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Summary

Understanding the adaptive capacity of ecosystems to cope with change is crucial to management. 

However, unclear and often confusing definitions of adaptive capacity make application of this 

concept difficult. In this paper, we revisit definitions of adaptive capacity and operationalize the 

concept. We define adaptive capacity as the latent potential of an ecosystem to alter resilience in 

response to change. We present testable hypotheses to evaluate complementary attributes of 

adaptive capacity that may help further clarify the components and relevance of the concept. 

Adaptive sampling, inference and modeling can reduce key uncertainties incrementally over time 

and increase learning about adaptive capacity. Such improvements are needed because uncertainty 

about global change and its effect on the capacity of ecosystems to adapt to social and ecological 

change is high.
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Introduction

Future global environmental sustainability requires research that integrates human-nature 

interactions with sustainable practices to foster ecosystem regimes that are desirable (Kates 

et al. 2011). Ecosystems are subject to stresses (increasing intensification of agriculture, 

increasingly over-appropriated water supplies, and climate change), and these stresses are 
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dangerously approaching the planetary boundaries of sustainable use of natural resources 

(Rockström et al. 2008). The ability of ecosystems to adapt to these changes is limited. 

Eventually, ecosystems may undergo regime shifts (for definition of terms in italics see 

Box1) to alternate species assemblages and ecosystem functioning at local, regional, and 

even global scales (Hughes et al. 2013). The outcomes of regime shifts are highly uncertain, 

potentially having substantial negative effects on human health, security and welfare 

(Horner-Dixon 1991; McMichael et al 2008). Therefore, it is important to determine the 

capacity of ecosystems to adapt to swiftly-changing social-ecological baselines towards a 

future without historical analogue, and how management and conservation can contribute to 

this adaptation.

The concept of adaptive capacity has been rapidly assimilated in the social sciences and 

transdisciplinary social-ecological research (Gunderson 2000; Folke et al. 2003), with 

multiple attempts made to formalize its meaning. Adaptive capacity is related to resilience 

(Holling 1973) and panarchy (Gunderson and Holing 2002), which has taken center stage in 

the effort to understand ecosystem dynamics during change. The concept of adaptive 

capacity has, in parallel with the transdisciplinary development of resilience theory, helped 

to diversify the meanings and definitions of systems undergoing change (Gallopín 2006). 

Adaptive capacity has been mainly used qualitatively in climate change, vulnerability and a 

risk/disaster management context in the social sciences and varies between different contexts 

and systems (Adger et al. 2007). Similarly, in the ecological sciences, adaptation, 

adaptedness, adaptability and adaptive capacity, terms with different meanings, have often 

been used interchangeably (Gallopín 2006, Smit and Wandel 2006). Consequently, 

operationalizing the concept of adaptive capacity, and by extension resilience theory for 

application and management, has been difficult, because of a loss of clarity and loose, 

incorrect and often normative use of these disparate concepts (Brand and Jax 2007; Angeler 

and Allen 2016). Misuse of terms can have significant negative impacts, because resilience 

and adaptive capacity are being used to help guide responses to natural disasters. Further, 

assessments of ecosystems that drive international research priorities depend on a 

comprehensive understanding of these concepts (Smit and Wandel 2006).

Because the concept of adaptive capacity is muddied with multiple meanings, its current use 

often makes it indistinguishable from resilience. In this paper, our goal is to clearly define 

the concept of adaptive capacity in ecosystems with the aim of differentiating it from similar 

concepts, particularly ecological resilience. Since approaches for operationalization and 

quantification of these concepts are needed, we describe components of adaptive capacity in 

ecosystems and discuss how they might mitigate and direct ecological response to ongoing 

environmental change. Further, we identify a research agenda to test hypotheses related to 

adaptive capacity and the ability of ecosystems to cope with environmental change.

Definitions and formalization

Much of the terminology and definitions used in the ecological adaptive capacity context has 

a Darwinian adaptation focus on species and populations. This is reflected in the currently 

most comprehensive definition of adaptive capacity (Beever et al. 2015; Nicotra et al. 2015). 

These authors define adaptive capacity for species and populations as a combination of 
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evolutionary potential, dispersal ability, life-history traits and phenotypic plasticity, which 

are influenced by genetic, epigenetic, and behavioral and acclimation processes.

This definition is well aligned with the broad use of the term adaptation in ecology, which is 

defined as an organism’s ability to cope with environmental changes in order to survive and 

reproduce (Smit and Wandel 2006). The term adaptation itself is often used interchangeably 

with the term adaptability, which, as defined in biology, means the ability to become 

adjusted and to live and reproduce under a certain range of environmental conditions 

(Conrad 1983). Another term, adaptedness, has a more specific meaning than adaptation or 

adaptability. Dobzhansky (1968) defined adaptedness as the adaptive traits (structure, 

function and behavior of an organism) that are crucial for an organism to thrive in an 

environment. Adaptedness embraces species- or population-specific adaptation to a certain 

range of environmental conditions. Adaptedness is therefore context dependent and not a 

generic property as adaptability or adaptation would suggest. That is, high adaptedness does 

not necessarily mean high adaptability because a species may be highly adapted to a special 

and constant environment but have little capacity to adapt to other environments or to 

changes in its environment (Gallopín 2006). For example, a cold-stenothermic mayfly may 

thrive in an arctic stream, but it does not have the necessary adaptation to live in tropical 

lakes or to keep pace with warming of the arctic stream environment. Adaptedness can be 

tested through reciprocal transplant experiments to assess phenotypic fitness to local 

ecological niches.

Despite the dominant focus of adaptive capacity on lower levels of biological hierarchical 

organization in the literature, the term is increasingly used as an ecosystem property, 

recognizing that the ability of ecosystems to cope with disturbances is limited and that 

regime shifts can occur. Gunderson (2000) defined adaptive capacity as a system property, 

where adaptive capacity modifies ecological resilience (or “basin of attraction”). This 

definition is very similar to the earlier definition of ecological resilience: “Resilience is a 

measure of the persistence of systems and of their ability to absorb change and disturbance 

and still maintain the same relationships between populations or state variables” (Holling 

1973).

Underlying ecological resilience is the capacity of ecosystems to undergo regime shifts, 

meaning that ecosystems can exist in more than one regime (Holling 1973). Gunderson and 

Holling (2002) defined ecological resilience as “the magnitude of disturbance that can be 

absorbed before the system changes its structure by changing the variables and processes 

that control behavior”. Similarly, in a recent overview of resilience definitions, Angeler and 

Allen (2016) refer to ecological resilience as “a measure of the amount of change needed to 

change an ecosystem from one set of processes and structures to a different set of processes 

and structures”.

Ecological resilience encompasses broader systems dynamics by considering both 

adaptation within, and shifts between, alternative basins of attraction (i.e., alternative 
regimes). The distinction between single vs multiple regimes helps distinguish adaptive 

capacity from ecological resilience. Adaptive capacity focuses on dynamics within a specific 

regime, and therefore adaptive capacity is a subset of ecological resilience, which is 
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explicitly concerned with dynamics both within and between regimes. Thus, similar to the 

view of Gunderson (2000), ecosystem adaptive capacity can be formalized and defined as 

follows (Figure 1, Box 1): Adaptive capacity is the latent potential of an ecosystem to alter 
resilience in response to change. In particular, adaptive capacity is the capability of an 

ecological system or other complex system to alter its basin of attraction in response to 

change such that the current regime is maintained.

Considering adaptive capacity as a subset of ecological resilience has applied relevance. 

Research is increasingly focused on the assessment of early warning signals of impending 

regime shifts (e.g., Dakos et al. 2015; Spanbauer et al. 2014, 2016), with the goal of 

employing management intervention if appreciable signals are detected (Batt et al. 2016). 

Although such studies implicitly consider an exhaustion of adaptive capacity, underlying 

mechanisms are not fully accounted for. However, scrutinizing adaptive capacity may 

provide such a mechanistic understanding. We discuss components of adaptive capacity and 

forward hypotheses to test these.

Components of adaptive capacity

Adaptive capacity as a latent potential of ecosystems is comprised of components that are 

dynamically interlinked (Table 1):

Ecological memory

The composition and distribution of organisms, their interactions in space and time and their 

life-history experience with environmental fluctuations contribute to ecological memory 
(Nyström and Folke 2004). Ecological memory has been defined as “the capability of the 

past states or experiences of a community to influence the present or future ecological 

responses of the community” (Zhong-Yu and Hai 2011). Specifically, ecological memory 

comprises all structural and functional features of ecological communities, which have been 

shaped by the interaction of past disturbances (natural and anthropogenic), spatial aspects 

(dispersal, habitat connectivity), biological interactions (competition, predation), 

evolutionary (speciation, extinctions, anagenesis, random mutations) and phylogenetic 

processes. This memory of ecological communities allows for a “learning process” 

(Carpenter et al. 2001). From this learning at the community level patterns and processes 

emanate, which enable ecosystems to prepare for and respond to future disturbances. This 

highlights that aspects of ecological memory compartmentalize by scales of space and time. 

Adaptive capacity explicitly accounts for pattern-process relationships of ecological memory 

that operate within and across the hierarchy of biological organization (i.e., they contribute 

to cross-scale resilience) (Table 1).

Cross-scale interactions

Ecosystems are hierarchically organized and have distinct patterns of structure, function, and 

processes that are compartmentalized by spatiotemporal scales. Considering cross-scale 

interactions is important because the impact of disturbance in ecosystems can be scale-

specific (Pickett & White, 1985; Nash et al., 2014). That is, if disturbances affect 

components of ecological memory at one scale, other components at other scales might 
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buffer the disturbances in the entire ecosystem to maintain functioning and resilience 

(Peterson et al., 1998; Allen et al., 2005; Allen & Holling 2008). This buffering ability is 

critical to the understanding of the latent potential of adaptive capacity because it can be 

expected that adaptive capacity to absorb disturbances and maintain ecosystem regimes 

increases with the buffering ability conferred through cross-scale interactions. This buffering 

ability can be further explored through assessments of functional ecosystem characteristics.

Ecological functioning

Ecosystem reactions to disturbances, including buffering, rely on functional responses to 

perturbations, which in turn depends on the diversity of traits (e.g., reproductive phenology, 

seed bank potential, colonization and dispersal abilities [functional diversity]) that provide a 

range of response patterns to disturbances (i.e., response diversity) (Elmqvist et al., 2003). A 

recent study on coral-reefs (Nash et al. 2016) and a meta-analysis of forest resilience (Cole 

et al. 2014) support the importance of response diversity and cross-scale resilience after 

disturbances. Additionally, response-effect trait patterns and ecological network structure 

influence response diversity and ecosystem service provisioning (Mori et al. 2013, Oliver et 

al. 2015, Schleuning et al. 2015). In addition to diversity, redundancies of functional traits 

(functional redundancy) are important to stabilize processes (e.g., primary production, 

decomposition) and feedbacks, and therefore contribute to the resilience of an ecosystem 

(Folke et al. 2004). Assessing the distribution, diversity and redundancy of functional traits 

within and across spatiotemporal scales can therefore be used as a measurable surrogate for 

adaptive capacity, and may provide an indicator of the erosion of adaptive capacity as a 

result of environmental change (Laliberté et al. 2010). Important in such assessments is the 

consideration of rare species.

Rare species

Mouillot et al. (2013) found that rare species in alpine meadows, coral reefs, and tropical 

forests supported functional trait combinations that were not represented by abundant 

species. This suggests that if rare species go extinct with ongoing environmental change, 

negative effects on ecosystem processes may ensue with a subsequent loss of adaptive 

capacity. Such effects may occur even if biodiversity associated with abundant species is 

high (Mouillot et al. 2013).

The importance of rare species is also evident in their ability to replace dominant species 

after perturbation and maintain ecological functions in the system, which in turn contributes 

to ecological resilience (Walker et al.1999). For instance, rare shrub species with larger root 

crowns than dominant species were able to compensate for the loss of dominant shrub 

species to mechanical disturbance by re-sprouting prolifically, thus maintaining a shrub-

dominated system despite disturbance (Wonkka et al. 2016). This example shows that rare 

species may contribute an important but, to some extent, unpredictable degree of adaptive 

capacity to ecosystem change.
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Assessing adaptive capacity

The integration of scales, and functional and structural features between abundant and rare 

species offers a means to assess adaptive capacity. Resilience assessments have used 

discontinuity approaches to objectively identify the scaling structure present in ecosystems 

(Angeler et al., 2016). The discontinuity analyses have so far shown promising results in 

assessing resilience of aquatic and terrestrial ecosystems (Angeler et al. 2016) and also other 

complex systems (economic, anthropological, social-ecological; Garmestani et al. 2005; 

Garmestani et al. 2009; Sundstrom et al. 2014). Discontinuity analysis may therefore also be 

useful in assessing the adaptive capacity of ecosystem regimes. The implementation of this 

approach will be examined from an adaptive capacity assessment point of view.

Because information about ecosystems is frequently limited adaptive capacity can be 

assessed following a recently proposed hypothesis-testing framework for quantifying 

ecological resilience (Baho et al. 2017). This evaluation comprises initial assessments of 

specific facets of adaptive capacity and then tests and recalibrates hypotheses iteratively to 

increase knowledge and provide learning opportunities about its general adaptive capacity.

Surrogates of adaptive capacity can be evaluated using simple measures of ecological 

stability (resistance, persistence, variability, and engineering resilience) (Donohue et al. 

2013), biodiversity (Magurran 2004), and resilience (Angeler et al. 2016). The stability 

aspects can be evaluated for structural and functional variables (e.g., diversity, abundance, 

evenness, community composition, functional redundancies and diversity and process rates) 

within and across scales.

The initial step for quantifying adaptive capacity builds on Carpenter et al. (2001) to test for 

the “adaptive capacity of what to what”. However, testing for specific aspects of adaptive 

capacity may not be representative of the general adaptive capacity of an ecosystem. This is 

because there is limited surrogacy of metrics when assessing ecological responses to 

stressors (Johnson and Hering 2009). In addition, focusing on specified adaptive capacity 

can be problematic because managing adaptive capacity of particular parts of an ecosystem, 

especially in terms of managing for predictable outcomes of disturbances or provision of 

ecosystem services, may cause the system to lose adaptive capacity or resilience in other 

ways (Carpenter et al., 2015). Specified assessments of adaptive capacity shall therefore be 

regarded as an initial step towards assessing the broader systemic or general adaptive 

capacity of an ecosystem.

It follows that assessing and managing for general adaptive capacity will require the 

simultaneous assessment of a range of variables to cover generic system properties and 

create possibilities for integral, resilience-based ecosystem management, which is difficult 

for most ecosystems.

Hypothesis testing to clarify adaptive capacity concepts

We suggest that this problem can be overcome by implementing adaptive monitoring and 

management. For this purpose, posing hypotheses that test premises of adaptive capacity are 

helpful (Table 2). We propose hypotheses that are not mutually exclusive and are well 
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aligned with our adaptive capacity definition, allowing for the evaluation of its attributes in a 

logical, iterative sequence. These hypotheses can be tested using quantifiable stability and 

resilience measures (Angeler et al., 2016) based on multiple lines of evidence (e.g., taxa 

across distinct trophic levels; Burthe et al., 2016). Most hypotheses can be framed 

specifically from a management perspective to facilitate the quantification of adaptive 

capacity without sacrificing the complexity inherent in management-related assessments. 

Also, most of our proposed hypotheses are supported by empirical observations (examples in 

Table 2), suggesting implementation of our quantification framework with ecological 

realism.

Hypothesis testing is carried out sequentially, which first objectively identifies key species in 

ecosystems that might serve as sentinels of system change (Angeler et al. 2016a). Next, 

sampling can be adapted to select appropriate spatial and/or temporal scales for monitoring 

to account for the cross-scale structure present in the system (Thompson and Seber 1996). 

This can contribute to pattern identification following population responses of sentinel 

species to disturbances. Incorporation of genetic, evolutionary, molecular and physiological 

variables and the measurement of process rates in monitoring can increase inference about 

ecosystem change, providing information for recalibration of management hypotheses. 

Monitoring can be refined by subsequently recalibrating hypotheses in an adaptive process 

that first focuses on reducing Type II errors (identifying false negatives) prior to reduce 

uncertainty sufficiently such that subsequent analyses can focus on Type I error (identifying 

false positives) reduction (adaptive inference, Holling and Allen 2002). Type II errors can be 

reduced by assessing adaptive capacity attributes (e.g., cross-scale and within scale structure 

and associated functional diversity redundancy) when ecological information of the 

ecosystem is limited. This can be done with the analysis of temporal snapshots, which are 

often the only resource available to managers. Subsequently, monitoring can be designed, 

implemented and sequentially modified to successively reduce Type I errors; that is, by 

improving knowledge of a broader range of adaptive capacity characteristics that need to be 

sampled over time (e.g., how fast is recovery after a disturbance). Such recalibrations can 

target functional assessments of sentinel species to change and, in further iterations, be 

extended to other taxa. This type of hypothesis testing builds on adaptive management 

(Allen et al., 2011), sampling (Thompson and Seber 1996), modeling (Uden et al., 2015) and 

inference (Holling & Allen, 2002). It allows revealing, refining, understanding and 

ultimately managing general ecosystem adaptive capacity, while increasing learning and 

reducing uncertainty. In this process, experiments can be designed that sequentially 

recalibrate strategies based on the outcomes of previous experiments and from which 

decisions about further data generation and monitoring can be made (Figure 2).

Managing adaptive capacity

Our suggested hypotheses are very general at this stage, but they can provide an initial step 

to inform management. First, managing for adaptive capacity may help maintain ecosystems 

in a regime desirable for humans (Allen et al. 2011). In this case maintaining adaptive 

capacity is fundamental for managing ecosystems away from critical thresholds (Batt et al. 

2016). Crucial to managing for adaptive capacity is the consideration of cross-scale 

interactions across hierarchical levels and temporal scales. Upholding our premises while 
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testing hypotheses iteratively can be useful for designing management interventions to foster 

the adaptive capacity of a specific desired regime. A combination of ecological and 

technological approaches might be necessary to this end (Rist et al. 2014). Some of these 

approaches, e.g. assisted translocations or introductions of species invasions to compensate 

for lost crucial functions in an ecosystem (Chaffin et al. 2016b), are debated and thus 

potentially limited in their application to management. Second, when an ecosystem is in an 

undesired regime, management can reduce adaptive capacity, induce a shift towards a more 

desired regime and foster the adaptive capacity of this new regime (Chaffin et al. 2016a) 

(Figure 2). There is, for instance, a rich body of literature on lake biomanipulation, which 

exemplifies transformation of degraded lakes into more desirable systems (Hansson et al. 

1998).

The biomanipulation example is useful because while it offers possible management options, 

it also highlights potential limitations when managing for adaptive capacity. Lake 

biomanipulation has adopted a series of management interventions, based on ecological 

(food web manipulations) and technological interventions (water column aeration, sediment 

dredging or lining, nutrient precipitation). However, lessons from biomanipulation have 

shown that these solutions can incur short- to long-term costs that may not be tenable for 

most systems.

It is clear that a series of ecological, resource and ethical issues may currently complicate 

the translation of a solid body of theory on adaptive capacity to its management on the 

ground. Current environmental policy further limits the implementation of resilience to 

management (Green et al. 2015).

Conclusion

This paper suggests a way forward to enhance our ability to explicitly define and reduce 

uncertainties and promote more holistic and effective modeling, management and 

monitoring of adaptive capacity. In addition to testing premises and hypotheses of adaptive 

capacity, defining highly-related concepts will aid in continuing toward operationalizing 

adaptive capacity. For instance, although we have defined how adaptive capacity relates to 

the width of the basin of attraction in the iconic ball-and-cup heuristic, methods for defining 

the actual basin of attraction are few and lack rigorous testing (Gunderson et al. 2000). 

Estimating the basin of attraction would allow estimates of adaptive capacity to move 

beyond point estimates comparable only between subsequent measures and toward a direct 

estimate of adaptive capacity relative to the system’s potential adaptive capacity (Carpenter 

et al. 2001). Defining the basin of attraction would also allow the buffer that the current level 

of adaptive capacity provides against system transformations to be estimated, and it would 

allow transformative elements (e.g. invasive species) to be distinguished from elements that 

contribute to adaptive capacity (e.g. rare species; Elmqvist et al. 2003, Folke et al. 2010). 

However, new methods for detecting spatial regimes and discontinuous resource 

aggregations show promise for delineating basins of attraction in space and over time 

(Angeler et al. 2016, Allen et al. 2016, Sundstrom et al. 2017).
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Uncertainty will not be eliminated completely or immediately, but it can be reduced 

incrementally while an ecosystem is monitored, modeled and managed over time. Explicit 

learning during this process can overcome common management problems, such as delayed 

action under uncertainty (Conroy et al., 2011), prioritization of limited financial resources 

(Stewart-Koster, Olden & Johnson, 2015), and the limited coordination in governance of 

natural resources (Cumming et al., 2013). Such improvements are needed because of 

uncertainty about global change impacts on an ecosystem’s ability to absorb disturbances. 

An improved understanding of adaptive capacity can ultimately help to facilitate ecosystem 

management within current ecological, economic and ethical constraints. Our approach to 

assess adaptive capacity provides insight into the challenges to account for ecological 

complexity in ecosystem management. It particularly highlights enormous resource needs to 

the practical implementation and pinpoints persistent problems for closing gaps between 

science, policy, and management (Garmestani and Benson 2013).
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Box 1.

Definitions

Adaptive capacity

Latent property of an ecological system (or other complex system) to respond to 

disturbances in a manner that maintains it within its current basin of attraction by altering 

the depth and/or breadth of that basin (Figure 1).

Contrasted with

Adaptation

Alterations in the structure or function of an organism due to natural selection by which 

the organism becomes better fitted to survive and reproduce in its environment

Adaptability

ability to become adapted to live and reproduce under a particular range of environmental 

conditions

Adaptedness

adaptive traits (structural, functional, and behavioural), that are necessary for an organism 

to thrive in a particular environment

Ecological Resilience

ecological resilience is the capacity of a system to absorb disturbance to avoid a regime 

shift (multiple equilibrium focus), and a measure of the amount of disturbance a system 

can withstand before collapsing.

Engineering Resilience

return time to equilibrium after disturbance

Alternative State/Regime

a potential alternate configuration in terms of the structural and functional composition, 

processes, and feedbacks of a system

Basin of Attraction (stability domain)

configuration in terms of the abundance, composition, and processes of a system in which 

the system tends to remain

Cross-scale Resilience

resilience in ecological systems is enhanced when functional traits are diverse within 

scales and reinforced across scales

Ecological Memory

The collective representation of functional and structural attributes in an ecosystem that 

has been shaped by the systems disturbance history
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Stability

Stability is a system characteristic whereby system variables remain unchanged following 

disturbance. Adaptive capacity can increase stability, but system components can 

fluctuate (therefore being unstable) while still remaining within the range of values that 

signify a particular state, and therefore, a system can be somewhat unstable while still 

possessing high adaptive capacity

Persistence

duration of species existence before it becomes extinct (either locally or globally)

Resistance

the external force or pressure needed to displace a system by a certain amount.

Variability

inverse of ecological stability; fluctuation in ecosystem parameters over time.

Functional Diversity

Diversity of reproductive phenology, seed bank potential, colonization and dispersal 

abilities, and other traits. This can enhance adaptive capacity by increasing functional 

redundancy and response diversity (see below).

Functional Redundancy

Existence of more than one species or process delivering the same ecological function. 

This contributes to adaptive capacity in ecosystems by providing buffering for loss of 

function due to extinction.

Response Diversity

Response diversity is variability in combinations of traits that provides a range of 

response patterns to disturbances and therefore increases the overall adaptive capacity in 

the system.

Regime Shift

persistent change in structure, function, and feedbacks of an ecosystem
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Figure 1: 
Schematics illustrating high (A) and low (B) adaptive capacity. Adaptive capacity as a latent 

potential is shown by the dotted lines and the lengths of arrows that surround the basins of 

attraction that represent ecological resilience (left drawings). Drawings on the right show 

how high and low adaptive capacity can translate in rebound or a regime shift after a 

disturbance.
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Figure 2: 
Reiterative testing, recalibrating, and refining of explicit hypotheses of adaptive capacity 

within an adaptive management, inference and modeling framework. The approach first 

recognizes patterns (reducing risk of type II error) and then refines knowledge about patterns 

reiteratively (reducing risk of type I error) to meet adaptive or transformative management 

objectives and reduce uncertainty.
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Table 1:

Factors that contribute to ecological memory and that mediate adaptive capacity across different scales of 

biological organization. Note: the table is not exhaustive and meant only to highlight the complexity of factors 

influencing adaptive capacity.

Hierarchy of organization and selected traits

• Sub-individual

 ○ Matching physiological conditions to fluctuating inputs or internal demands (allostasis) (Carpenter and Brock, 2008).

 ○ Genetic, epigenetic and molecular processes (e.g., mutation).

• Individual

 ○ Phenotypic plasticity.

 ○ Learning and dispersal ability.

 ○ Behavior

 ○ Adaptive evolution related to genetic diversity and evolutionary rates.

 ○ Links between life-history traits, phenotypic plasticity, and evolutionary potential.

• Population

 ○ Heritable life history characteristics: generation time, reproductive capacity, migration, habitat selection, genome size, survival 
characteristics (resting stages; hibernation, estivation), generalist vs. specialist species.

 ○ Population structure.

 ○ Metapopulation dynamics.

• Community

 ○ Taxonomic diversity.

 ○ Functional diversity (redundancy, response diversity).

 ○ Strength of species interactions.

 ○ Metacommunity dynamics (colonization and dispersal abilities).

 ○ Founder effects.

 ○ Priority effects.

 ○ Dormancy (resting eggs and propagule banks) and bet-hedging strategies.

• Ecosystem

 ○ Interaction of and connection between abiotic and biotic elements in feedback loops (balancing and reinforcing or negative and positive).

 ○ Changing shapes of basin of attraction/stability landscape (topography, soils, landforms)

• Biome

 ○ Biogeographical distributions of native an invasive species.

 ○ Phylogenetic dynamics.

 ○ Evolutionary, disturbance and climate histories.
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