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Preface

The term “Energy Harvesting” describes the generation of small amounts of elec-
trical energy from the surrounding environment, be it kinetic energy, light or heat
gradients. This technology offers the potential for the low-maintenance operation of
wireless sensor systems without the need to charge or replace batteries. In order to
power electronic systems on the human body, harvesting devices are being
developed that use the body as an energy source. This book focuses on the human
gait as a source of kinetic energy. The swing motion of the foot during walking
provides the necessary excitation for flat inductive devices that can be integrated
into the shoe sole. These devices are, in principle, comparatively simple to
understand and fabricate. The main difficulty lies with the optimization of the
geometrical parameters.

Several harvester architectures are investigated in this book, in order to find the
magnet-coil arrangement that generates the largest power output. Before devices
can be fabricated, the optimal geometrical parameters for the highly restricted space
in the shoe sole need to be determined. A system model based on a differential
equation of motion is developed that takes the relevant physical effects into account,
i.e. the forces that act on the moving magnets and affect their motion. The steps
taken to implement the required aspects of the system model in a numerical sim-
ulation environment are described in detail, and the model is subsequently used to
calculate the motion of the magnets relative to the coils depending on the external
excitation. The required simplifications as well as the drawbacks and limitations
of the system model are described.

Based on the magnet motion, the induced voltage and the generated power
output are determined. While the magnetic field distribution needs to be calculated
for every setup separately, the system model is flexible and used across all archi-
tectures. The geometrical parameters of each architecture are variable, and an
optimization algorithm is used to maximize the power output for each architecture.

The fabrication of harvester devices as closely as possible to the optimized
design is the next step. The devices are characterized on a treadmill with two
different test persons and at walking speeds of 4, 6, 8 and 10 km/h. The power
output is determined using an ohmic load equal to the coil resistance. Of the four
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analyzed architectures, the highest achieved average power output is 10.32 mW. In
terms of power density, this translates into 1.15 mW/cm3 for an active volume of
8.96 cm3. The maximum device dimensions including the housing remain the same
throughout this work at 77 mm in length, 41.5 mm in width and 15.75 mm in height
(resulting in a total volume of 50.33 cm3).

The experimental results are used to revise and verify the system model. A new
parameter optimization is performed for each architecture using the revised model.
The second generation of fabricated devices (device volume remains 50cm3)
achieves a greatly improved average power output of up to 43 mW during walking
(power density of 0.85 mW/cm3).

Experiments are also carried out in industrial applications on a pneumatic piston
and a pneumatic clutch-brake with power outputs reaching up to 15 mW. These
results prove that this type of linear, non-resonant device can also be used in
industrial applications where the excitation, while certainly not identical to human
motion, shows a few similarities like non-resonant behavior and large amplitudes.

Lörrach, Germany Klevis Ylli
Freiburg, Germany Yiannos Manoli
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