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Most automated veriiers for separation logic are based on the symbolic-heap fragment, which disallows both the magic-wand
operator and the application of classical Boolean operators to spatial formulas. This is not surprising, as support for the magic
wand quickly leads to undecidability, especially when combined with inductive predicates for reasoning about data structures.
To circumvent these undecidability results, we propose assigning a more restrictive semantics to the separating conjunction.
We argue that the resulting logic, strong-separation logic, can be used for symbolic execution and abductive reasoning just like
“standardž separation logic, while remaining decidable even in the presence of both the magic wand and inductive predicates
(we consider a list-segment predicate and a tree predicate)Ða combination of features that leads to undecidability for the
standard semantics.

1 INTRODUCTION

Separation logic [Reynolds 2002] is one of the most successful formalisms for the analysis and veriication
of programs making use of dynamic resources such as heap memory and access permissions [Berdine et al.
2011; Bornat et al. 2005; Calcagno et al. 2015, 2011; Dudka et al. 2011; Jacobs et al. 2011; O’Hearn 2007]. At the
heart of the success of separation logic (SL) is the separating conjunction, ∗, which supports concise statements
about the disjointness of resources. In this article, we will focus on separation logic for describing the heap in
single-threaded heap-manipulating programs. In this setting, the formula φ ∗ψ can be read as “the heap can be
split into two disjoint parts, such that φ holds for one part andψ for the other.ž

Our article starts from the following observation: The standard semantics of ∗ allows splitting a heap into two
arbitrary sub-heaps. The magic-wand operator −∗, which is the adjoint of ∗, then allows adding arbitrary heaps.
This arbitrary splitting and adding of heaps makes reasoning about SL formulas diicult, and quickly renders
separation logic undecidable when inductive predicates for data structures are considered. For example, [Demri
et al. 2018] recently showed that adding only the singly-linked list-segment predicate to propositional separation
logic (i.e., with ∗,−∗ and classical connectives ∧,∨,¬) leads to undecidability.

Most SL speciications used in automated veriication do not, however, make use of arbitrary heap compositions.
For example, the widely used symbolic-heap fragments of separation logic considered, e.g., in [Berdine et al. 2004,
2005; Cook et al. 2011; Iosif et al. 2013, 2014], have the following property: a symbolic heap satisies a separating
conjunction, if and only if one can split the model at locations that are the values of some program variables.

Motivated by this observation, we propose a more restrictive separating conjunction that allows splitting the
heap only at locations that are the values of some program variables. We call the resulting logic strong-separation
logic. Strong-separation logic (SSL) shares many properties with standard separation-logic semantics; for example,
the models of our logic form a separation algebra. Because the frame rule and other standard SL inference
rules continue to hold for SSL, SSL is suitable for deductive Hoare-style veriication à la [Ishtiaq and O’Hearn
2001a; Reynolds 2002], symbolic execution [Berdine et al. 2005], as well as abductive reasoning [Calcagno et al.
2015, 2011]. At the same time, SSL has the advantage to be decidable (in PSPACE) for a logic that combines the
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x y nil = x y + y nil

(a) A model of ls(x ,y) ∗ ls(y, nil) in both the standard semantics and our semantics.

x nil = x nil

+

(b) A model of ls(x , nil) ∗ t in the standard semantics.

Fig. 1. Two models and their decomposition into disjoint submodels. The dangling arrows represent dangling pointers.

singly-linked list-segment predicate, classical negation and the magic wand, which is undecidable over standard
semantics [Demri et al. 2018]; moreover, the PSPACE complexity matches the complexity of the same fragment
without the singly-linked list-segment predicate over standard semantics [Calcagno et al. 2001].

We now give a more detailed introduction to the contributions of this article.

The standard semantics of the separating conjunction. To be able to justify our changed semantics of ∗, we need
to introduce a bit of terminology. As standard in separation logic, we interpret SL formulas over stackśheap pairs.
A stack is a mapping of the program variables to memory locations. A heap is a inite partial function between
memory locations; if a memory location l is mapped to location l ′, we say the heap contains a pointer from l to l ′.
A memory location l is allocated if there is a pointer of the heap from l to some location l ′. We call a location
dangling if it is the target of a pointer but not allocated; a pointer is dangling if its target location is dangling.

Dangling pointers arise naturally in compositional speciications, i.e., in formulas that employ the separating
conjunction ∗: In the standard semantics of separation logic, a stackśheap pair (s,h) satisies a formula φ ∗ψ , if it
is possible to split the heap h into two disjoint parts h1 and h2 such that (s,h1) satisies φ and (s,h2) satisiesψ .
Here, disjoint means that the allocated locations of h1 and h2 are disjoint; however, the targets of the pointers of
h1 and h2 do not have to be disjoint.

We illustrate this in Fig. 1a, where we show a graphical representation of a stackśheap pair (s,h) that satisies
the formula ls(x ,y) ∗ ls(y, nil). Here, ls denotes the list-segment predicate. As shown in Fig. 1a, h can be split
into two disjoint parts h1 and h2 such that (s,h1) is a model of ls(x ,y) and (s,h2) is a model of ls(y, nil). Now, h1
has a dangling pointer with target s (y) (displayed by the arrow to y), while no pointer is dangling in the heap h.

In what sense is the standard semantics too permissive? The standard semantics of ∗ allows splitting a heap into
two arbitrary sub-heaps, which may result in the introduction of arbitrary dangling pointers into the sub-heaps.
We note, however, that the introduction of dangling pointers is not arbitrary when splitting the models of
ls(x ,y) ∗ ls(y, nil); there is only one way of splitting the models of this formula, namely at the location of
program variable y. The formula ls(x ,y) ∗ ls(y, nil) belongs to a certain variant of the symbolic-heap fragment
of separation logic, and all formulas of this fragment have the property that their models can only be split at
locations that are the values of some variables.
Standard SL semantics also allows the introduction of dangling pointers without the use of variables. Fig. 1b

shows a model of ls(x , nil) ∗ tÐassuming the standard semantics. Here, the formula t (for true) stands for any
arbitrary heap. In particular, this includes heaps with arbitrary dangling pointers into the list segment ls(x , nil).
This power of introducing arbitrary dangling pointers is what is used by [Demri et al. 2018] for their undecidability
proof of propositional separation logic with the singly-linked list-segment predicate.
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Strong-separation logic. In this article, we want to explicitly disallow the implicit sharing of dangling locations
when composing heaps. We propose to parameterize the separating conjunction by the stack and exclusively
allow the union of heaps that only share locations that are pointed to by the stack. For example, the model in
Fig. 1b is not a model of ls(x , nil) ∗ t in our semantics because of the dangling pointers in the sub-heap that
satisies t. Strong-separation logic (SSL) is the logic resulting from this restricted deinition of the separating
conjunction.

Why should I care? We argue that SSL is a promising proposal for automated program veriication:
1) We show that the memory models of strong-separation logic form a separation algebra [Calcagno et al.

2007], which guarantees the soundness of the standard frame rule of SL [Reynolds 2002]. Consequently, SSL
can be potentially be used instead of standard SL in a wide variety of (semi-)automated analyzers and veriiers,
including Hoare-style veriication [Reynolds 2002], symbolic execution [Berdine et al. 2005], and bi-abductive
shape analysis [Calcagno et al. 2011].
2) To date, most automated reasoners for separation logic have been developed for symbolic-heap separation

logic [Berdine et al. 2004, 2005; Calcagno et al. 2011; Iosif et al. 2013, 2014; Katelaan et al. 2019; Katelaan and
Zuleger 2020; Pagel et al. 2020]. In these fragments of separation logic, assertions about the heap can exclusively
be combined via ∗; neither the magic wand −∗ nor classical Boolean connectives are permitted. We show that
the strong semantics agrees with the standard semantics on symbolic heaps. For this reason, symbolic-heap SL
speciications remain unchanged when switching to strong-separation logic.
3) We establish that the satisiability and entailment problem for full propositional separation logic with a

singly-linked list-segment predicate and a tree predicate is decidable in our semantics (in PSpace)Ðin stark
contrast to the aforementioned undecidability result obtained by [Demri et al. 2018] assuming the standard
semantics.

4) The standard Hoare-style approach to veriication requires discharging veriication conditions (VCs), which
amounts to proving for loop-free pieces of code that a pre-condition implies some post-condition. Discharging
VCs can be automated by calculi that symbolically execute the pre-condition forward resp. the post-condition
backward, and then using an entailment checker for proving the implication. For SL, symbolic execution calculi
can be formulated using the magic wand resp. the septraction operator. However, these operators have proven
to be diicult for automated procedures: “VC-generators do not work especially well with separation logic, as
they introduce magic-wand −∗ operators which are diicult to eliminate.ž [Appel 2014, p. 131] In contrast, we
demonstrate that SSL can overcome the described diiculties. We formulate a forward symbolic execution calculus
for a simple heap-manipulating programming language using SSL. In conjunction with our entailment checker,
see 3), our calculus gives rise to a fully-automated procedure for discharging VCs of loop-free code segments.
5) Computing solutions to the abduction problem is an integral building block of Facebook’s Infer ana-

lyzer [Calcagno et al. 2015], required for a scalable and fully-automated shape analysis [Calcagno et al. 2011]. We
show how to compute explicit representations of optimal, i.e., logically weakest and spatially minimal, solutions
to the abduction problem for the separation logic considered in this paper. The result is of theoretical interest, as
explicit representations for optimal solutions to the abduction problem are hard to obtain [Calcagno et al. 2011;
Gorogiannis et al. 2011].

Contributions. Our main contributions are as follows:

(1) We propose and motivate strong-separation logic (SSL), a new semantics for separation logic.
(2) We present a PSpace decision procedure for strong-separation logic with points-to assertions, a list-

segment predicate, a tree predicate, as well as spatial and Boolean operators, i.e., ∗,−∗,∧,∨,¬Ða logic that
is undecidable when assuming the standard semantics [Demri et al. 2018].
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(3) We present symbolic execution rules for SSL, which allow us to discharge veriication conditions fully
automatically.

(4) We show how to compute explicit representations of optimal solutions to the abduction problem for the
SSL considered in (2).

We strongly believe that these results motivate further research on SSL (e.g., going beyond the singly-linked
list-segment predicate, implementing our decision procedure and integrating it into fully-automated analyzers).

Journal version. This journal version substantially extends the conference version of this paper [Pagel and
Zuleger 2021] in several regards:

(1) We have added a tree predicate to the considered separation logic, while the only data-structure predicate
in the conference version of this paper was the list-segment predicate. We show that all our decidability
and complexity results continue to hold for the extended logic. For didactic reasons, we still irst introduce
a separation logic that only has the list-segment predicate and develop our decision procedure for this
restricted logic. After that we extend our results to trees in a separate section (Section 3.8).

(2) We present an operational semantics for the program statements considered in the program veriication
section (Section 4) and prove the correctness of our symbolic execution calculus with regard to this
semantics. The operational semantics and the proof of correctness were left out in the conference version
for space reasons.

(3) We improve the exposition of the section on normal forms and abduction (Section 5) by adding the missing
proofs, improving the formula that characterizes abstract memory states, and adding the result that the
normal form transformation is a closure operator (see Theorem 5.4).

(4) For the result on the closure operator to hold, we had to adapt and improve the deinition of the chunk size
of a formula (see Section 3.5). The new deinition gives strictly smaller bounds on the number of chunks
than the deinition from the conference version. This improvement is not only helpful for the result on the
closure operator, but will also have practical impact in future implementations of our decision procedure.

(5) We give all proofs that were left out in the conference version due to space reasons.

Related work. The undecidability of separation logic was established already in [Calcagno et al. 2001]. Since
then, decision problems for a large number of fragments and variants of separation logic have been studied.
Most of this work has been on symbolic-heap separation logic or other variants of the logic that neither support
the magic wand nor the use of negation below the ∗ operator. While entailment in the symbolic-heap fragment
with inductive deinitions is undecidable in general [Antonopoulos et al. 2014], there are decision procedures
for variants with built-in lists and/or trees [Berdine et al. 2004; Cook et al. 2011; Pérez and Rybalchenko 2013;
Piskac et al. 2013, 2014], support for deining variants of linear structures [Gu et al. 2016] or tree structures [Iosif
et al. 2014; Tatsuta and Kimura 2015] or graphs of bounded tree width [Iosif et al. 2013; Katelaan et al. 2019].
The expressive heap logics Strand [Madhusudan et al. 2011] and Dryad [Qiu et al. 2013] also have decidable
fragments, as have some other separation logics that allow combining shape and data constraints. Besides the
already mentioned work [Piskac et al. 2013, 2014], these include [Katelaan et al. 2018; Le et al. 2017].
Among the aforementioned works, the graph-based decision procedures of [Cook et al. 2011] and [Katelaan

et al. 2018] are most closely related to our approach. Note however, that neither of these works supports reasoning
about magic wands or negation below the separating conjunction.

In contrast to symbolic-heap SL, separation logics with the magic wand quickly become undecidable. Proposi-
tional separation logic with the magic wand, but without inductive data structures, was shown to be decidable in
PSpace in the early days of SL research [Calcagno et al. 2001]. Support for this fragment was added to CVC4
a few years ago [Reynolds et al. 2016]. Some tools have “lightweightž support for the magic wand involving
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heuristics and user annotations, in part motivated by the lack of decision procedures [Blom and Huisman 2015;
Schwerhof and Summers 2015].

There is a signiicant body of work studying irst-order SL with the magic wand and unary points-to assertions,
but without a list predicate. This logic was irst shown to be undecidable in [Brochenin et al. 2012]; a result that has
since been reined, showing e.g. that while satisiability is still in PSpace if we allow one quantiied variable [Demri
et al. 2014], two variables already lead to undecidability, even without the separating conjunction [Demri and
Deters 2014]. [Echenim et al. 2019] have recently addressed the satisiability problem of SL with ∃∗∀∗ quantiier
preix, separating conjunction, magic wand, and full Boolean closure, but no inductive deinitions. The logic
was shown to be undecidable in general (contradicting an earlier claim [Reynolds et al. 2017]), but decidable in
PSpace under certain restrictions.
Above, we have focussed on the related work with regard to automated decision procedures. Here, we also

mention several projects that target general and powerful frameworks rather than automation. Iris [Jung et al.
2018], FCSL [Sergey et al. 2015] and TaDA [da Rocha Pinto et al. 2014] provide frameworks for the veriication of
ine-grained concurrent programs, supporting higher-order functions, concurrency, ownership and rely-guarantee
reasoning. The separation logics employed in these frameworks are parameterized by the underlying separation
algebras resp. resource monoids, which can be speciied by the user. Iris [Jung et al. 2018] and FCSL [Sergey et al.
2015] have been formalized in the Coq Proof assistant ensuring the soundness of the meta-theory. Because the
cited approaches provide versatile and expressive frameworks, the involved logics are typically not decidable and
proofs need to be done manually (resp. interactively making use of Coq proof tactics), whereas we propose in this
paper a speciic separation logic and establish decision procedures and complexity results for the considered logic.
We further mention that our logic is a classical separation logic allowing to prove the absence of memory leaks.
In contrast, Iris uses an intuitionistic semantics1, which does not allow proving the absence of resources; this
design choice has been made for principle reasons because the later modality supported by Iris does not allow to
incorporate the law of excluded middle [Jung et al. 2018]. Relatedly, TaDA [da Rocha Pinto et al. 2014] employs
predicates that are upwards-closed sets of worlds, i.e., an intuitionistic semantics. At the present stage, it is diicult
to determine whether the TaDA framework could be adapted to classical semantics. We inally mention the low
framework [Krishna et al. 2018, 2020], which identiies separation algebras that can be used for reasoning about
global graph properties such as reachabiltiy, acyclicity,etc., in a modular way. The goal of the low framework
was to identify the mathematical foundations for such reasoning while leaving the (promising) automation of
low-based proofs for future work. With regard to automation we remark that the general framework will likely
not admit decidability results without putting further restrictions on the considered separation algebras2.

Outline. In Section 2, we introduce two semantics of propositional separation logic, the standard semantics
and our new strong-separation semantics. We show the decidability of the satisiability and entailment problems
of SSL with lists and trees in Section 3 (we irst show the decidability for SSL with lists but without trees, and
then extend our results to trees in Section 3.8). We present symbolic execution rules for SSL in Section 4. We
show how to compute explicit representations of optimal solutions to the abduction problem in Section 5. We
conclude in Section 6.

1Assertions in intuitionistic separation logic satisfy the following monotonicity property: an assertion that is true for some portion of the
heap remains true for any extension of the heap [Reynolds 2002]. The classical version of separation logic does not impose this monotonicity
property and can therefore be used to reason about explicit storage deallocation.
2For comparison we also quote from the extended version [Krishna et al. 2019] why the separating implication was omitted from the logic:
“Most presentations of SL also include the separating implication connective −∗. However, logics including −∗ are harder to automate and
usually undecidable. By omitting −∗ we emphasize that we do not require it to perform low-based reasoning.ž (We recall that in this paper we
establish decidability results for a separation logic that includes −∗).
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τ ::= emp | x 7→ y | ls(x ,y) | x = y | x , y

φ ::= τ | φ ∗ φ | φ−⊛φ | φ ∧ φ | φ ∨ φ | ¬φ

Fig. 2. The syntax of separation logic with list segments.

2 STRONG- AND WEAK-SEPARATION LOGIC

2.1 Preliminaries

We denote by |X | the cardinality of the set X . Let f be a (partial) function. Then, dom( f ) and img( f ) denote the
domain and image of f , respectively. We write ��f �� := ��dom( f )�� and f (x ) = ⊥ for x < dom( f ). We frequently use
set notation to deine and reason about partial functions: f :=

{

x1 7→ y1, . . . ,xk 7→ yk
}

is the partial function that
maps xi to yi , 1 ≤ i ≤ k , and is undeined on all other values; f −1 (b) is the set of all elements a with f (a) = b;
we write f ∪ д resp. f ∩ д for the union resp. intersection of partial functions f and д, provided that f (a) = д(a)
for all a ∈ dom( f ) ∩ dom(д); similarly, f ⊆ д holds if dom( f ) ⊆ dom(д). Given a partial function f , we denote
by f [x/v] the updated partial function in which x maps to v , i.e.,

f [x/v](y) =

v, if y = x ,

f (y) otherwise,

where we use v = ⊥ to express that the updated function f [x/v] is undeined for x .
Sets and ordered sequences are denoted in boldface, e.g., x. To list the elements of a sequence, we write

⟨x1, . . . ,xk ⟩.
We assume a linearly-ordered ininite set of variables Var with nil ∈ Var and denote by max(v) the maximal

variable among a set of variables v according to this order. In Fig. 2, we deine the syntax of the separation-logic
fragment we study in this article. The atomic formulas of our logic are the empty-heap predicate emp, points-to
assertions x 7→ y, the list-segment predicate ls(x ,y), equalities x = y and disequalities x , y3; in all these cases,
x ,y ∈ Var. (We note that for the moment our separation logic does not include a tree predicate. We defer this
extension to Section 3.8.) Formulas are closed under the classical Boolean operators ∧,∨,¬ as well as under
the separating conjunction ∗ and the existential magic wand, also called septraction, −⊛ (see e.g. [Brochenin et al.
2012]). We collect the set of all SL formulas in SL. We also consider derived operators and formulas, in particular
the separating implication (or magic wand), −∗, deined by φ−∗ψ := ¬(φ−⊛¬ψ ).4 We also use true, deined as
t := emp∨¬emp. Finally, for Φ =

{

φ1, . . . ,φn
}

, we set ∗Φ := φ1 ∗φ2 ∗ · · · ∗φn , if n > 1, and ∗Φ := emp, if n = 0.
By fvs(φ) we denote the set of (free) variables of φ. We deine the size of the formula φ as ��φ�� = 1 for atomic
formulas φ, ��φ1 × φ2�� := ��φ1�� + ��φ2�� + 1 for × ∈ {∧,∨, ∗,−⊛} and ��¬φ1�� := ��φ1�� + 1.

2.2 Two Semantics of Separation Logic

Memory model. Loc is an ininite set of heap locations. A stack is a partial function s : Var⇀ Loc. A heap is a
partial function h : Loc⇀ Loc. A model is a stackśheap pair (s,h) with nil ∈ dom(s ) and s (nil) < dom(h). We let
locs(h) := dom(h) ∪ img(h). A location ℓ is dangling if ℓ ∈ img(h) \ dom(h). We write S for the set of all stacks
and H for the set of all heaps.

3Note that x , y is not equivalent to ¬(x = y ) in our separation logic, as we require the heap to be empty for all models of x , y .
4As −∗ can be deined via −⊛ and ¬ and vice-versa, the expressivity of our logic does not depend on which operator we choose. We have
chosen −⊛ because we can include this operator in the positive fragment considered later on.
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(s,h) |= emp if dom(h) = ∅

(s,h) |= x = y if dom(h) = ∅ and s (x ) = s (y)
(s,h) |= x , y if dom(h) = ∅ and s (x ) , s (y)
(s,h) |= x 7→ y if h =

{

s (x ) 7→ s (y)
}

(s,h) |= ls(x ,y) if dom(h) = ∅ and s (x ) = s (y) or there exist n ≥ 1, ℓ0, . . . , ℓn with
h = {ℓ0 7→ ℓ1, . . . , ℓn−1 7→ ℓn } , s (x ) = ℓ0 and s (y) = ℓn

(s,h) |= φ1 ∧ φ2 if (s,h) |= φ1 and (s,h) |= φ2
(s,h) |= ¬φ if (s,h) ̸ |= φ

(s,h) wk
|= φ1 ∗ φ2 if there exist h1,h2 with h = h1 + h2, (s,h1)

wk
|= φ1, and (s,h2)

wk
|= φ2

(s,h) wk
|= φ1−⊛φ2 if exist h1, with (s,h1)

wk
|= φ1,h + h1 , ⊥ and (s,h + h1)

wk
|= φ2

(s,h)
st
|= φ1 ∗ φ2 if there exists h1,h2 with h = h1 ⊎s h2, (s,h1)

st
|= φ1, and (s,h2)

st
|= φ2

(s,h)
st
|= φ1−⊛φ2 if exists h1 with (s,h1)

st
|= φ1,h ⊎

s h1 , ⊥ and (s,h ⊎s h1)
st
|= φ2

Fig. 3. The standard, łweakž semantics of separation logic, wk|= , and the łstrongž semantics, st
|=. We write |= when there is no

diference between wk|= and st
|=.

Two notions of disjoint union of heaps. We write h1 + h2 for the union of disjoint heaps, i.e.,

h1 + h2 :=

h1 ∪ h2, if dom(h1) ∩ dom(h2) = ∅

⊥, otherwise.

This standard notion of disjoint union is commonly used to assign semantics to the separating conjunction and
magic wand. It requires that h1 and h2 are domain-disjoint, but does not impose any restrictions on the images of
the heaps. In particular, the dangling pointers of h1 may alias arbitrarily with the domain of h2 and vice-versa.

Let s be a stack. We write h1 ⊎s h2 for the disjoint union of h1 and h2 that restricts aliasing of dangling pointers
to the locations in stack s . This yields an ininite family of union operators: one for each stack. Formally,

h1 ⊎
s h2 :=


h1 + h2, if (dom(h1) ∩ img(h2)) ∪ (dom(h2) ∩ img(h1)) ⊆ img(s )

⊥, otherwise.

Intuitively, h1 ⊎s h2 is the (disjoint) union of heaps whose dangling pointers may only point to the domain of the
other heap in case the targets of these dangling pointers are in the image of s . Note that if h1 ⊎s h2 is deined
then h1 + h2 is deined, but not vice-versa.
Just like the standard disjoint union +, the operator ⊎s gives rise to a separation algebra, i.e., a cancellative,

commutative partial monoid [Calcagno et al. 2007]:

Lemma 2.1. Let s be a stack and let u be the empty heap (i.e., dom(u) = ∅). The triple (H,⊎s ,u) is a separation

algebra.

Proof. Trivially, the operation ⊎s is commutative and associative with unit u. Let h ∈ H. Consider h1,h2 ∈ H
such that h⊎s h1 = h⊎s h2 , ⊥. Since the domain of h is disjoint from the domains of h1 and h2, it follows that for
all x , h1 (x ) = h2 (x ) and thus h1 = h2. As h1 and h2 were chosen arbitrarily, we obtain that the function h ⊎s (·) is
injective. Consequently, the monoid is cancellative. □

Weak- and strong-separation logic. Both + and ⊎s can be used to give a semantics to the separating conjunction
and septraction. We denote the corresponding model relations wk

|= and st
|= and deine them in Fig. 3. Where the two

semantics agree, we simply write |=.
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a nil

b nil

a c nil

b

Fig. 4. Two models of (ls(a, nil) ∗ t) ∧ (ls(b, nil) ∗ t) for a stack with domain a,b and a stack with domain a,b, c .

In both semantics, emp only holds for the empty heap, and x = y holds for the empty heap when x and y
are interpreted by the same location5. Points-to assertions x 7→ y are precise, i.e., only hold in singleton heaps.
(Following [Ishtiaq and O’Hearn 2001b], it is, of course, possible to express intuitionistic points-to assertions by
x 7→ y ∗ t). The list segment predicate ls(x ,y) holds in possibly-empty lists of pointers from s (x ) to s (y). The
semantics of Boolean connectives are standard. The semantics of the separating conjunction, ∗, and septraction,
−⊛, difer based on the choice of + vs. ⊎s for combining disjoint heaps. In the former case, denoted wk

|= , we get the
standard semantics of separation logic (cf. [Reynolds 2002]). In the latter case, denoted st

|=, we get a semantics
that imposes stronger requirements on sub-heap composition: Sub-heaps may only overlap at locations that are
stored in the stack.

Because the semantics st
|= imposes stronger constraints, we will refer to the standard semantics wk

|= as the weak
semantics of separation logic and to the semantics st

|= as the strong semantics of separation logic. Moreover, we
use the terms weak-separation logic (WSL) and strong-separation logic (SSL) to distinguish between SL with the
semantics wk

|= and st
|=.

Example 2.2. Let φ := a , b ∗ (ls(a, nil) ∗ t) ∧ (ls(b, nil) ∗ t). In Fig. 4, we show two models of φ. On the left,
we assume that a,b are the only program variables, whereas on the right, we assume that there is a third program
variable c .

Note that the latter model, where the two lists overlap, is possible in SSL only because the lists come together at
the location labeled by c . If we removed variable c from the stack, the model would no longer satisfy φ according
to the strong semantics, because ⊎s would no longer allow splitting the heap at that location. Conversely, the
model would still satisfy φ with standard semantics.

This is a feature rather than a bug of SSL: Without having a variable c the stack-heap pair on the right of Fig. 4
is not a model of φ. However, an SSL user is able to explicitly allow such models by adding a (ghost) variable c to
the set of program variables.

Isomorphism. For later use, we state that SL formulas cannot distinguish isomorphic models:

Deinition 2.3. Let (s,h), (s ′,h′) be models. (s,h) and (s ′,h′) are isomorphic, (s,h) � (s ′,h′), if there exists a
bijection σ : (locs(h) ∪ img(s )) → (locs(h′) ∪ img(s ′)) such that (1) for all x , s ′(x ) = σ (s (x )) and (2) h′ = {σ (l ) 7→
σ (h(l )) | l ∈ dom(h)}.

Lemma 2.4. Let (s,h), (s ′,h′) be models with (s,h) � (s ′,h′) and let φ ∈ SL. Then (s,h)
st
|= φ if (s ′,h′)

st
|= φ.

Proof. See appendix. □

(Lemma 2.4.) We prove the claim by induction on the structure of the formula φ. Clearly, the claim holds for
the base cases emp, x 7→ y, ls(x ,y), x = y and x , y. Further, the claim immediately follows from the induction
assumption for the cases φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ. It remains to consider the cases φ1 ∗ φ2 and φ1−⊛φ2. Let (s,h)
and (s ′,h′) be two stack-heap pairs with (s,h) � (s ′,h′).
5Usually x = y is deined to hold for all heaps, not just the empty heap, when x and y are interpreted by the same location; however, this
choice does not change the expressivity of the logic: the formula (x = y ) ∗ t expresses the standard semantics. Our choice is needed for the
results on the positive fragment considered in Section 2.3.
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We will show that (s,h) st
|= φ1 ∗ φ2 implies (s ′,h′) st

|= φ1 ∗ φ2; the other direction is completely symmetric. We
assume that (s,h) st

|= φ1 ∗ φ2. Then, there are h1,h2 with h1 ⊎s h2 = h and (s,hi )
st
|= φi for i = 1, 2. We consider

the bijection σ that witnesses the isomorphism between (s,h) and (s ′,h′). Let h′1 resp. h
′
2 be the sub-heap of h′

restricted to σ (dom(h1)) resp. σ (dom(h2)). It is easy to verify that h′1 ⊎
s h′2 = h

′ and (s,hi ) � (s ′,h′i ) for i = 1, 2.

Hence, we can apply the induction assumption and get that (s ′,h′i )
st
|= φi for i = 1, 2. Because of h′1 ⊎

s h′2 = h
′ we

get (s ′,h′) st
|= φ1 ∗ φ2.

We will show that (s,h) st
|= φ1−⊛φ2 implies (s ′,h′) st

|= φ1−⊛φ2; the other direction is completely symmetric. We
assume that (s,h) st

|= φ1−⊛φ2. Hence there is a heap h0 with (s,h0)
st
|= φ1 and (s,h0 ⊎

s h)
st
|= φ2. We note that in

particular h0 ⊎s h , ⊥. We consider the bijection σ that witnesses the isomorphism between (s,h) and (s ′,h′).
Let L ⊆ Loc be some subset of locations with L ∩ (locs(h′) ∪ img(s ′)) = ∅ and |L| = locs(h0) \ (locs(h) ∪ img(s )).
We can extend σ to some bijective function σ ′ : (locs(h0) ∪ locs(h) ∪ img(s )) → (L ∪ locs(h′) ∪ img(s ′)). Then,
σ ′ induces a heap h′0 such that (s,h0) � (s ′,h′0), h

′
0 ⊎

s h′ , ⊥ and (s,h0 ⊎
s h) � (s ′,h′0 ⊎

s h′). By induction

assumption we get that (s ′,h′0)
st
|= φ1 and (s ′,h′0 ⊎

s h′)
st
|= φ2. Hence, (s ′,h′)

st
|= φ1−⊛φ2.

Satisiability and Semantic Consequence. We deine the notions of satisiability and semantic consequence
parameterized by a inite set of variables x ⊆ Var. For a formula φ with fvs(φ) ⊆ x, we say that φ is satisiable
w.r.t. x if there is a model (s,h) with dom(s ) = x such that (s,h) st

|= φ. We say that φ entails ψ w.r.t. x, in signs
φ

st
|=x ψ , if (s,h)

st
|= φ then also (s,h)

st
|= ψ for all models (s,h) with dom(s ) = x.

2.3 Correspondence of Strong and Weak Semantics on Positive Formulas

We call an SL formula φ positive if it does not contain ¬. Note that, in particular, this implies that φ does not
contain the magic wand −∗ or the atom t.

In models of positive formulas, all dangling locations are labeled by variables:

Lemma 2.5. Let φ be positive and (s,h) wk
|= φ. Then, (img(h) \ dom(h)) ⊆ img(s ).

Proof. We prove the following stronger statement by structural induction on φ: For every model (s,h) wk
|= φ

we have that

(1) (img(h) \ dom(h)) ⊆ img(s ),
(2) every join point is labelled by a variable, i.e., ���h

−1 (ℓ)
��� ≥ 2 implies that ℓ ∈ img(s ), and

(3) every source is labelled by a variable, i.e., (dom(h) \ img(h)) ⊆ img(s ).

The proof is straightforward except for the −⊛ case: Assume (s,h) wk
|= φ1−⊛φ2. Then there is a h0 with (s,h0)

wk
|= φ1

and (s,h0 + h)
wk
|= φ2. By induction assumption the claim holds for (s,h0) and (s,h0 + h). We note that every join

point of h is also a join point of h0 + h and hence labelled by a variable. We now verify that every pointer that is
dangling in h is either also dangling in h0 + h or is a join point in h0 + h or is pointing to a source of h0; in all
cases the target of the dangling pointer is labelled by a variable. Finally, a source of h is either also a source of
h0 + h or is pointed to by a dangling pointer of h0; in both cases the source is labelled by a variable. □

As every location shared by heapsh1 andh2 inh1+h2 is either dangling inh1 or inh2 (or in both), the operations
+ and ⊎s coincide on models of positive formulas:

Lemma 2.6. Let (s,h1)
wk
|= φ1 and (s,h2)

wk
|= φ2 for positive formulas φ1,φ2. Then h1 + h2 , ⊥ if h1 ⊎

s h2 , ⊥.

Proof. If h1 ⊎s h2 , ⊥, then h1 + h2 , ⊥ by deinition.
Conversely, assume h1 + h2 , ⊥. We need to show that locs(h1) ∩ locs(h2) ⊆ img(s ). To this end, let ℓ ∈

locs(h1) ∩ locs(h2). Then there exists an i ∈ {1, 2} such that ℓ ∈ img(hi ) \ dom(hi )Ðotherwise ℓ would be in
dom(h1) ∩ dom(h2) and h1 + h2 = ⊥. By Lemma 2.5, we thus have ℓ ∈ img(s ). □
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Since the semantics coincide on atomic formulas by deinition and on ∗ by Lemma 2.5, we can easily show that
they coincide on all positive formulas:

Lemma 2.7. Let φ be a positive formula and let (s,h) be a model. Then, (s,h) wk
|= φ if (s,h)

st
|= φ.

Proof. We proceed by structural induction on φ. If φ is atomic, there is nothing to show. For φ = φ1 ∗ φ2 and
φ = φ1−⊛φ2, the claim follows from the induction hypotheses and Lemma 2.6. For φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2,
the claim follows immediately from the induction hypotheses and the semantics of ∧, ∨.

□

Lemma 2.7 implies that the two semantics coincide on the popular symbolic-heap fragment of separation logic.6

Further, by negating Lemma 2.7, we have that
{

(s,h) | (s,h) wk
|= φ

}

,

{
(s,h) | (s,h)

st
|= φ

}
implies that φ contains

negation, either explicitly or in the form of a magic wand or t.
We remark that formula φ in Example 2.2 uses only t but not ¬,−∗. Hence, adding t to the positive fragment is

already suicient to invalidate Lemma 2.7; because t can be deined from ¬ resp. −∗, we cannot add either operator
to the positive fragment without invalidating Lemma 2.7. Moreover, Lemma 2.7 does not hold under intuitionistic
semantics: Recall that the meaning of a formula ζ under intuitionistic semantics is equivalent to the meaning of ζ ∗t
under classic semantics [Reynolds 2002]. Hence, the meaning of the formulaψ := a , b ∗ (ls(a, nil) ∧ (ls(b, nil))
under intuitionistic semantics is equivalent to formula φ in Example 2.2 under classical semantics. Asψ is from
the positive fragment, Lemma 2.7 does not hold under intuitionistic semantics.

3 DECIDING THE SSL SATISFIABILITY PROBLEM

The goal of this section is to develop a decision procedure for SSL:

Theorem 3.1. Let φ ∈ SL and let x ⊆ Var be a inite set of variables with fvs(φ) ⊆ x. It is decidable in PSpace (in
��φ�� and |x|) whether there exists a model (s,h) with dom(s ) = x and (s,h)

st
|= φ.

Our approach is based on abstracting stackśheap models by abstract memory states (AMS), which have two key
properties, which together imply Theorem 3.1:

Reinement (Theorem 3.19). If (s1,h1) and (s2,h2) abstract to the same AMS, then they satisfy the same
formulas. That is, the AMS abstraction reines the satisfaction relation of SSL.

Computability (Theorem 3.42, Lemmas 3.44 and 3.46). For every formulaφ, we can compute (in PSpace)
the set of all AMSs of all models of φ; then, φ is satisiable if this set is nonempty.

The AMS abstraction is motivated by the following insights:

(1) The operator ⊎s induces a unique decomposition of the heap into at most |s | minimal chunks of memory
that cannot be further decomposed.

(2) To decide whether (s,h) st
|= φ holds, it is suicient to know for each chunk of (s,h) a) which atomic formulas

the chunk satisies and b) which variables (if any) are allocated in the chunk.
(3) We equip the AMS abstract domain with a composition operator • such that AMS abstraction is a homo-

morphism with regard to ⊎s and • (see Lemma 3.28); moreover, given a model (s,h) that abstracts to the
composition of two AMSs A1 • A2, we can always ind a decomposition h = h1 ⊎s h2, such that (s,hi )
abstracts to Ai (see Lemma 3.29). These two properties are the key for proving the Reinement Theorem.
We remark that the homomorphism and decomposition properties also were essential for proving the
decidability and complexity results for the separation logics considered in [Katelaan et al. 2019; Katelaan and

6Strictly speaking, this only holds for the symbolic-heap fragment of the separation logic studied in this paper, i.e., for symbolic-heaps
composed of points-to predicates, list predicates and tree predicates (see Section 3.8). We consider the logic in [Iosif et al. 2013], which
proposes symbolic heaps of bounded treewidth, as an interesting direction for future work.
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Zuleger 2020; Pagel et al. 2020]. Interestingly, the homomorphism and decomposition property have been
identiied in concurrent work as natural properties for reasoning about framing and parallel composition
in separation logic [Farka et al. 2021]7.

We proceed as follows. In Sec 3.1, we make precise the notion of memory chunks. In Sec. 3.2, we deine abstract
memory states (AMS), an abstraction of models that retains for every chunk precisely the information from point
(2) above. We will prove the reinement theorem in 3.3. We will show in Sections 3.4ś3.6 that we can compute the
AMS of the models of a given formula φ, which allows us to decide satisiability and entailment problems for SSL.
Finally, we prove the PSpace-completeness result in Sec. 3.7.

3.1 Memory Chunks

We will abstract a model (s,h) by abstracting every chunk of h, which is a minimal nonempty sub-heap of (s,h)
that can be split of of h according to the strong-separation semantics.

Deinition 3.2 (Sub-heap). Let (s,h) be a model. We say that h1 is a sub-heap of h, in signs h1 ⊑ h, if there is
some heap h2 such that h = h1 ⊎s h2. We collect all sub-heaps in the set subHeaps(s,h).

Sub-heaps are closed under taking intersection and unions:

Proposition 3.3. Let (s,h) be a model and let h1,h2 be sub-heaps of h. Then, h1∩h2 and h1∪h2 are also sub-heaps

of h.

Proof. By deinition of sub-heaps, there are some heaps h′1,h
′
2 such that h = h1 ⊎s h′1 and h = h2 ⊎

s h′2. We
prove the claim for (h1∩h2). The proof for (h1∪h2) is analogous. We will now argue that (h1∩h2)⊎s (h′1∪h

′
2) = h.

Let us consider some ℓ ∈ dom(h1 ∩ h2) ∩ img(h′1 ∪ h
′
2). Because of ℓ ∈ img(h′1 ∪ h

′
2) we have ℓ ∈ img(h′i ) for

some i ∈ {1, 2}. Then, because of ℓ ∈ dom(h1 ∩ h2) we also have ℓ ∈ dom(hi ). Because of h = hi ⊎s h′i we get
that ℓ ∈ img(s ) from the deinition of ⊎s . The proof that ℓ ∈ img(h1 ∩ h2) ∩ dom(h′1 ∪ h

′
2) implies ℓ ∈ img(s ) is

analogous. □

The following proposition is an immediate consequence of Proposition 3.3:

Proposition 3.4. Let (s,h) be a model. Then, (subHeaps(s,h),⊑,⊔,⊓,¬) is a Boolean algebra with greatest

element h and smallest element ∅, where

• (s,h1) ⊔ (s,h2) := (s,h1 ∪ h2),

• (s,h1) ⊓ (s,h2) := (s,h1 ∩ h2), and

• ¬(s,h1) := (s,h′1), where h
′
1 ∈ subHeaps(s,h) is the unique sub-heap with h = h1 ⊎

s h′1.

The fact that the sub-models form a Boolean algebra allows us to make the following deinition8:

Deinition 3.5 (Chunk). Let (s,h) be amodel. A chunk of (s,h) is an atom of the Boolean algebra (subHeaps(s,h),⊑
,⊔,⊓,¬). We collect all chunks of (s,h) in the set chunks(s,h).

Because every element of a Boolean algebra can be uniquely decomposed into atoms, we obtain that every
heap can be fully decomposed into its chunks:

Proposition 3.6. Let (s,h) be a model and let chunks(s,h) = {h1, . . . ,hn } be its chunks. Then, h = h1 ⊎
s h2 ⊎

s

· · · ⊎s hn .

7In [Farka et al. 2021] decomposability is termed invertibility.
8It is an interesting question for future work to relate the chunks considered in this paper to the atomic building blocks used in SL symbolic
executions engines. Likewise, it would be interesting to build a symbolic execution engine based on the chunks resp. on the AMS abstraction
proposed in this paper.

ACM Trans. Program. Lang. Syst.



12 • Jens Pagel and Florian Zuleger

1 : x 2 3 : y, z

5 : u

7 : w

6

4

8

9 : v

1110

x y, z

v

≥ 2

=1

{

{{w } , {u}} ,
{{

y, z
}}}

3

Fig. 5. Graphical representation of a model consisting of five chunks (let, see Ex. 3.7) and its induced AMS (right, see Ex. 3.13).

Example 3.7. Let s = {x 7→ 1,y 7→ 3,u 7→ 5, z 7→ 3,w 7→ 7,v 7→ 9} and h = {1 7→ 2, 2 7→ 3, 3 7→ 8, 4 7→ 6, 5 7→
6, 6 7→ 3, 7 7→ 6, 9 7→ 9, 10 7→ 11, 11 7→ 10}. The model (s,h) is illustrated in Fig. 5. This time, we include the
identities of the locations in the graphical representation; e.g., 3 : y, z represents location 3, s (y) = 3, s (z) = 3.
The model consists of ive chunks, h1 := {1 7→ 2, 2 7→ 3}, h2 := {9 7→ 9}, h3 := {4 7→ 6, 5 7→ 6, 6 7→ 3, 7 7→ 6},
h4 := {3 7→ 8}, and h5 := {10 7→ 11, 11 7→ 10}.

We distinguish two types of chunks: those that satisfy SSL atoms and those that don’t.

Deinition 3.8 (Positive and Negative chunk). Let hc ⊆ h be a chunk of (s,h). hc is a positive chunk if there exists
an atomic formula τ such that (s,hc )

st
|= τ . Otherwise, hc is a negative chunk. We collect the respective chunks in

chunks+ (s,h) and chunks− (s,h).

Example 3.9. Recall the chunks h1 through h5 from Ex. 3.7. h1 and h2 are positive chunks (blue in Fig. 5), h3 to
h5 are negative chunks (orange).

Negative chunks fall into three (not mutually-exclusive) categories:

Garbage. Chunks with locations that are inaccessible via stack variables.
Unlabeled dangling pointers. Chunks with an unlabeled sink, i.e., a dangling location that is not in img(s )

and thus cannot be “made non-danglingž via composition using ⊎s .
Overlaid list segments. Overlaid list segments that cannot be separated via ⊎s because they are joined at

locations that are not in img(s ).

Example 3.10 (Negative chunks). The chunk h3 from Example 3.7 contains garbage, namely the location 4 that
cannot be reached via stack variables, and two overlaid list segments (from 5 to 3 and 7 to 3). The chunk h4 has
an unlabeled dangling pointer. The chunk h5 contains only garbage.

3.2 Abstract Memory States

In abstract memory states (AMSs), we retain for every chunk enough information to (1) determine which atomic
formulas the chunk satisies, and (2) keep track of which variables are allocated within each chunk.

Deinition 3.11. A quadruple A =
〈

V ,E, ρ,γ
〉

is an abstract memory state, if

(1) V is a partition of some inite set of variables, i.e., V = {v1, . . . , vn } for some non-empty disjoint inite sets
vi ⊆ Var,

(2) E : V ⇀ V × {=1, ≥ 2} is a partial function such that there is no v ∈ dom(E) with nil ∈ v9,
(3) ρ consists of disjoint subsets of V such that every R ∈ ρ is disjoint from dom(E) and there is no v ∈ R with

nil ∈ v,

9The edges of an AMS represent either a single pointer (case “=1ž) or a list segment of at least length two (case “≥ 2ž).
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(4) γ is a natural number, i.e., γ ∈ N.

We call V the nodes, E the edges, ρ the negative-allocation constraint and γ the garbage-chunk count of A. We call
the AMS A =

〈

V ,E, ρ,γ
〉

garbage-free if ρ = ∅ and γ = ∅.
We collect the set of all AMSs in AMS. The size of A is given by |A| := |V | + γ . Finally, the allocated variables

of an AMS are given by alloc(A) := dom(E) ∪
⋃

ρ.

Every model induces an AMS, deined in terms of the following auxiliary deinitions. The equivalence class
of variable x w.r.t. stack s is [x]s

=
:=

{

y | s (y) = s (x )
}

; the set of all equivalence classes of s is cls= (s ) :=
{

[x]s
=
| x ∈ dom(s )

}

. We now deine the edges induced by amodel (s,h): For every equivalence class [x]s
=
∈ cls= (s ),

we set

edges(s,h) ([x]s
=
) :=



〈

[y]s
=
,=1

〉

there are y ∈ dom(s ) and hc ∈ chunks
+ (s,h)

with (s,hc )
st
|= x 7→ y

〈

[y]s
=
, ≥ 2

〉

there are y ∈ dom(s ) and hc ∈ chunks
+ (s,h)

with (s,hc )
st
|= ls(x ,y) ∧ ¬x 7→ y

⊥, otherwise.

Finally, we denote the sets of variables allocated in negative chunks by

alloc− (s,h) := {{[x]s
=
| s (x ) ∈ dom(hc )} | hc ∈ chunks

− (s,h)} \ {∅},

where (equivalence classes of) variables that are allocated in the same negative chunk are grouped together in a
set.

Now we are ready to deine the induced AMS of a model.

Deinition 3.12. Let (s,h) be amodel. LetV := cls= (s ), E := edges(s,h), ρ := alloc− (s,h) andγ := ��chunks− (s,h)��.
Then ams(s,h) :=

〈

V ,E, ρ,γ
〉

is the induced AMS of (s,h).

Example 3.13. The induced AMS of the model (s,h) from Ex. 3.7 is illustrated on the right-hand side of Fig. 5.
The blue box depicts the graph (V ,E) induced by the positive chunks h1,h2; the negative chunks that allocate
variables are abstracted to the set ρ =

{

{{w } , {u}} ,
{{

y, z
}}}

(note that the variablesw and u are allocated in the
chunk h3 and the aliasing variables y, z are allocated in h4); and the garbage-chunk count is 3.

Observe that the induced AMS is indeed an AMS:

Proposition 3.14. Let (s,h) be a model. Then ams(s,h) ∈ AMS.

The reverse also holds: Every AMS is the induced AMS of at least one model; in fact, even of a model of linear
size.

Lemma 3.15 (Realizability ofAMS). LetA =
〈

V ,E, ρ,γ
〉

be anAMS. There exists amodel (s,h) with ams(s,h) =
A whose size is linear in the size of A.

Proof. For simplicity, we assume Loc = N; this allows us to add locations.
Let n := |V |. We ix some injective function t : V → {1, . . . ,n} from nodes to natural numbers. We set

s :=
⋃

x ∈v,v ∈V {x 7→ t (v )} and deine h as the (disjoint) union of

•
⋃

E (v )=⟨v ′,=1⟩ {t (v ) 7→ t (v ′)}

•
⋃

E (v )=⟨v ′,≥2⟩ {t (v ) 7→ n + t (v ),n + t (v ) 7→ t (v ′)}

•
(

⋃

v ∈r,r∈ρ {t (v ) 7→ 2n + t (max(r))}
)

∪
(

⋃

r∈ρ {2n + t (max(r)) 7→ 2n + t (max(r))}
)

•
⋃

l ∈{3n+1, ...,3n+γ } {l 7→ l }

It is easy to verify that ams(s,h) = A and that |h | ∈ O ( |A|). □
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The following lemma demonstrates that we only need the ρ and γ components in order to be able to deal with
negation and/or the magic wand:

Lemma 3.16 (Models of Positive Formulas Abstract to Garbage-free AMS). Let (s,h) be a model. If

(s,h) |= φ for a positive formula φ, then ams(s,h) is garbage-free.

Proof. The lemma can be proved by a straight-forward induction on φ, using that every heap fully decomposes
into its chunks. □

We abstract SL formulas by the set of AMS of their models:

Deinition 3.17. Let s be a stack. The SL abstraction w.r.t. s , αs : SL→ 2AMS, is given by

αs (φ) := {ams(s,h) | h ∈ H, and (s,h)
st
|= φ}. △

Because AMSs do not retain any information about heap locations, just about aliasing, abstractions do not
difer for stacks with the same equivalence classes:

Lemma 3.18. Let s, s ′ be stacks with cls= (s ) = cls= (s
′). Then αs (φ) = αs ′ (φ) for all formulas φ.

Proof. Let A ∈ αs (φ). Then there exists a heap h such that ams(s,h) = A and (s,h)
st
|= φ. Let h′ be such that

(s,h) � (s ′,h′). By Lemma 2.4, (s ′,h′) st
|= φ. Moreover, ams(s ′,h′) = A. Consequently, A ∈ αs ′ (φ). The other

direction is proved analogously. □

3.3 The Refinement Theorem for SSL

The main goal of this section is to show the following reinement theorem:

Theorem 3.19 (Refinement Theorem). Let φ be a formula and let (s,h1), (s,h2) be models with ams(s,h1) =

ams(s,h2). Then (s,h1)
st
|= φ if (s,h2)

st
|= φ.

We will prove this theorem step by step, characterizing the AMS abstraction of all atomic formulas and of the
composed models before proving the reinement theorem. In the remainder of this section, we ix some model
(s,h).

Abstract Memory States of Atomic Formulas. The empty-heap predicate emp is only satisied by the empty
heap, i.e., by a heap that consists of zero chunks:

Lemma 3.20. (s,h) |= emp if ams(s,h) = ⟨cls= (s ), ∅, ∅, 0⟩

Proof. (s,h)
st
|= emp if h = ∅ if chunks(s,h) = ∅ if ams(s,h) = ⟨cls= (s ), ∅, ∅, 0⟩. □

Lemma 3.21. (1) (s,h) |= x = y if ams(s,h) = ⟨cls= (s ), ∅, ∅, 0⟩ and [x]
s
=
= [y]s

=
.

(2) (s,h) |= x , y if ams(s,h) = ⟨cls= (s ), ∅, ∅, 0⟩ and [x]
s
=
, [y]s

=
.

Proof. We only show the irst claim, as the proof of the second claim is completely analogous. (s,h) |= x = y
if (s (x ) = s (y) and h = ∅) if ([x]s

=
= [y]s

=
and (s,h) |= emp) if, by Lemma 3.20, ([x]s

=
= [y]s

=
and ams(s,h) =

⟨cls= (s ), ∅, ∅, 0⟩). □

Models of points-to assertions consist of a single positive chunk of size 1:

Lemma 3.22. Let E = {[x]s
=
7→

〈

[y]s
=
,=1

〉

}. (s,h) |= x 7→ y if ams(s,h) = ⟨cls= (s ),E, ∅, 0⟩.

Proof. If (s,h) st
|= x 7→ y then h =

{

s (x ) 7→ s (y)
}

. In particular, it then holds that h is a positive chunk.
Consequently, edges(s,h) = E. It follows that ams(s,h) = ⟨cls= (s ),E, ∅, 0⟩.

Conversely, assume ams(s,h) = ⟨cls= (s ),E, ∅, 0⟩. Then, (s,h) consists of a single positive chunk and no negative
chunks. Further, by the deinition of edges(s,h)we have that this single positive chunk satisies (s,h) |= x 7→ y. □
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Intuitively, the list segment ls(x ,y) is satisied by models (s,h) that consist of zero or more positive chunks,
corresponding to a (possibly empty) list from some equivalence class [x]s

=
to [y]s

=
via (zero or more) intermediate

equivalence classes [x1]
s
=
, . . . , [xn]

s
=
. We will use this intuition to deine abstract lists; this notion allows us to

characterize the AMSs arising from abstracting lists.

Deinition 3.23. Let A =
〈

V ,E, ρ,γ
〉

∈ AMS and x ,y ∈ Var. We say A is an abstract list w.r.t. x and y, in signs
A ∈ AbstLists(x ,y), if

(1) ρ = ∅ and γ = 0, and
(2) we can pick nodes v1, . . . , vn ∈ V and labels ι1, . . . , ιn−1 ∈ {=1, ≥ 2} such that x ∈ v1, y ∈ vn and

E = {vi 7→ ⟨vi+1, ιi ⟩ | 1 ≤ i < n}.

Lemma 3.24. (s,h) |= ls(x ,y) if ams(s,h) ∈ AbstLists(x ,y).

Proof. Assume (s,h) |= ls(x ,y). By the semantics, there exist locations ℓ0, . . . , ℓn , n ≥ 1, with s (x ) = ℓ0,
s (y) = ℓn and h = {ℓ0 7→ ℓ1, . . . , ℓn−1 7→ ℓn }. Let j1, . . . , jk those indices among 1, . . . ,n with ℓji ∈ img(s ). (In
particular, j1 = 1 and jk = n.) Then for each ji , the restriction of h to ℓji , ℓji+1, . . . , ℓji+1−1 is a positive chunk that

either satisies a points-to assertion or a list-segment predicate. Hence, edges(s,h) (s−1 (ℓji )) =
〈

s−1 (ℓji+1 ), ιi
〉

for
all 1 ≤ i < k , for some ιi ∈ {=1, ≥ 2}. Thus, ams(s,h) ∈ AbstLists(x ,y).
Assume ams(s,h) ∈ AbstLists(x ,y). Then, there are equivalence classes [x1]

s
=
, . . . , [xn]

s
=
∈ cls= (s ) and labels

ι1, . . . , ιn−1 ∈ {=1, ≥ 2} such that x ∈ [x1]
s
=
, y ∈ [xn]

s
=
and edges(s,h) = {[xi ]

s
=
7→

〈

[xi+1]
s
=
, ιi

〉

| 1 ≤ i < n}. By

the deinition of edges(s,h), we have that there are positive chunks hi of h such that (s,hi )
st
|= xi 7→ xi+1 or

(s,hi )
st
|= ls(xi ,xi+1). In particular, we have hi =

{

ℓi,1 7→ ℓi,2, . . . , ℓi,ki−1 7→ ℓi,ki
}

, s (xi ) = ℓi,1 and s (xi+1) = ℓi,ki
for some locations ℓi, j . Because h does not have negative chunks, we get that h fully decomposes into its positive
chunks. Hence, the locations ℓi, j witness that (s,h) |= ls(x ,y). □

Abstract Memory States of Models composed by the Union Operator. Our next goal is to lift the union operator
⊎s to the abstract domain AMS. We will deine an operator • with the following property:

if h1 ⊎
s h2 , ⊥ then ams(s,h1 ⊎

s h2) = ams(s,h1) • ams(s,h2).

AMS composition is a partial operation deined only on compatible AMS. Compatibility enforces (1) that the
AMSs were obtained for equivalent stacks (i.e., for stacks s, s ′ with cls= (s ) = cls= (s

′)), and (2) that there is no
double allocation.

Deinition 3.25 (Compatibility of AMSs). AMSs A1 =
〈

V1,E1, ρ1,γ1
〉

and A2 =
〈

V2,E2, ρ2,γ2
〉

are compatible if
(1) V1 = V2 and (2) alloc(A1) ∩ alloc(A2) = ∅.

Note that if h1⊎s h2 is deined, then ams(s,h1) and ams(s,h2) are compatible. The converse is not true, because
ams(s,h1) and ams(s,h2) may be compatible even if dom(h1) ∩ dom(h2) , ∅.
AMS composition is deined in a point-wise manner on compatible AMSs and undeined otherwise.

Deinition 3.26 (AMS composition). Let A1 =
〈

V1,E1, ρ1,γ1
〉

and A2 =
〈

V2,E2, ρ2,γ2
〉

be two AMS. The compo-

sition of A1,A2 is then given by

A1 • A2 :=


〈

V1,E1 ∪ E2, ρ1 ∪ ρ2,γ1 + γ2
〉

, if A1,A2 compatible

⊥, otherwise.

Lemma 3.27. Let s be a stack and let h1,h2 be heaps. If h1 ⊎
s h2 , ⊥ then ams(s,h1) • ams(s,h2) , ⊥.

Proof. Since the same stack s underlies both abstractions, we haveV1 = V2. Furthermore, dom(h1)∩dom(h2) =

∅ implies that alloc(A1) ∩ alloc(A2) = ∅. □
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We next show that ams(s,h1 ⊎
s h2) = ams(s,h1) • ams(s,h2) whenever h1 ⊎s h2 is deined:

Lemma 3.28 (Homomorphism of composition). Let (s,h1), (s,h2) bemodels withh1⊎
sh2 , ⊥. Then, ams(s,h1 ⊎

s h2) =

ams(s,h1) • ams(s,h2).

Proof. The result follows easily from the observation that

chunks(s,h1 ⊎
s h2) = chunks(s,h1) ∪ chunks(s,h2),

which, in turn, is an immediate consequence of Proposition 3.6. □

To show the reinement theorem, we need one additional property of AMS composition. If an AMS A of a
model (s,h) can be decomposed into two smaller AMS A = A1 • A2, it is also possible to decompose the heap h
into smaller heaps h1,h2 with ams(s,hi ) = Ai :

Lemma 3.29 (Decomposability of AMS). Let ams(s,h) = A1 • A2. There exist h1,h2 with h = h1 ⊎
s h2,

ams(s,h1) = A1 and ams(s,h2) = A2.

Proof. It can be veriied from the deinition of AMS and the deinition of the composition operator • that
the following property holds: Let hc ∈ chunks(s,h) be a chunk. Then, either there exists an A ′1 such that
A1 = ams(s,hc ) • A

′
1 or there exists an A

′
2 such that A2 = ams(s,hc ) • A

′
2.

The claim can then by proven an induction of the number of chunks |chunks(s,h) |. □

These results suice to prove the Reinement Theorem stated at the beginning of this section; see the appendix
for a proof.

(Theorem 3.19.) Let A =
〈

V ,E, ρ,γ
〉

be the AMS with ams(s,h1) = A = ams(s,h2). We proceed by induction
on the structure of φ. We only prove that (s,h1)

st
|= φ implies that (s,h2)

st
|= φ, as the other direction is completely

analogous.
Assume that the claim holds for all subformulas of φ and assume that (s,h1)

st
|= φ.

Case emp, x = y, x , y, x 7→ y, ls(x ,y). Immediate consequence of Lemmas 3.20, 3.21, 3.22 and 3.24.
Case φ1 ∗ φ2. By the semantics of ∗, there existh1,1,h1,2 withh1 = h1,1⊎sh1,2, (s,h1,1)

st
|= φ1, and (s,h1,2)

st
|= φ2.

Let A1 := ams(s,h1,1) and A2 := ams(s,h1,2). By Lemma 3.28, ams(s,h1) = A1 • A2 = ams(s,h2). We
can thus apply Lemma 3.29 to ams(s,h2), A1, and A2 to obtain heaps h2,1,h2,2 with h2 = h2,1 ⊎

s h2,2,
ams(s,h2,1) = A1 and ams(s,h2,2) = A2. We can now apply the induction hypotheses for 1 ≤ i ≤ 2, φi , h1,i
andh2,i , and obtain that (s,h2,i )

st
|= φi . By the semantics of ∗, we then have (s,h2) = (s,h2,1⊎

s h2,2)
st
|= φ1∗φ2.

Case φ1−⊛φ2. Since (s,h1)
st
|= φ1−⊛φ2, there exists a heap h0 with (s,h0)

st
|= φ1 and (s,h1 ⊎

s h0)
st
|= φ2. We

can assume w.l.o.g. that h2 ⊎s h0 , ⊥Ðif this is not the case, simply replace h0 with a heap h′0 with

(s,h0) � (s,h′0), h1 ⊎
s h′0 , ⊥ and h2 ⊎s h′0 , ⊥; then, (s,h1 ⊎

s h′0)
st
|= φ2 by Lemma 2.4. We have that

ams(s,h1 ⊎
s h0) = ams(s,h1) • ams(s,h0) = ams(s,h2) • ams(s,h0) = ams(s,h2 ⊎

s h0) (by assumption and
Lemma 3.28). It therefore follows from the induction hypothesis for φ2, (s,h1 ⊎s h0), and (s,h2 ⊎

s h0) that
(s,h2 ⊎

s h0)
st
|= φ2. Thus, (s,h2)

st
|= φ1−⊛φ2.

Case φ1 ∧ φ2, φ1 ∨ φ2. By the semantics of ∧ resp. ∨, we have (s,h1)
st
|= φ1 and/or (s,h1)

st
|= φ2. We apply the

induction hypotheses for φ1 and φ2 to obtain (s,h2)
st
|= φ1 and/or (s,h2)

st
|= φ2. By the semantics of ∧ resp.

∨, we then have (s,h2)
st
|= φ1 ∧ φ2 resp. (s,h2)

st
|= φ1 ∨ φ2.

Case ¬φ1. By the semantics of ¬, we have (s,h1)
st
̸ |= φ1. By the induction hypothesis for φ1 we then obtain

(s,h2)
st
̸ |= φ1. By the semantics of ¬, we have (s,h2)

st
|= ¬φ1.

Corollary 3.30. Let (s,h) be a model and φ be a formula. (s,h)
st
|= φ if ams(s,h) ∈ αs (φ).
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Proof. Assume A := ams(s,h) ∈ αs (φ). By deinition of αs there is a model (s,h′) with (s,h′)
st
|= φ and

ams(s,h′) = A. By applying Theorem 3.19 to φ, (s,h) and (s,h′), we then get that (s,h) st
|= φ. □

3.4 Recursive Equations for Abstract Memory States

In this section, we derive recursive equations that reduce the set of AMS αs (φ) for arbitrary compound formulas
to the set of AMS of the constituent formulas of φ. In the next sections, we will show that we can actually evaluate
these equations, thus obtaining an algorithm for computing the abstraction of arbitrary formulas.

Lemma 3.31. αs (φ1 ∧ φ2) = αs (φ1) ∩ αs (φ2).

Proof. Let (s,h) be a model. (s,h) st
|= φ1 ∧ φ2 if (s,h)

st
|= φ1 and (s,h)

st
|= φ2 if ams(s,h) ∈ αs (φ1) and

ams(s,h) ∈ αs (φ2) if ams(s,h) ∈ αs (φ1) ∩ αs (φ2). □

Lemma 3.32. αs (φ1 ∨ φ2) = αs (φ1) ∪ αs (φ2).

Proof. Let (s,h) be a model. (s,h) st
|= φ1 ∨ φ2 if ((s,h) st

|= φ1 or (s,h)
st
|= φ2) if (ams(s,h) ∈ αs (φ1) or

ams(s,h) ∈ αs (φ2)) if ams(s,h) ∈ αs (φ1) ∪ αs (φ2). □

Lemma 3.33. αs (¬φ1) = {ams(s,h) | h ∈ H} \ αs (φ1).

Proof. Let (s,h) be a model. (s,h) st
|= ¬φ1 if it is not the case that (s,h) st

|= φ1 if it is not the case that
ams(s,h) ∈ αs (φ1) if it is the case that ams(s,h) ∈ {ams(s,h) | h ∈ H} \ αs (φ1). □

The Separating Conjunction. In Section 3.3, we deined the composition operation, •, on pairs of AMS. We now
lift this operation to sets of AMS A1,A2:

A1 • A2 := {A1 • A2 | A1 ∈ A1,A2 ∈ A2,A1 • A2 , ⊥} .

Lemma 3.28 implies that αs is a homomorphism from formulas and ∗ to sets of AMS and •:

Lemma 3.34. For all φ1,φ2, αs (φ1 ∗ φ2) = αs (φ1) • αs (φ2).

Proof. See appendix. □

(Lemma 3.34.) LetA ∈ αs (φ1 ∗φ2). There then exists a heap h such that (s,h) st
|= φ1 ∗φ2 and ams(s,h) = A. By

the semantics of ∗, we can split h into h1 ⊎s h2 with (s,hi )
st
|= φi (and thus ams(s,hi ) ∈ αs (φi )). By Lemma 3.28,

A = ams(s,h1) • ams(s,h2) for h1, h2 as above. Consequently, A ∈ αs (φ1) • αs (φ2) by deinition of •.
Conversely, letA ∈ αs (φ1)•αs (φ2). By deinition of •, there then existAi ∈ αs (φi ) such thatA = A1•A2. Let

h1,h2 be witnesses of that, i.e., (s,hi )
st
|= φi with ams(s,hi ) = Ai . Assume w.l.o.g. that h1 ⊎s h2 , ⊥. (Otherwise,

replace h2 with an h′2 such that (s,h2) � (s,h′2) and h1 ⊎
s h′2 , ⊥; by Lemma 2.4 we then have (s,h′2)

st
|= φ2.)

By the semantics of ∗, (s,h1 ⊎s h2)
st
|= φ1 ∗ φ2. Therefore, ams(s,h1 ⊎

s h2) ∈ αs (φ1 ∗ φ2). By Lemma 3.28,
ams(s,h1 ⊎

s h2) = A. The claim follows.

The septraction operator. We next deine an abstract septraction operator −• that relates to • in the same way
that −⊛ relates to ∗. For two sets of AMS A1,A2 we set:

A1−•A2 := {A ∈ AMS | there exists A1 ∈ A1 s.t. A • A1 ∈ A2}

Then, αs is a homomorphism from formulas and −⊛ to sets of AMS and −•:

Lemma 3.35. For all φ1,φ2, αs (φ1−⊛φ2) = αs (φ1)−•αs (φ2).

Proof. See appendix. □

ACM Trans. Program. Lang. Syst.



18 • Jens Pagel and Florian Zuleger

(Lemma 3.35.) Let A ∈ αs (φ1−⊛φ2). Then there exists a model (s,h) with ams(s,h) = A and (s,h)
st
|= φ1−⊛φ2.

Consequently, there exists a heaph1 such thath⊎sh1 , ⊥, (s,h1)
st
|= φ1 and (s,h⊎sh1)

st
|= φ2. By deinition of αs , we

then have ams(s,h1) ∈ αs (φ1) and ams(s,h⊎sh1) ∈ αs (φ2). By Lemma 3.28, ams(s,h⊎sh1) = ams(s,h)•ams(s,h1).
In other words, we have for A = ams(s,h) and A1 := ams(s,h1) that A1 ∈ αs (φ1) and A • A1 ∈ αs (φ2). By
deinition of −•, we hence have A ∈ αs (φ1)−•αs (φ2).
Conversely, let A ∈ αs (φ1)−•αs (φ2). Then there exists an A1 ∈ αs (φ1) such that A • A1 ∈ αs (φ2). Let h,h1

be heaps with ams(s,h) = A, ams(s,h1) = A1 and (s,h1)
st
|= φ1. Assume w.l.o.g. that h ⊎s h1 , ⊥. (Otherwise,

replace h1 with an h′1 such that (s,h1) � (s,h′1) and h ⊎
s h′1 , ⊥; by Lemma 2.4 we then have (s,h′1)

st
|= φ1.)

By Lemma 3.28, we then have ams(s,h ⊎s h1) = A • A1. By Cor. 3.30, this allows us to conclude that
(s,h ⊎s h1)

st
|= φ2. Consequently, (s,h)

st
|= φ1−⊛φ2, implying A ∈ αs (φ1−⊛φ2).

3.5 Refining the Refinement Theorem: Bounding Garbage

Even though we have now characterized the set αs (φ) for every formula φ, we do not yet have a way to
implement AMS computation: While αs (φ) is inite if φ is a spatial atom, the set is ininite in general; see the cases
αs (¬φ) and αs (φ1−⊛φ2). However, we note that for a ixed stack s only the garbage-chunk count γ of an AMS
〈

V ,E, ρ,γ
〉

∈ αs (φ) can be of arbitrary size, while the size of the nodesV , the edges E and the negative-allocation
constraint ρ is bounded by |s |. Fortunately, to decide the satisiability of any ixed formula φ, it is not necessary
to keep track of arbitrarily large garbage-chunk counts.
We introduce the chunk size ⌈φ⌉ of a formula φ, which provides an upper bound on the number of negative

chunks that may be necessary to satisfy and/or falsify the formula; ⌈φ⌉ is deined as follows:

• ⌈emp⌉ = ⌈x 7→ y⌉ = ⌈ls(x ,y)⌉ = ⌈x = y⌉ = ⌈x , y⌉ := 0
• ⌈φ ∗ψ ⌉ := ⌈φ⌉ + ⌈ψ ⌉
• ⌈φ−⊛ψ ⌉ := ⌈ψ ⌉
• ⌈φ ∨ψ ⌉ := max(⌈φ⌉, ⌈ψ ⌉)

• ⌈φ ∧ψ ⌉ :=

0, if ⌈φ⌉ = 0 or ⌈ψ ⌉ = 0

max(⌈φ⌉, ⌈ψ ⌉), otherwise.
• ⌈¬φ⌉ := max{1, ⌈φ⌉}.

Observe that ⌈φ⌉ ≤ ��φ�� for all φ. Intuitively, the chunk bound ⌈φ⌉ of a formula φ establishes two pieces of
information: (1) For ⌈φ⌉ = 0, we have that every model of φ does not contain negative chunks. (2) For ⌈φ⌉ ≥ 1,
we have that if there is a model of φ then there is also a model with at most ⌈φ⌉ negative chunks, and for every
model with at least ⌈φ⌉ negative chunks we can add an arbitrary number of negative chunks (without allocated
variables) and still satisfy φ. We now formally state these two facts:

Lemma 3.36. Let φ be a formula with ⌈φ⌉ = 0 and let (s,h) be a model of φ. Then, the AMS of all models of φ

have a garbage-chunk count of 0.

Proof. See appendix. □

(Lemma 3.36.) We proceed by structural induction on φ. Let (s,h) be a stack-heap pair with (s,h)
st
|= φ.

By Lemmas 3.20, 3.21, 3.22 and 3.24 we have that the AMS of all models of φ have a garbage-chunk count of 0.
Let h1,h2 be such that h = h1 ⊎s h2, (s,h1)

st
|= φ1, and (s,h2)

st
|= φ2. By the deinition of the garbage-chunk count,

we must have ⌈φ1⌉ = ⌈φ2⌉ = 0. Hence, the claim follows from the induction assumption.
Let h0 be such that (s,h0)

st
|= φ1 and (s,h ⊎s h0)

st
|= φ2. Because of 0 = ⌈φ1−⊛φ2⌉ = ⌈φ2⌉, it thus follows from the

induction hypothesis that (s,h ⊎s h0)
st
|= φ2 does not contain negative chunks. This implies, that (s,h) does not

contain negative chunks.
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We then have (s,h1)
st
|= φ1 or (s,h1)

st
|= φ2. The claim then follows from the induction assumption because we

must have ⌈φ1⌉ = ⌈φ2⌉ = 0.
We then have (s,h1)

st
|= φ1 and (s,h1)

st
|= φ2. The claim then follows from the induction assumption because we

have ⌈φ1⌉ = 0 or ⌈φ2⌉ = 0.
Because of the assumption ⌈φ⌉ = 0, this case is not possible.
For stating the second fact, we generalize the reinement theorem, Theorem 3.19, to models whose AMS

difer in their garbage-chunk count, provided both garbage-chunk counts exceed the non-zero chunk size of the
formula:

Theorem 3.37 (Refined Refinement Theorem). Let φ be a formula with ⌈φ⌉ = k ≥ 1. Letm ≥ k , n ≥ k and let

(s,h1), (s,h2) be models with ams(s,h1) =
〈

V ,E, ρ,m
〉

, ams(s,h2) =
〈

V ,E, ρ,n
〉

. Then, (s,h1)
st
|= φ if (s,h2)

st
|= φ.

Proof. See appendix. □

(Theorem 3.37.) We proceed by structural induction on φ. We only prove that (s,h1)
st
|= φ implies (s,h2)

st
|= φ, as

the proof of the other direction is very similar.

Case emp, x = y, x , y, x 7→ y, ls(x ,y). By Lemmas 3.20, 3.21, 3.22 and 3.24 we have that the AMS of all
models of φ have a garbage-chunk count of 0. Thus, (s,h1)

st
̸ |= φ and (s,h2)

st
̸ |= φ.

Case φ1 ∗ φ2. Assume (s,h1)
st
|= φ1 ∗ φ2. Let h1,1,h1,2 be such that h1 = h1,1 ⊎

s h1,2, (s,h1,1)
st
|= φ1, and

(s,h1,2)
st
|= φ2. Let A1 =

〈

V1,E1, ρ1,m1
〉

:= ams(h1,1) and A2 = ⟨V2,E2, ρ2,m2⟩ := ams(h1,2). Since
k = ⌈φ1⌉ + ⌈φ2⌉, it follows that, eitherm1 ≥ ⌈φ1⌉ orm2 ≥ ⌈φ2⌉ (or both). We can assume w.l.o.g. that
m1 ≥ ⌈φ1⌉. We set A ′1 :=

〈

V1,E1, ρ1,n −min{⌈φ2⌉,m2}
〉

and A ′2 :=
〈

V2,E2, ρ2,min{⌈φ2⌉,m2}
〉

. Observe
that ams(s,h2) = A

′
1 • A

′
2. There thus exist by Lemma 3.29 heaps h2,1,h2,2 such that (s,h2) = h2,1 ⊎s h2,2,

ams(s,h2,1) = A
′
1 and ams(s,h2,1) = A

′
2. As bothm1 ≥ ⌈φ1⌉ and n−min{⌈φ2⌉,m2} ≥ k −min{⌈φ2⌉,m2} ≥

⌈φ1⌉, we have by the induction hypothesis for φ1 that (s,h2,1)
st
|= φ1. Additionally, we have h2,2

st
|= φ2 by

Theorem 3.19 (form2 < ⌈φ2⌉) or by the induction hypothesis (form2 ≥ ⌈φ2⌉). Consequently, (s,h2)
st
|= φ1∗φ2.

Case φ1−⊛φ2. Assume (s,h1)
st
|= φ1−⊛φ2. Let h0 be such that (s,h0)

st
|= φ1 and (s,h1⊎s h0)

st
|= φ2. We can assume

w.l.o.g. that h2 ⊎s h0 , ⊥Ðif this is not the case, simply replace h0 with a heap h′0 with (s,h0) � (s,h′0),

h1 ⊎
s h′0 , ⊥ and h2 ⊎s h′0 , ⊥; then, (s,h1 ⊎

s h′0)
st
|= φ2 by Lemma 2.4. We set A2 = ams(s,h1 ⊎

s h0)

and A ′2 = ams(s,h2 ⊎
s h0). By Lemma 3.28 we have ams(s,h1 ⊎

s h0) = ams(s,h1) • ams(s,h0) and
ams(s,h2 ⊎

s h0) = ams(s,h2) • ams(s,h0). Hence, A2 = ⟨V2,E2, ρ2,m
′⟩ and A ′2 = ⟨V2,E2, ρ2,n

′⟩ for some
V2,E2, ρ2 and m′,n′ ≥ k = ⌈φ1−⊛φ2⌉ = ⌈φ2⌉. It thus follows from the induction hypothesis for φ2 that
(s,h0 ⊎

s h2)
st
|= φ2.

Case φ1 ∧ φ2, φ1 ∨ φ2. We then have (s,h1)
st
|= φ1 and/or (s,h1)

st
|= φ2. By deinition of ⌈φ1∧φ2⌉ resp. ⌈φ1∨φ2⌉,

it follows that n,m ≥ max(⌈φ1⌉, ⌈φ2⌉) ≥ ⌈φi ⌉. We therefore conclude from the induction hypothesis that
(s,h2)

st
|= φ1 and/or (s,h2)

st
|= φ2. Thus, (s,h2)

st
|= φ1 ∧ φ2 resp. (s,h2)

st
|= φ1 ∨ φ2.

Case φ1 ∧ φ2, φ1 ∨ φ2. We then have (s,h1)
st
|= φ1 and/or (s,h1)

st
|= φ2. By deinition of ⌈φ1∧φ2⌉ resp. ⌈φ1∨φ2⌉,

it follows that n,m ≥ max(⌈φ1⌉, ⌈φ2⌉) ≥ ⌈φi ⌉. We therefore conclude from the induction hypothesis that
(s,h2)

st
|= φ1 and/or (s,h2)

st
|= φ2. Thus, (s,h2)

st
|= φ1 ∧ φ2 resp. (s,h2)

st
|= φ1 ∨ φ2.

Case ¬φ1. Assume (s,h1)
st
|= ¬φ1. Consequently, (s,h1)

st
̸ |= φ1. Since m,n ≥ ⌈¬φ1⌉ = ⌈φ1⌉, it follows by

induction that (s,h2)
st
̸ |= φ1. Then, (s,h2)

st
|= ¬φ1.

This implies that φ is satisiable over stack s if φ is satisiable by a heap that contains at most ⌈φ⌉ negative
chunks:

Corollary 3.38. Let φ be an formula with ⌈φ⌉ = k . Then φ is satisiable over stack s if there exists a heap h such

that (1) ams(s,h) = (V ,E, ρ,γ ) for some γ ≤ k and (2) (s,h)
st
|= φ.
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absts (emp) := {⟨cls= (s ), ∅, ∅, 0⟩}

absts (x = y) := if s (x ) = s (y) then {⟨cls= (s ), ∅, ∅, 0⟩} else ∅

absts (x , y) := if s (x ) , s (y) then {⟨cls= (s ), ∅, ∅, 0⟩} else ∅

absts (x 7→ y) :=
{〈

cls= (s ),
{

[x]s
=
7→ [y]s

=

}

, ∅, 0
〉}

absts (ls(x ,y)) := AbstLists(x ,y) ∩ AMS0,s

absts (φ1 ∗ φ2) := AMS ⌈φ1∗φ2 ⌉,s

∩ (lit ⌈φ1 ⌉↗⌈φ1∗φ2 ⌉ (absts (φ1)) • lit ⌈φ2 ⌉↗⌈φ1∗φ2 ⌉ (absts (φ2)))

absts (φ1−⊛φ2) := AMS ⌈φ1−⊛φ2 ⌉,s ∩ (absts (φ1)−•lit ⌈φ2 ⌉↗⌈φ1∗φ2 ⌉ (absts (φ2)))

absts (φ1 ∧ φ2) :=



absts (φ1) ∩ absts (φ2), if ⌈φ1⌉ = 0 or ⌈φ2⌉ = 0

lit ⌈φ1 ⌉↗⌈φ1∧φ2 ⌉ (absts (φ1))∩

lit ⌈φ2 ⌉↗⌈φ1∧φ2 ⌉ (absts (φ2)), otherwise

absts (φ1 ∨ φ2) := lit ⌈φ1 ⌉↗⌈φ1∨φ2 ⌉ (absts (φ1)) ∪ lit ⌈φ2 ⌉↗⌈φ1∨φ2 ⌉ (absts (φ2))

absts (¬φ1) := AMS ⌈¬φ1 ⌉,s \ absts (φ1)

Fig. 6. Computing the abstract memory states of the models of φ with stack s .

Proof. Assume φ is satisiable and let (s,h) be a model with (s,h)
st
|= φ. Let A =

〈

V ,E, ρ,γ
〉

:= ams(s,h). If
γ ≤ k , there is nothing to show. Otherwise, let A ′ :=

〈

V ,E, ρ,k
〉

. By Lemma 3.15, we can choose a heap h′ with
ams(s,h′) = A ′. By Theorem 3.37, (s,h′) st

|= φ. □

3.6 Deciding SSL by AMS Computation

In light of Cor. 3.38, we can decide the SSL satisiability problem by means of a function absts (φ) that computes the
(inite) intersection of the (possibly ininite) setαs (φ) and the (inite) setAMSk,s :=

{〈

V ,E, ρ,γ
〉

∈ AMS | V = cls= (s ) and γ ≤ k
}

for k = ⌈φ⌉. We deine absts (φ) in Fig. 6. For atomic predicates we only need to consider garbage-chunk-count 0,
whereas the cases ∗, −⊛, ∧ and ∨ require lifting the bound on the garbage-chunk count fromm to n ≥ m.

Deinition 3.39. Letm,n ∈ N withm ≤ n and letA =
〈

V ,E, ρ,γ
〉

∈ AMS. The bound-lifting ofA fromm to n is

litm↗n (A) :=

{A} ifm = 0 or γ < m
{〈

V ,E, ρ,k
〉

| m ≤ k ≤ n
}

ifm , 0 and γ =m.

We generalize bound-lifting to sets of AMS: litm↗n (A) :=
⋃

A∈A litm↗n (A).

As a consequence of Lemma 3.36 and Theorem 3.37, bound-lifting is sound for all n ≥ ⌈φ⌉, i.e.,

lit ⌈φ ⌉↗n (αs (φ) ∩ AMS ⌈φ ⌉ ) = αs (φ) ∩ AMSn .

By combining this observation with the lemmas characterizing αs (Lemmas 3.20,3.21,3.22, 3.24,3.31, 3.32,3.33, 3.34
and 3.35), we obtain the correctness of absts (φ):

Theorem 3.40. Let s be a stack and φ be a formula. Then, absts (φ) = αs (φ) ∩ AMS ⌈φ ⌉,s .

Proof. See appendix. □

(Theorem 3.40.) We proceed by induction on the structure of φ:
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Case emp, x = y, x , y, x 7→ y, ls(x ,y). By Lemmas 3.20, 3.21, 3.22 and 3.24 and the observation that all
models of φ have garbage-chunk count of 0.

Case φ1 ∗ φ2. By the induction hypotheses, we have for 1 ≤ i ≤ 2 that absts (φi ) = αs (φi ) ∩ AMS ⌈φi ⌉,s
Let Ai := lit ⌈φ1 ⌉↗⌈φ1∗φ2 ⌉ (absts (φi )). By Theorem 3.37, it follows that Ai = αs (φi ) ∩ AMS ⌈φ1∗φ2 ⌉,s . By
Lemma 3.34, it thus follows that A1 •A2 contains all AMS in αs (φ1 ∗φ2) that can be obtained by composing
AMS with a garbage-chunk count of at most ⌈φi ∗ φ2⌉. Thus, in particular, (1) A1 •A2 ⊆ αs (φ1 ∗ φ2) and (2)
A1 • A2 ⊇ αs (φ1 ∗ φ2) ∩ AMS ⌈φ1∗φ2 ⌉,s . The claim follows.

Case φ1−⊛φ2. By the induction hypotheses, we have for 1 ≤ i ≤ 2 that absts (φi ) = αs (φi ) ∩ AMS ⌈φi ⌉,s . Let
A2 := lit ⌈φ2 ⌉↗⌈φ1∗φ2 ⌉ (absts (φ2)). By Theorem 3.37, it follows that A2 = αs (φ2) ∩ AMS ⌈φ1∗φ2 ⌉,s . Thus, in
particular, A2 contains every AMS in αs (φ2) that can be obtained by composing an AMS in AMS ⌈φ1−⊛φ2 ⌉ =

AMS ⌈φ2 ⌉ with an AMS from αs (φ1) ∩ AMS ⌈φ1 ⌉,s . With Lemma 3.35 we then get that (absts (φ1)−•A2) ∩

AMS ⌈φ1−⊛φ2 ⌉ is precisely the set of AMS αs (φ1−⊛φ2) ∩ AMS ⌈φ1−⊛φ2 ⌉ .
Case φ1 ∧ φ2. By the induction hypotheses, we have for 1 ≤ i ≤ 2 that absts (φi ) = αs (φi )∩AMS ⌈φi ⌉,s . In case

of ⌈φ1⌉ = 0 or ⌈φ2⌉ = 0 we have that all models of φ1∧φ2 have a garbage-chunk count of 0 (by Lemma 3.36);
hence, absts (φ1 ∧ φ2) = absts (φ1) ∩ absts (φ2). Otherwise, for 1 ≤ i ≤ 2, let Ai := lit ⌈φ1 ⌉↗⌈φ ⌉ (absts (φi )).
By Theorem 3.37, we have Ai = αs (φi ) ∩ AMS ⌈φ ⌉,s . The claim thus follows from Lemma 3.31.

Case φ1 ∨ φ2. By the induction hypotheses, we have for 1 ≤ i ≤ 2 that absts (φi ) = αs (φi ) ∩ AMS ⌈φi ⌉,s . For
1 ≤ i ≤ 2, let Ai := lit ⌈φ1 ⌉↗⌈φ ⌉ (absts (φi )). By Theorem 3.37, we have Ai = αs (φi ) ∩ AMS ⌈φ ⌉,s . The claim
thus follows from Lemma 3.32.

Case ¬φ1. By the induction hypothesis, we have that absts (φ1) = αs (φ1) ∩ AMS ⌈φ1 ⌉,s . We proceed by a case
distinction: Assume ⌈φ1⌉ = ⌈¬φ1⌉. From Lemma 3.33, it follows that αs (¬φ1) ∩AMS ⌈¬φ1 ⌉,s = AMS ⌈¬φ1 ⌉,s \

αs (φ1) = AMS ⌈¬φ1 ⌉,s \ (αs (φ1) ∩ AMS ⌈φ1 ⌉,s ). Assume ⌈φ1⌉ = 0. By Lemma 3.36, all models of φ1 have a
garbage-chunk count of 0. Hence, absts (¬φ1) = αs (¬φ1)∩AMS ⌈¬φ1 ⌉,s = AMS ⌈¬φ1 ⌉,s \ (αs (φ1)∩AMS ⌈φ1 ⌉,s ).

Computability of absts (φ). We note that the operators •,−•,∩,∪ and \ are all computable as the sets that occur
in the deinition of absts (φ) are all inite. It remains to argue that we can compute the set of AMS for all atomic
formulas. This is trivial for emp, (dis-)equalities, and points-to assertions. For the list-segment predicate, we note
that the set absts (ls(x ,y)) = AbstLists(x ,y) ∩ AMS ⌈0⌉,s can be easily computed as there are only initely many
abstract lists w.r.t. the set of nodes V = cls= (s ). We obtain the following results:

Corollary 3.41. Let s be a (inite) stack. Then absts (φ) is computable for all formulas φ.

Theorem 3.42. Let φ ∈ SL and let x ⊆ Var be a inite set of variables with fvs(φ) ⊆ x. It is decidable whether

there exists a model (s,h) with dom(s ) = x and (s,h)
st
|= φ.

Proof. We consider stacks s with dom(s ) = x; we observe that C := {cls= (s ) | dom(s ) ⊆ x} is inite; and that
all stacks s, s ′ with cls= (s ) = cls= (s

′) have the same abstractions by Lemma 3.18. Consequently, we can compute
the set

{

absts (φ) | dom(s ) ⊆ x
}

by picking for each element V ∈ C one stack s with cls= (s ) = V , and calculating
absts (φ) for this stack. By Cor. 3.41, absts (φ) is computable for every such stack. By Theorem 3.40 and Cor. 3.38,
φ is satisiable over stack s if absts (φ) is nonempty. Putting all this together, we obtain φ is satisiable in stacks
of size n if and only if any of initely many computable sets absts (φ) is nonempty. □

Corollary 3.43. φ
st
|=x ψ is decidable for all inite sets of variables x ⊆ Var and φ,ψ ∈ SL with fvs(φ) ⊆ x and

fvs(ψ ) ⊆ x.

Proof. φ
st
|=x ψ if φ ∧ ¬ψ is unsatisiable w.r.t. x, which is decidable by Theorem 3.42. □
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qbf_to_sl(F ) := emp ∧
∧

pairwise diferent QBF variables x,y x , y ∧ aux(F )

aux(x ) := (x 7→ nil) ∗ t aux(¬x ) := ¬aux(x )

aux(F ∧G ) := aux(F ) ∧ aux(G ) aux(F ∨G ) := aux(F ) ∨ aux(G )

aux(∃x . F ) := (x 7→ nil ∨ emp)−⊛aux(F ) aux(∀x . F ) := (x 7→ nil ∨ emp)−∗aux(F )

Fig. 7. Translation qbf_to_sl(F ) from closed QBF formula F (in negation normal form) to a formula that is satisfiable if F is
true.

3.7 Complexity of the SSL Satisfiability Problem

It is easy to see that the algorithm absts (φ) runs in exponential time. We conclude this section with a proof that
SSL satisiability and entailment are actually PSpace-complete.

PSpace-hardness. An easy reduction from quantiied Boolean formulas (QBF) shows that the SSL satisiability
problem is PSpace-hard. The reduction is presented in Fig. 7. We encode positive literals x by (x 7→ nil) ∗ t (the
heap contains the pointer x 7→ nil) and negative literals by ¬((x 7→ nil) ∗ t) (the heap does not contain the pointer
x 7→ nil). The magic wand is used to simulate universals (i.e., to enforce that we consider both the case x 7→ nil
and the case emp, setting x both to true and to false). Analogously, septraction is used to simulate existentials.
Similar reductions can be found (for standard SL) in [Calcagno et al. 2001].

Lemma 3.44. The SSL satisiability problem is PSpace-hard (even without the ls predicate).

Note that this reduction simultaneously proves the PSpace-hardness of SSL model checking: If F is a QBF
formula over variables x1, . . . ,xk , then qbf_to_sl(F ) is satisiable if ({xi 7→ ℓi | 1 ≤ i ≤ n} , ∅)

st
|= qbf_to_sl(F )

for some locations ℓi with ℓi , ℓj for i , j.

PSpace-membership. For every stack s and every bound on the garbage-chunk count of the AMS we consider,
it is possible to encode every AMS by a string of polynomial length.

Lemma 3.45. Letk ∈ N, let s be a stack andn := k+|s |. There exists an injective function encode : AMSk,s → {0, 1}
∗

such that

|encode(A) | ∈ O (n log(n)) for all A ∈ AMSk,s .

Proof. (Lemma 3.45.) Let A =
〈

V ,E, ρ,γ
〉

∈ AMSk,s . Each of the |s | ≤ n variables that occur in A can be
encoded by a logarithmic number of bits. Observe that |V | ≤ |s |, so V can be encoded by at most O (n log(n) + n)
symbols (using a constant-length delimiter between the nodes). Each of the at most |V | edges can be encoded by
O (log(n)) bits, encoding the position of the source and target nodes in the encoding of V by O (log(n)) bits each
and expending another bit to diferentiate between =1 and ≥ 2 edges. ρ can be encoded like V . Since γ ≤ k ≤ n,
γ can be encoded by at most log(n) bits. In total, we thus have an encoding of length O (n log(n)). □

An enumeration-based implementation of the algorithm in Fig. 6 (that has to keep in memory at most one
AMS per subformula at any point in the computation) therefore runs in PSpace:

Lemma 3.46. Let φ ∈ SL and let x ⊆ Var be a inite set of variables with fvs(φ) ⊆ x. It is decidable in PSpace (in
��φ�� and |x|) whether there exists a model (s,h) with dom(s ) = x and (s,h)

st
|= φ.

Proof. A simple induction on the structure of φ shows that it is possible to enumerate the set absts (φ) using
at most ��φ�� registers (each storing an AMS). The most interesting case is φ1−⊛φ2. Assume we can enumerate the
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1 : x

2 3

4 : y1

5

5 : y26 : nil

Fig. 8. Tree example: A stack-heap pair (s,h) with (s,h) |= tree(x ;y1,y2,y2; nil).

sets absts (φ1) = {A1, . . . ,Am } and absts (φ2) = {B1, . . . ,Bn } in polynomial space. We then use a new register
in which we successively enumerate all A ∈ AMS ⌈φ1−⊛φ2 ⌉,s . This is done as follows: we enumerate all pairs of
AMS (Ai ,Bj ), 1 ≤ i ≤ m, 1 ≤ j ≤ n; we recognize thatA ∈ AMS ⌈φ1−⊛φ2 ⌉,s if Bj = Ai • A for any of these pairs
(Ai ,Bj ).

□

The PSpace-completeness result, Theorem 3.1, follows by combining Lemmas 3.44 and 3.46.

3.8 Extension to Trees

In this section, we show that all our results continue to hold when we add a tree predicate to our separation logic.
In what follows, we only state the deinitions and results that need to be adapted, most of the deinitions and
results from the previous sections, however, do not need to be changed.

We begin by extending our memory model: We allow pointers to point to either one or two successor locations,
i.e., we extend our previous deinition of heaps and consider partial functions

h : Loc⇀ Loc ∪ Loc × Loc.

With pointers being able to point to more than one location, the heap can now form more general graph-theoretic
structures, in particular trees.

We now extend the syntax and semantics of our separation logic (as stated in Figures 2 and 3) to tree predicates
and points-to predicates with two target locations:

τ ::= · · · | x 7→
〈

y, z
〉

| tree(x ;y1, . . . ,yn ; z1, . . . , zm )

(s,h) |= x 7→
〈

y, z
〉

if h =
{

s (x ) 7→
〈

s (y), s (y)
〉}

(s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) if

dom(h) = ∅,n = 1 and s (x ) = s (y1), or
dom(h) = ∅,n = 0 and s (x ) = s (zi ) for some i ∈ {1, . . . ,m}, or
there is some ℓ ∈ Loc and a fresh variable u ∈ Var such that

(s[u 7→ ℓ],h) |= x 7→ u ∗ tree(u;y1, . . . ,yn ; z1, . . . , zm ), or
there are some ℓ1, ℓ2 ∈ Loc, fresh variables u,v ∈ Var, and some
partitioning of y1, . . . ,yn into a1, . . . ,ak and b1, . . . ,bl such that

(s[u 7→ ℓ1,v 7→ ℓ2],h) |= x 7→ ⟨u,v⟩ ∗ tree(u;a1, . . . ,ak ; z1, . . . , zm )

∗tree(v ;b1, . . . ,bl ; z1, . . . , zm )

We note that in a tree predicate tree(x ;y1, . . . ,yn ; z1, . . . , zm ) we distinguish between the root x , leaves
y1, . . . ,yn and sinks z1, . . . , zm . We give an example for a tree with three leaves and one sink in Fig. 8; note
that leaves can repeat (as y2 in Fig. 8) but the tree deinition ensures that for a leaf we precisely track the
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number of incoming pointers, whereas sinks can always have an arbitrary number of incoming pointers. We
comment on the recursive deinition of the tree predicate: The base cases state that each tree either ends in a
leaf or in a sink location; the composite cases stipulate that the successor locations respect the requirements for
leaves and sinks; in particular, in case of two successors the leaves y1, . . . ,yn can be partitioned into the leaves
a1, . . . ,ak and b1, . . . ,bl of the respective sub-trees, i.e., we require that k + l = n and that a1, . . . ,ak ,b1, . . . ,bl
is a permutation of y1, . . . ,yn . We want to distinguish between leaves and sinks in order to be able to reason
about tree composition. That is, we want to generalize the following reasoning to trees: For lists, we can prove
that ls(x ,y) ∗ ls(y, z) |= ls(x , z), i.e., that the composition of the list-segment predicates ls(x ,y) and ls(y, z)

implies the list-segment predicate ls(x , z). Indeed, we have the following property about tree composition:

Proposition 3.47.

tree(x ;y,y1, . . . ,yn ; z1, . . . , zm ) ∗ tree(y;w1, . . . ,wk ; z1, . . . , zm ) |=

tree(x ;y1, . . . ,yn ,w1, . . . ,wk ; z1, . . . , zm )

Proof. Direct from the semantics of the tree predicate. □

We note that the tree predicate generalizes the list segment predicate: it is easy to verify that the predicate
tree(x ;y; ϵ ), where ϵ is the empty sequence of variables, is satisied by the same set of stack-heap pairs (s,h) as
the list segment predicate ls(x ,y).
Correspondence of Strong and Weak Semantics on Positive Formulas. The correspondence continues to hold

for the positive fragment of the extended logic. (It is suicient to check that the base case of Lemma 2.5 is also
satisied for the tree predicate).

Chunks. The deinition of positive and negative chunks (Deinitions 3.8) does not have to be changed, because
positive chunks are deined with regard to the satisfaction of any atomic formula τ , which can now also be tree
predicates.

The AMS abstraction.We need to generalize the AMS abstraction in order to incorporate pointers with multiple
successors and trees. For this, we need to assume an upper bound k on the number of leaves that can appear
in a tree predicate, i.e., we require n ≤ k for tree(x ;y1, . . . ,yn ; z1, . . . , zm ). We are now ready to state the AMS
generalization; we only need to change the second component of AMSs:

Deinition 3.48 (AMS Edges). We deine AMS edges to be the partial function

E : V ⇀ (V ∪V ×V ) × {=1} ∪ (V → {0, . . . ,k + 1} ∪ {∞}) × {≥ 2}

such that there is no v ∈ dom(E) with nil ∈ v.

Intuitively, the AMS edges store whether there is a single pointer with one or two successors, or a tree with at
least two allocated locations, for which we store the number of tree edges whose target location is in the image
of the stack. We store the exact number of such edges in case of less or equal to k + 1 edges in order to be able
to precisely reason about the number of incoming edges of a tree leaf. We represent more than k + 1 edges by
∞, which is suicient to reason about sinks. We now give an intuition why the bound of k + 1 is suicient to
reason about the existence of models for formulas that include tree predicates with at most k leaves: Consider for
example the predicate tree(x ; ϵ ; ϵ ); i.e., we have a predicate with k = 0 leaves. Then, a model of tree(x ; ϵ ; ϵ )
might be composed of two chunks that are models of tree(x ;y; ϵ ) and tree(y; ϵ ; ϵ ); note that these predicates
use at most k + 1 = 1 leaves. In contrast, there can never be a model of tree(x ; ϵ ; ϵ ) that is composed of some
chunk that has two or more times the same leaf, e.g., tree(x ;y,y; ϵ ), because such a chunk would need to be
composed with two other chunks that allocate y (which is not possible).
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We generalize the AMS induced by a model (s,h) accordingly: For every equivalence class [x]s
=
∈ cls= (s ), we

set

edges(s,h) ([x]s
=
) :=



〈

[y]s
=
,=1

〉

there are y ∈ dom(s ),hc ∈ chunks
+ (s,h) with (s,hc )

st
|= x 7→ y

〈〈

[y]s
=
, [z]s

=

〉

,=1
〉

there are y, z ∈ dom(s ),hc ∈ chunks
+ with (s,hc )

st
|= x 7→

〈

y, z
〉

⟨{v 7→ dv }, ≥ 2⟩, there are y1, . . . ,yn , z1, . . . , zm ∈ dom(s ),hc ∈ chunks
+ (s,h) with

(s,hc )
st
|= tree(x ;y1, . . . ,yn ; z1, . . . , zm )

∧¬x 7→ y1 ∧ ¬x 7→
〈

y1,y2
〉

∧ ¬x 7→
〈

y2,y1
〉

, and

for every v ∈ V with dv < ∞ there are exactly dv variables yi
with yi ∈ v, and for every v ∈ V with dv = ∞ there is some zi ∈ v

with |h−1c (s (zi )) | > k + 1

⊥, otherwise

We note that we do not need to include a separate case for lists in the extended deinition of AMS edges, as lists
are covered as a special case of ⟨{v 7→ dv }, ≥ 2⟩, where

∑

v ∈V dv = 1, i.e., there is a single edge whose target
location is in the image of the stack.

Lemma 3.49 (Realizability of AMS). Let A =
〈

V ,E, ρ,γ
〉

be an AMS. There exists a model (s,h) = model(A)

with ams(s,h) = A whose size is linear in the size of A (we assume a unary representation of the numbers in AMS

edges).

Proof. (Lemma 3.49.) For every v ∈ V we ix a location ℓv ∈ Loc, for every r ∈ ρ we ix a location ℓr ∈ Loc
and for every 1 ≤ i ≤ γ we ix a location ℓi ∈ Loc; we assume all these locations to be diferent. We set
s :=

⋃

x ∈v,v ∈V {x 7→ ℓv }. For every node v ∈ V with E (v ) = ⟨{w 7→ dw }, ≥ 2⟩, we ix some set of locations

Locv =
⋃

w ∈V

{
cw1 , . . . , c

w
ew

}
⊆ Loc, where ew = dw , in case dw < ∞, and ew = k + 2, otherwise; we require

all those sets Locv to be pairwise disjoint and disjoint from the sets {ℓv ∈ Loc | v ∈ V }, {ℓr | r ∈ ρ}, and
{ℓi | r ∈ 1 ≤ i ≤ γ }.
We now deine h as the (disjoint) union of the following sets:

• For every v ∈ V with E (v ) = ⟨v ′,=1⟩ the set

{ℓv 7→ ℓv ′ } .

• For every v ∈ V with E (v ) = ⟨⟨v ′,v ′′⟩ ,=1⟩ the set

{ℓv 7→ ⟨ℓv ′, ℓv ′′⟩} .

• For every v ∈ V with E (v ) = ⟨{w 7→ dw }, ≥ 2⟩, using the locations Locv =
⋃

w ∈V

{
cw1 , . . . , c

w
ew

}
and ixing

an arbitrary order V = {w1, . . . ,wn }, the set

{
ℓv 7→ cw1

1

}
∪

⋃

1≤i<n

{
c
wi

j 7→
〈

ℓwi
, c

wi

j+1

〉

| 1 ≤ j < ewi

}
∪
{
cwi

ewi
7→

〈

ℓwi
, c

wi+1
1

〉}

∪
{
c
wn

j 7→
〈

ℓwn
, c

wn

j+1

〉

| 1 ≤ j < ewn

}
∪
{
cwn

ewn
7→ ℓwn

}

• For every r ∈ ρ the set

{ℓr 7→ ℓr} ∪
⋃

v ∈r

{ℓv 7→ ℓr} .
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{x 7→ z} x .next := y
{

x 7→ y
}

{x 7→ z} free(x )
{

emp
}

{

emp
}

malloc(x ) {x 7→m}

{

emp
}

x := y
{

x = y
}

x diferent from y{

y 7→ z
}

x := y.next
{

y 7→ z ∗ x = z
}

φ is x = y or x , y
{

emp
}

assume(φ)
{

φ
}

Fig. 9. Local proof rules of program statements for forward symbolic execution.

• For every 1 ≤ i ≤ γ the set

{ℓi 7→ ℓi } .

It is easy to verify that ams(s,h) = A and that |h | ∈ O ( |A|). □

We now deine abstract trees; this notion allows us to characterize the AMSs arising from abstracting trees.

Deinition 3.50. Given some A =
〈

V ,E, ρ,γ
〉

∈ AMS and x ,y1, . . . ,yn , z1, . . . , zm ∈ Var, we say that A is an
abstract tree with root x , leaves y1, . . . ,yn and sinks z1, . . . , zm , in signsA ∈ AbstTrees(x ;y1, . . . ,yn ; z1, . . . , zm ),
if model(A) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ), where model(A) is the canonical model of AMS A from
Lemma 3.49.

We now show that the notion of abstract trees indeed characterizes the models that satisfy tree predicates:

Lemma 3.51. For all stack-heap pairs (s,h), we have that (s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) if

ams(s,h) ∈ AbstTrees(x ;y1, . . . ,yn ; z1, . . . , zm ).

Proof. Weneed to argue that (s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) ifmodel(ams(s,h)) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ).
Given some (s,h), we argue that (s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) impliesmodel(ams(s,h)) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ).

The proof of the other implication is similar. Let us assume that (s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) . We note
that ams(model(ams(s,h))) = ams(s,h). Hence, model(ams(s,h)) does not contain garbage and fully decom-
poses into positive chunks. We now observe that the positive chunks that consist of a single points-to assertion
are the same in both models, only the chunks that belong to trees with ≥ 2 allocated locations may difer. For those
tree chunks we observe that they agree on the root, leaves and sinks, only their number of internal locations may
difer. We now argue thatmodel(ams(s,h)) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ). We need to ensure that we can ind
a recursive unfolding of the tree predicate according to the semantics of the tree predicate. We can construct such
an unfolding using the unfolding of semantics of the tree predicate in (s,h) |= tree(x ;y1, . . . ,yn ; z1, . . . , zm ) and
using that the chunks of both models abstract to the same AMSs, i.e., have the same roots, leaves and sinks. We
note that we can precisely track the leaves y1, . . . ,yn for an upper bound n ≤ k on the number of leaves. This is
because each variable can be allocated at most once and hence k + 1 is an upper bound on the number of times
the same variable yi can appear as a leaf of some tree chunk. □

This result on abstract trees is all that is needed to generalize our decision procedure and complexity results
to our extended separation logic. (In particular, we note that Lemma 3.51 covers the base cases in the proofs of
Theorems 3.19 and 3.37.)

ACM Trans. Program. Lang. Syst.



Strong-Separation Logic • 27

{P } c {Q }
Frame rule x = modifiedVars(c ), x′ fresh

{A ∗ P } c {A[x′/x] ∗Q }

{P } c {Q }
Materialization Q

st
|= ¬((x 7→ nil)−⊛t), z fresh

{P } c {x 7→ z ∗ ((x 7→ z)−⊛Q )}

Fig. 10. The frame and the materialization rule for forward symbolic execution.

4 PROGRAM VERIFICATION WITH STRONG-SEPARATION LOGIC

Our main practical motivation behind SSL is to obtain a decidable logic that can be used for fully automatically
discharging veriication conditions in a Hoare-style veriication proof. Discharging VCs can be automated by
calculi that symbolically execute pre-conditions forward resp. post-conditions backward, and then invoking an
entailment checker. Symbolic execution calculi typically either introduce irst-order quantiiers or fresh variables
in order to deal with updates to the program variables. We leave the extension of SSL to support for quantiiers
for future work and in this paper develop a forward symbolic execution calculus based on fresh variables.
We target the usual Hoare-style setting where a veriication engineer annotates the pre- and post-condition

of a function and provides loop invariants. We exemplify two annotated functions in Fig. 12; the left function
reverses a list and the right function copies a list. In addition to the program variables, our annotations may
contain logical variables (also known as ghost variables); for example, the annotations of list reverse only contain
program variables, while the annotations of list copy also contain the logical variable u (which is assumed to be
equal to x in the pre-condition)10.

A simple heap-manipulating programming language. We consider the six program statements x.next := y,
x := y.next (where x is diferent from y), free(x), malloc(x), x := y and assume(φ), where φ is x = y or x , y. We
remark that we do not include a statement x := x.next for ease of exposition; however, this is w.l.o.g. because
x := x.next can be simulated by the statements y := x.next; x := y at the expense of introducing an additional
program variable y. We specify the semantics of the considered program statements via a small-step operational

semantics. We state the semantics in Fig. 11, where we write (s,h)
c
−→ (s ′,h′), with the meaning that executing

c in state (s,h) leads to state (s ′,h′), and (s,h)
c
−→ error, when executing c leads to an error. Our only non-

standard choice is the modelling of themalloc statement: we assume a special program variablem, which is never
referenced by any program statement and only used in the modelling; the malloc statement updates the value of
the variablem to the target of the newly allocated memory cell; we includem in order to have a name for the
target of the newly allocated memory cell. We say program statement c is safe for a stack-heap pair (s,h) if there

is no transition (s,h)
c
−→ error. Given a sequence of program statements c = c1 · · · ck , we write (s,h)

c
−→ (s ′,h′),

if there are stack-heap pairs (si ,hi ), with (s0,h0) = (s,h), (sk ,hk ) = (s ′,h′) and (si ,hi )
ci
−→ (si+1,hi+1) for all

1 ≤ i ≤ k .

Forward Symbolic Execution Rules. The rules for the program statements in Fig. 9 are local in the sense that they
only deal with a single pointer or the empty heap. The rules in Fig. 10 are the main rules of our forward symbolic
execution calculus. The frame rule is essential for lifting the local proof rules to larger heaps. Note that the frame
rule requires substituting the modiied program variables with fresh copies: We set modifiedVars(c ) := {x ,m} for
c = malloc(x ), modifiedVars(c ) := {x } for c = x := y.next and c = x := y, and modifiedVars(c ) := ∅, otherwise.
The materialization rule ensures that the frame rule can be applied whenever the pre-condition of a local proof
rule can be met. We now give more details. For a sequence of program statements c = c1 · · · ck and a pre-condition

10m is a special program variable introduced for modelling malloc.
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(s,h)
x .next:=y
−−−−−−−→ (s ′,h′) if s (x ) ∈ dom(h), with s ′ = s

and h′ = h[s (x )/s (y)]

(s,h)
x .next:=y
−−−−−−−→ error if s (x ) < dom(h)

(s,h)
x :=y .next
−−−−−−−→ (s ′,h′) if s (y) ∈ dom(h), with s ′ = s[x/h(s (y))]

and h′ = h

(s,h)
x :=y .next
−−−−−−−→ error if s (y) < dom(h)

(s,h)
free(x )
−−−−−→ (s ′,h′) if s (x ) ∈ dom(h), with s ′ = s

and h′ = h[s (x )/⊥]

(s,h)
free(x )
−−−−−→ error if s (x ) < dom(h)

(s,h)
malloc(x )
−−−−−−−→ (s ′,h′) with s ′ = s[x/l][m/k] and h′ = h[l/k]

for some l ∈ Loc \ dom(h), k ∈ Loc

(s,h)
x :=y
−−−−→ (s ′,h′) with s ′ = s[x/s (y)] and h′ = h

(s,h)
assume(φ )
−−−−−−−−→ (s ′,h′), if s (x ) = s (y) resp. s (x ) , s (y),
where φ is x = y or x , y with s ′ = s and h′ = h

Fig. 11. Semantics of program statements.

Pstart, the symbolic execution calculus derives triples {Pstart} c1 · · · ci {Qi } for all 1 ≤ i ≤ k . In order to proceed
from i to i + 1, either 1) only the frame rule is applied or 2) the materialization rule is applied irst followed by an
application of the frame rule. The frame rule can be applied if the formula Qi has the shape Qi = A ∗ P , where
A is suitably chosen and P is the pre-condition of the local proof rule for statement ci . Then, Qi+1 is given by
Qi+1 = A[x′/x] ∗Q , where x = modifiedVars(c ), x′ are fresh copies of the variables x andQ is the right hand side
of the local proof rule for statement ci , i.e., we have {P } ci {Q }. The materialization rule may be applied in order to
ensure that Qi has the shape Qi = A ∗ P . This is not needed in case P = emp but may be necessary for points-to
assertions such as P = x 7→ y. We note that Qi guarantees that a pointer x is allocated if Qi

st
|= ¬((x 7→ nil)−⊛t).

Under this condition, the rule allows introducing a name z for the target of the pointer x . We remark that while
backward-symbolic execution calculi typically employ the magic wand, our forward calculus makes use of the
dual septraction operator: this operator allowed us to design a general rule that guarantees a predicate of shape
Qi = A ∗ P without the need of coming up with dedicated rules for, e.g., unfolding list predicates.

Applying the forward symbolic execution calculus for veriication. We now explain how the proof rules presented
in Fig. 9 and 10 can be used for program veriication. Our goal is to verify that the pre-condition P of a loop-free
piece of code c (in our case, a sequence of program statements) implies the post-condition Q . For this, we apply
the symbolic execution calculus and derive a triple {P } c {Q ′}. It then remains to verify that the inal state of the
symbolic execution Q ′ implies the post-condition Q . Here, we face the diiculty that the symbolic execution
introduces additional variables: Let us assume that all annotations are over a set of variables x, which includes
the program variables and the logical variables. Further assume that the symbolic execution {P } c {Q ′} introduced
the fresh variables y. With the results of Section 3 we can then verify the entailment Q ′ st

|=x∪y Q . However, we
need to guarantee that all models (s,h) of Q with dom(s ) = x ∪ y are also models when we restrict dom(s ) to x

(note that the variables y are implicitly existentially quantiied; we make this statement precise in Lemma 4.6
below). In order to deal with this issue, we require annotations to be robust:
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Deinition 4.1 (Robust Formula). We call a formula φ ∈ SL robust, if for all models (s1,h) and (s2,h) with
fvs(φ) ⊆ dom(s1) and fvs(φ) ⊆ dom(s2) and s1 (x ) = s2 (x ) for all x ∈ fvs(φ), we have that (s1,h)

st
|= φ if

(s2,h)
st
|= φ.

We identify a fragment of robust formulas in the next lemma. In particular, we obtain that the annotations in
Fig. 12 are robust.

Lemma 4.2. Let φ ∈ SL be a positive formula. Then, φ is robust.

Proof. Let (s1,h) and (s2,h) be two models with s1 (x ) = s2 (x ) for all x ∈ fvs(φ). Then, by Lemma 2.7 we have
that (s1,h)

st
|= φ if (s1,h)

wk
|= φ if (s2,h)

wk
|= φ if (s2,h)

st
|= φ. □

The following lemma allows us to construct robust formulas from known robust formulas:

Lemma 4.3. Let φ ∈ SL be formula. If φ is robust, then φ ∗ x 7→ y and x 7→ y−⊛φ are robust.

Proof. Immediate from the deinition of a robust formula. □

Not all formulas are robust, e.g., consider φ from Example 2.2. On the other hand, Lemma 2.7 does not cover all
robust formulas, e.g., t is robust. We leave the identiication of further robust formulas for future work.

Soundness of Forward Symbolic Execution. We adapt the notion of a local action from [Calcagno et al. 2007] to
contracts:

Deinition 4.4 (Local Contract). Given some program statement c and SL formulae P ,Q , we say the triple

{P } c {Q } is a local contract, if for every stack-heap pair (s,h) with (s,h)
st
|= P , every stack t with s ⊆ t and every

heap h◦ with h ⊎t h◦ , ⊥, we have that

1) c is safe for (t ,h ⊎t h◦), and

2) for every stack-heap pair (t ′,h′) with (t ,h ⊎t h◦)
c
−→ (t ′,h′) there is some heap h# with h# ⊎t

′

h◦ = h′ and
(t ′,h#)

st
|= Q .

We now state that our local proofs rules specify local contracts:

Lemma 4.5. Let c be a program statement, and let {P } c {Q } be the triple from its local proof rule as stated in Fig. 9.

Then, {P } c {Q } is a local contract.

Proof. The requirements 1) and 2) of local contracts can be directly veriied from the semantics of the program
statements. □

We are now ready to state the soundness of our symbolic execution calculus (we assume robust formulas A in
the frame rule, which can be ensured by the materialization rule11); we note that the statement makes precise
the implicitly existentially quantiied variables, stating that there is an extension of the stack to the variables V
introduced by the symbolic execution such that Q holds:

Lemma 4.6 (Soundness of Forward Symbolic Execution). Let c be a sequence of program statements, let P

be a robust formula, let {P } c {Q } be the triple obtained from symbolic execution, and let V be the fresh variables

introduced during symbolic execution. Then, Q is robust and for all (s,h)
c
−→ (s ′,h′) with (s,h)

st
|= P , there is a stack

s ′′ with s ′ ⊆ s ′′, V ⊆ dom(s ′′) and (s ′′,h′)
st
|= Q .

11Assume that Q is the robust formula currently derived by the symbolic execution, that c is the next program statement, that {Pc } c {Qc }

is the triple from the local proof rule of program statement c , and that Q is of shape Q = A ∗ Pc . In case A is not robust (note that this
is only possible if Pc = x 7→ z for some variables x and z), then one can irst apply the materialization rule in order to derive formula
Q ′ = x 7→ z ∗ ((x 7→ z )−⊛Q ). Then, A′ = (x 7→ z )−⊛Q is robust by Lemma 4.3.
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Proof. See appendix. □

(Lemma 4.6.)Weprove the claim by induction on the number of applications of the frame rule andmaterialization
rule. We consider a sequence of program statements c = c1 · · · cn for which the triple {P } c {Q } was derived by
symbolic execution, introducing some fresh variables V . We then assume that the claim holds for {P } c {Q } (for
the base case we allow c to be the empty sequence, i.e, c = ϵ , and consider {P } ϵ {P }) and prove the claim for one
more application of the frame rule or the materialization rule.
We irst consider an application of the materialization rule. Then, we have Q st

|= ¬((x 7→ nil)−⊛t) (*) and we
infer the triple {P } c {x 7→ z ∗ ((x 7→ z)−⊛Q )}, where z is some fresh variable. We now consider some stack-heap

pairs (s,h)
c
−→ (s ′,h′) with (s,h)

st
|= P . Because the claim holds for {P } c {Q } and V , there is some stack s ′′ with

s ′ ⊆ s ′′, V ⊆ dom(s ′′) and (s ′′,h′)
st
|= Q . Because of (*) we have (s ′′,h′) st

|= ¬((x 7→ nil)−⊛t). Hence, there is some
ℓ ∈ Loc such that h′(s ′′(x )) = ℓ. We now consider the stack s ′′′ = s ′′[z/ℓ]. Note that s ′ ⊆ s ′′′. BecauseQ is robust
by induction assumption, we then have that (s ′′′,h′) st

|= x 7→ z ∗ ((x 7→ z)−⊛Q ). Moreover, we get from Lemma 4.3
that x 7→ z ∗ ((x 7→ z)−⊛Q ) is robust. Thus, the claim is satisied for the set of variables V ′ = V ∪ {z}.
We now consider an application of the frame rule, i.e., we need to prove the claim for the sequence c′ = cc ,

which extends c by some statement c . Let {Pc } c {Qc } be the triple from the local proof rule for c . Because the
frame rule is applied, we have by assumption that there is some robust SL formula A with Q = A ∗ Pc . From
the application of the frame rule we then obtain {P } c′ {A[x′/x] ∗Qc }, where x = modifiedVars(c ) and x′ fresh.

We now consider some stack-heap pairs (s,h)
c′

−→ (s ′,h′) with (s,h)
st
|= P . Then, there is some stack-heap pair

(s ′′,h′′) with (s,h)
c
−→ (s ′′,h′′) and (s ′′,h′′)

c
−→ (s ′,h′). Because the claim holds for {P } c {Q } and V , there is some

stack t with s ′′ ⊆ t ,V ⊆ dom(t ) and (t ,h′′)
st
|= Q . Because ofQ = A ∗ Pc , we have that there are some heaps h1,h2

with h1 ⊎t h2 = h′′ such that (t ,h1)
st
|= Pc and (t ,h2)

st
|= A. Because of s ′′ ⊆ t and (s ′′,h′′)

c
−→ (s ′,h′), we get that

(t ,h′′)
c
−→ (t ′,h′) for some s ′ ⊆ t ′. Because {Pc } c {Qc } is a local contract by Lemma 4.5, we get that there is a heap

h′1 with h
′
1⊎

t ′h2 = h
′ and (t ′,h′1)

st
|= Qc . We now consider the stack t ′′ deined by t ′′(x ) = t ′(x ) for all x ∈ dom(t ′)

and t ′′(x ′) = t (x ) for all x ∈ modifiedVars(c ), where x ′ ∈ x′ is the fresh copy created for x . Note that t ′ ⊆ t ′′.
We recall that A is robust by assumption. Hence, (t ′′,h2)

st
|= A[x′/x]. Moreover,Qc is robust by Lemma 4.2. Hence,

(t ′′,h1)
st
|= Qc . Thus, (t ′′,h′)

st
|= A[x′/x] ∗Qc . Moreover, we get from Lemma 4.3 thatA[x′/x] ∗Qc is robust. Hence,

the claim is satisied for the set of variables V ′ = V ∪ x′.

Automation. We note that the presented approach can fully-automatically verify that the pre-condition of a
loop-free piece of code guarantees its post-condition: For every program statement, we apply its local proof
rule using the frame rule (and in addition the materialization rule in case the existence of a pointer target must
be guaranteed). We then discharge the entailment query using our decision procedure from Section 3. We now
illustrate this approach on the programs from Fig. 12. For both programs we verify that the loop invariant is
inductive (in both cases the loop-invariant P is propagated forward through the loop body; it is then checked that
the obtained formula Q again implies the loop invariant P ; for verifying the implication we apply our decision
procedure from Corollary 3.43):
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% list reverse

{ls(x , nil)}
a := nil;
while(x , nil)
{ls(x , nil) ∗ ls(a, nil)}
{

b := x.next;

x.next := a;

a := x;

w := b;

}

x := w;

{ls(x , nil)}

% list copy, where the copy has an additional head node

{ls(x , nil) ∗ u = x }
malloc(s);

r := s;

while(x , nil)
{ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→m}

{

malloc(t);

% t.data := x.data; not modelled

s.next := t;

s := t;

y := x.next;

x := y;

}

s.next := nil;
{ls(u, nil) ∗ ls(r , nil)}

Fig. 12. List reverse (let) and list copy (right) annotated pre- and post-condition and loop invariants.

Example 4.7. Verifying the loop invariant of list reverse:

{ls(x , nil) ∗ ls(a, nil)} (=: P )

assume(x , nil)

{ls(x , nil) ∗ ls(a, nil) ∗ x , nil}

# materialization

{x 7→ z−⊛(ls(x , nil) ∗ ls(a, nil) ∗ x , nil) ∗ x 7→ z}

b := x.next

{x 7→ z−⊛(ls(x , nil) ∗ ls(a, nil) ∗ x , nil) ∗ x 7→ z ∗ b = z}

x.next := a

{x 7→ z−⊛(ls(x , nil) ∗ ls(a, nil) ∗ x , nil) ∗ x 7→ a ∗ b = z}

a := x
{

x 7→ z−⊛(ls(x , nil) ∗ ls(a′, nil) ∗ x , nil) ∗ x 7→ a′ ∗ b = z ∗ a = x
}

x := b

{x ′ 7→ z−⊛(ls(x ′, nil) ∗ ls(a′, nil) ∗ x ′ , nil) ∗ x ′ 7→ a′ ∗ b = z ∗

a = x ′ ∗ x = b}(=: Q )

{ls(x , nil) ∗ ls(a, nil)} (=: P )
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Example 4.8. Verifying the loop invariant of list copy:

{ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→m} (=: P )

assume(x , nil)

{ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→m ∗ x , nil}

malloc(t)
{

ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→m′ ∗ x , nil ∗ t 7→m
}

s.next := t

{ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→ t ∗ x , nil ∗ t 7→m}

s := t
{

ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ′) ∗ s ′ 7→ t ∗ x , nil ∗ t 7→m ∗ s = t
}

# materialization

{x 7→ z−⊛(ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ′) ∗ s ′ 7→ t ∗ x , nil ∗ t 7→m ∗ s = t ) ∗

x 7→ z}

y := x.next

{x 7→ z−⊛(ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ′) ∗ s ′ 7→ t ∗ x , nil ∗ t 7→m ∗ s = t ) ∗

x 7→ z ∗ y = z}

x := y

{x ′ 7→ z−⊛(ls(u,x ′) ∗ ls(x ′, nil) ∗ ls(r , s ′) ∗ s ′ 7→ t ∗

x ′ , nil ∗ t 7→m ∗ s = t ) ∗ x ′ 7→ z ∗ y = z ∗ x = y}(=: Q )

{ls(u,x ) ∗ ls(x , nil) ∗ ls(r , s ) ∗ s 7→m} (=: P )

While our decision procedure can automatically discharge the entailments in both of the above exam-
ples, we give a short direct argument for the beneit of the reader for the entailment check of Example 4.7
(a direct argument could similarly be worked out for Example 4.8): We note that Q ′ simpliies to Q ′′ =

{a 7→ x−⊛(ls(a, nil) ∗ ls(a′, nil)) ∗ a 7→ a′}. Every model (s,h) of Q ′′ must consist of a pointer a 7→ a′, a list
segment ls(a′, nil) and a heap h′ to which the pointer a 7→ x can be added in order to obtain the list segment
ls(a, nil); by looking at the semantics of the list segment predicate we see that h′ in fact must be the list segment
ls(x , nil). Further, the pointer a 7→ a′ can be composed with the list segment ls(a′, nil) in order to obtain
ls(a, nil).

5 NORMAL FORMS AND THE ABDUCTION PROBLEM

In this section, we introduce normal forms for the separation logic considered in this paper. We obtain normal
forms from the insight that we can precisely describe every AMS by a formula, i.e., we can construct a formula
such that all models of the formula abstract to the AMS for which the formula was constructed. Normal forms
allow us to transform a formula into an equivalent canonic representation: We prove that the obtained normal
form is equivalent to the original formula (Theorem 5.3). Moreover, we show that the normal form transformation
is a closure operator (Theorem 5.4). We then discuss that the normal form transformation has applications
to the abduction problem: We recall that the weakest solution to the abduction problem can be syntactically
characterized by a formula that involves the magic wand. Normal forms then allow us to compute an explicit
representation of the weakest solution.
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AMS2SLm (A) :=aliasing(A) ∗ graph(A) ∗ garbage(A)

aliasing(A) :=

(

∗
v∈V ,x,y∈v

x = y

)

∗

(

∗
v,w∈V ,v,w

max(v) , max(w)

)

graph(A) :=

(

∗
E (v)=⟨v′,=1⟩

max(v) 7→ max(v′)

)

∗

(

∗
E (v)=⟨v′,≥2⟩

ls≥2 (max(v),max(v′))

)

ls≥2 (x ,y) :=ls(x ,y) ∧ ¬(x 7→ y)

garbage(A) :=



emp, if γ = 0

(¬emp ∧ ¬(¬emp ∗ ¬emp) ∨ ¬emp ∗ ¬emp) ∧ neg(A), if γ =m = 1
(

∗γ times ¬emp
)

∧ ¬
(

∗γ+1 times ¬emp
)

∧ neg(A), if 1 ≤ γ < m
(

∗γ times ¬emp
)

∧ neg(A), otherwise

neg(A) :=
∧

v,w∈V ,φ ∈{max(v) 7→max(w),ls(max(v),max(w)) }

¬(t ∗ φ)

∧
∧

R∈ρ,v∈R

alloc(max(v))

∧
∧

R∈ρ,v,v′∈R,v,v′

¬ (alloc(max(v)) ∗ alloc(max(v′)))

∧
∧

v∈V ,v<R for all R∈ρ

¬alloc(max(v))

alloc(x ) :=¬((x 7→ nil)−⊛t)

Fig. 13. The induced formula AMS2SLm (A) of AMS A =
〈

V ,E, ρ,γ
〉

with γ ≤ m.

Normal Forms. We lift the abstraction functions from stacks to sets of variables: Let x ⊆ Var be a inite set of
variables and φ ∈ SL be a formula with fvs(φ) ⊆ x. We set αx (φ) :=

{

αs (φ) | dom(s ) = x
}

and abstx (φ) := αx (φ)∩
AMS ⌈φ ⌉,x, where AMSk,x :=

{〈

V ,E, ρ,γ
〉

∈ AMS |
⋃

V = x and γ ≤ k
}

. (We note that abstx (φ) is computable by
the same argument as in the proof of Theorem 3.42.)

Deinition 5.1 (Normal Form). LetNFx (φ) :=
∨

A∈abstx (φ ) AMS2SL ⌈φ ⌉ (A) the normal form ofφ, whereAMS2SLm (A)

is deined as in Fig. 13.

The formula AMS2SLm (A) represents a direct encoding of the AMS A: aliasing(A) encodes the aliasing
between the stack variables as implied by V ; graph(A) encodes the points-to assertions and lists of length at
least two corresponding to the edges E (the formula can be straight-forwardly adapted to trees as introduced in
Section 3.8); garbage(A) encodes that there are precisely γ negative chunks (in case γ < m) or at least γ negative
chunks (in case γ =m)12, where the formula neg(A) ensures that these chunks are indeed negative (i.e., they
don’t satisfy a points-to or a list predicate) and contain exactly those allocated variables within some negative

12For the case γ =m = 1, the formula garbage(A) contains a seemingly superluous case distinction between exactly one negative chunk
and at least two negative chunks; this case distinction is a technicality needed to cover a special case in Theorem 5.4.
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chunk as is speciied by the negative allocation constraint ρ. We have the following result about the formula
AMS2SLm (A):

Lemma 5.2. Let A =
〈

V ,E, ρ,γ
〉

be an AMS with γ ≤ m, and let (s,h) be a stack-heap pair. Then, we have that

(s,h)
st
|= AMS2SLm (A) if ams(s,h) =

〈

V ,E, ρ,γ ′
〉

, with γ ′ = γ for γ < m, and γ ′ ≥ γ for γ =m.

Proof. We have that (s,h) st
|= aliasing(A) if the equivalence classes induced by s agree with the equivalence

classes V . We have that (s,h) st
|= graph(A) if the positive chunks of (s,h) are precisely the ones speciied by E

(we note that the formula ls≥2 indeed ensures that the list segments corresponding to this formula have indeed
length at least two). We have that (s,h) st

|= garbage(A) if (s,h) contains exactly γ negative chunks (in case
γ < m) resp. at least γ negative chunks (in case γ =m); the formula neg(A) ensures that all chunks are indeed
negative, i.e., that there is no chunk satisfying a formula max(v) 7→ max(w) or ls(max(v),max(w))) and the
allocated variables correspond to the sets speciied by ρ (i.e., for every R ∈ ρ there is a chunk that allocates the
variables in R, for every R ∈ ρ the variables in R cannot be allocated in diferent chunks, and all variables not in
some R ∈ ρ are not allocated). □

The normal form of a formula φ is then obtained by taking the disjunction over all formulas AMS2SLm (A) for
all AMS A ∈ αx (φ) that result from abstracting models of φ. Intuitively, the formulas AMS2SLm (A) partition
the models of φ (recall that the Reinement Theorem states that models that abstract to the same AMS satisfy the
same formulas). We now state the normal form of a formula is equivalent to the formula for which the normal
form was constructed:

Theorem 5.3 (Eqivalence). NFx (φ)
st
|=x φ and φ

st
|=x NFx (φ).

Proof. φ
st
|=x NFx (φ): Assume (s,h) st

|= φ for some stack-heap pair (s,h). W.l.o.g. we can assume that (s,h) has
at most ⌈φ⌉ negative chunks (otherwise we can choose a stack-heap pair that has exactly ⌈φ⌉ negative chunks;
by Theorem 3.37 this model still satisies formula φ). We consider the AMS A = ams(s,h). With (s,h)

st
|= φ,

we get A ∈ abstx (φ). By Lemma 5.2, we have (s,h)
st
|= AMS2SL ⌈φ ⌉ (A). Because of A ∈ abstx (φ) we get that

(s,h)
st
|= NFx (φ).

NFx (φ)
st
|=x φ: Assume (s,h) st

|= NFx (φ) for some stack-heap pair (s,h). Hence, there is some AMS
〈

V ,E, ρ,γ
〉

=

A ∈ abstx (φ) with (s,h)
st
|= AMS2SL ⌈φ ⌉ (A). By Lemma 5.2 we have that ams(s,h) =

〈

V ,E, ρ,γ ′
〉

, with γ ′ = γ
for γ < m, and γ ′ ≥ γ for γ = m. Then, we can conclude that (s,h) st

|= φ (using Theorem 3.19 for γ < m and
Theorem 3.37 for γ =m). □

We now state that the normal form transformation is a closure operator:

Theorem 5.4 (Closure Operator). We have NFx (NFx (φ)) = NFx (φ) and ⌈NFx (φ)⌉ ≤ max{2, ⌈φ⌉}.

Proof. By Theorem 5.3 we have that NFx (φ) and φ are equivalent. Hence, we have that their models abstract
to the same AMSs, i.e.,

αx (NFx (φ)) = αx (φ) (∗).

We now analyze the chunk size of the formula AMS2SLm (A) for some
〈

V ,E, ρ,γ
〉

= A with γ ≤ m. We
observe that ⌈aliasing(A)⌉ = ⌈graph(A)⌉ = 0, ⌈neg(A)⌉ = 2 and ⌈garbage(A)⌉ = max{2,γ + 1}, for γ < m, and
⌈garbage(A)⌉ = max{2,γ }, for γ =m.
From these observations and (*), we obtain

⌈NFx (φ)⌉ ≤ max{2, ⌈φ⌉}.

We now observe that
αx (NFx (φ)) ∩ AMS ⌈NFx (φ )⌉,x = αx (φ) ∩ AMS ⌈φ ⌉,x,
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for ⌈φ⌉ = 0 and ⌈φ⌉ ≥ 2. Moreover, we have

αx (NFx (φ)) ∩ AMS ⌈NFx (φ )⌉,x = αx (φ) ∩ AMS2,x,

for ⌈φ⌉ = 1. We thus get that
∨

A∈abstx (NFx (φ ))

AMS2SL ⌈NFx (φ )⌉ (A) =
∨

A∈abstx (φ )

AMS2SL ⌈φ ⌉ (A)

(up to logical equivalence), where the equation holds for ⌈φ⌉ = 1 because the case distinction for γ =m = 1 in
AMS2SLm (A) amounts to an explicit chunk bound lifting from 1 to 2. □

The abduction problem. We recall the following generalization of the entailment problem: The abduction problem
is to replace the question mark in the entailment φ ∗ [?] st

|=x ψ by a formula such that the entailment becomes true.
This problem is central for obtaining a scalable program analyzer as discussed in [Calcagno et al. 2011] 13. The
abduction problem does in general not have a unique solution. Following [Calcagno et al. 2011], we thus consider
optimization versions of the abduction problem, looking for logically weakest and spatially minimal solutions:

Deinition 5.5. Let φ,ψ ∈ SL and x ⊆ Var be a inite set of variables. A formula ζ is the weakest solution to the
abduction problem φ ∗ [?] st

|=x ψ if it holds for all abduction solutions ζ ′ that ζ ′ st
|=x ζ . An abduction solution is ζ

minimal, if there is no abduction solution ζ ′ with ζ st
|=x ζ

′ ∗ (¬emp).

Lemma 5.6. Let φ,ψ be formulas and let x ⊆ Var be a inite set of variables. Then, 1) the weakest solution to the

abduction problem φ ∗ [?] st
|=x ψ is given by the formula φ−∗ψ , and the 2) weakest minimal solution is given by the

formula φ−∗ψ ∧ ¬((φ−∗ψ ) ∗ ¬emp).

Proof. 1) follows directly from the deinition of the abduction problem and the semantics of −∗.
For 2), we introduce the shorthand ζ := φ−∗ψ ∧ ¬((φ−∗ψ ) ∗ ¬emp). We note that ζ st

|=x φ−∗ψ , and hence
ζ is a solution to the abduction problem by 1). Assume further that there is an abduction solution ζ ′ with
ζ

st
|=x ζ

′ ∗ (¬emp). By 1) we have ζ ′ st
|=x φ−∗ψ . Hence, ζ

st
|=x φ−∗ψ ∗ (¬emp). However, this contradicts ζ st

|=x
¬((φ−∗ψ ) ∗ ¬emp). Thus, ζ is minimal. Now, consider another minimal solution ζ ′ to the abduction problem. By
1), we have ζ ′ st

|=x φ−∗ψ . Because ζ
′ is minimal, we have as above that ζ ′ st

|=x ¬((φ−∗ψ ) ∗ ¬emp). Hence, ζ ′ st
|=x ζ .

Thus, ζ is the weakest minimal solution to the abduction problem. □

We now explain how normal forms have applications to the abduction problem. According to Lemma 5.6, the
best solutions to the abduction problem are given by the formulas ζ := φ−∗ψ and ζ ′ := φ−∗ψ ∧ ¬((φ−∗ψ ) ∗ ¬emp).
While it is an important result that the existence of these solutions is guaranteed, we do a-priori have no means to
compute an explicit representation of these solutions nor to further analyze their structure. However, the normal
form operator allows us to obtain the explicit representations NFx (ζ ) and NFx (ζ

′). We believe that using these
explicit representations in a program analyzer or studying their properties is an interesting topic for further
research. Here, we establish one concrete result on solutions to the abduction problem based on normal forms:

We can compute the weakest resp. the weakest minimal solution to the abduction problem for the positive fragment:

Given ζ = φ−∗ψ resp. ζ = φ−∗ψ∧¬((φ−∗ψ )∗¬emp), we consider the formula
∨

A∈abstx (ζ ),A is garbage-free AMS2SL ⌈ζ ⌉ (A).
Indeed, this formula is the weakest resp. the weakest minimal solution to the abduction problem from the positive
fragment, in case we are willing to consider a slight extension of the positive fragment (observe that among
the sub-formulas of aliasing(A) and graph(A) only the formula ls≥2 is negative): one could either extend the

13While the program analyzer proposed in [Calcagno et al. 2011] employs bi-abductive reasoning, the suggested bi-abductive procedure
in fact proceeds in two separate abduction and frame-inference steps, where the main technical challenge is the abduction step, as frame
inference can be incorporated into entailment checking. We believe that the situation for SSL is similar, i.e., solving abduction is the key to
implementing a bi-abductive prover for SSL; hence, our focus on the abduction problem.
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positive fragment by allowing guarded negation14 or add a new spatial atom ls≥2 (x ,y) to SSL, with the semantics
that ls≥2 (x ,y) holds in a model if the model is a list segment of length at least 2 from x to y; Sections 2 and 3
could be accordingly extended by this predicate; we can then simplify the formula graph(A) in AMS2SLm (A)

by directly translating edges E (v) = ⟨v′, ≥ 2⟩ to the atom ls≥2 (max(v),max(v′)).

6 CONCLUSION

We have shown that the satisiability problem for “strongž separation logic with lists and trees is in the same
complexity class as the satisiability problem for standard “weakž separation logic without any data structures:
PSpace-complete. This is in stark contrast to the undecidability result for standard (weak) SL semantics, as shown
in [Demri et al. 2018].

We have demonstrated the potential of SSL for program veriication: 1) We have provided symbolic execution
rules that, in conjunction with our result on the decidability of entailment, can be used for fully-automatically
discharging veriication conditions. 2) We have discussed how to compute explicit representations to optimal
solutions of the abduction problem. This constitutes the irst work that addresses the abduction problem for a
separation logic closed under Boolean operators and the magic wand.
We consider the above results just the irst steps in examining strong-separation logic, motivated by the

desire to circumvent the undecidability result of [Demri et al. 2018]. Future work is concerned with the practical
evaluation of our decision procedures, with extending the symbolic execution calculus to a full Hoare logic as
well as extending the results of this paper to richer separation logics (SL) such as SL with nested data structures
or SL with limited support for arithmetic reasoning.
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