO

PSQL 2 215 TO 0 5 938 0 6 890 0 2 243 8 166 TO 142 1011 TO TO TO TO

MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Virtuoso 7 59 1435 8 52 1433 6 65 1268 2 15 403 75 784 TO TO TO TO TO TO TO

Neo4j 57 323 TO 28 370 TO 41 405 TO 15 88 877 TO TO TO TO TO TO TO TO TO

4-Path Qdag 239 TO TO TO TO TO TO TO TO 110 TO TO TO TO TO TO TO TO TO TO TO

EmptyHeaded 16 OM OM 45 OM OM 13 OM OM 6 33 OM OM OM OM OM OM OM TO TO TO

LTJ 103 1286 TO 3 203 TO 62 240 TO 4 68 TO 710 TO TO TO TO TO TO TO TO

MS 8 22 46 7 13 24 7 14 23 2 6 10 206 556 TO 470 TO TO 697 TO TO

PSQL TO TO TO 9 1211 TO 10 1637 TO 1 470 TO 94 TO TO TO TO TO 1378 TO TO

MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Virtuoso 710 TO TO 1058 TO TO 657 TO TO 46 1785 TO TO TO TO TO TO TO TO TO TO

Neo4j TO TO TO TO TO TO TO TO TO 1097 TO TO TO TO TO TO TO TO TO TO TO
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