
A Second-Order Distributed Trotter-Suzuki Solver with a Hybrid

Kernel

Peter Wittek∗, Fernando M. Cucchietti∗∗

Abstract

The Trotter-Suzuki approximation leads to an efficient algorithm for solving the time-
dependent Schrödinger equation. Using existing highly optimized CPU and GPU kernels,
we developed a distributed version of the algorithm that runs efficiently on a cluster. Our
implementation also improves single node performance, and is able to use multiple GPUs
within a node. The scaling is close to linear using the CPU kernels, whereas the efficiency of
GPU kernels improve with larger matrices. We also introduce a hybrid kernel that simulta-
neously uses multicore CPUs and GPUs in a distributed system. This kernel is shown to be
efficient when the matrix size would not fit in the GPU memory. Larger quantum systems
scale especially well with a high number nodes. The code is available under an open source
license.

Keywords: GPU Computing, MPI, Hamiltonian, Quantum Evolution, Trotter-Suzuki
Algorithm, Hybrid Kernel

1. Introduction

The evolution of a general quantum sys-
tem is described by the time-dependent
Schrödinger equation. The generic solution
of this equation involves calculating a ma-
trix exponential, which is formally simple.
However, computer implementations must
consider several factors to achieve high per-

∗Swedish School of Library and Information Sci-
ence, University of Bor̊as, Allegatan 1, Bor̊as, S-501
90, Sweden

∗∗Barcelona Supercomputing Center (BSC-
CNS), Edificio NEXUS I, Campus Nord UPC,
Gran Capitán 2-4, 08034 Barcelona, Spain

Email addresses: peterwittek@acm.org

(Peter Wittek), fernando.cucchietti@bsc.es
(Fernando M. Cucchietti)

formance and high accuracy – usually mak-
ing a trade-off between these two indicators.

There is a wide range of numerical ap-
proaches to calculating a matrix exponen-
tial. However, since they are approximate,
not all may preserve some desired ana-
lytical property of the original matrices.
This is crucial for example with the quan-
tum evolution operator – the exponential
of the Hamiltonian matrix appearing in the
Schrödinger equation, – which must be uni-
tary in order to conserve the total probabil-
ity. The reference method for calculating a
matrix exponential is to diagonalize the ma-
trix using an eigendecomposition, which is
typically computationally intensive. While
efficient eigendecomposition algorithms ex-
ist that use multicore CPU and multiple

Preprint submitted to Elsevier October 30, 2018

ar
X

iv
:1

20
8.

24
07

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

2
A

ug
 2

01
2

GPUs in a system [7], distributed variants
that use several computer nodes in a cluster
are hard to parallelize with close to ideal ef-
ficiency [10]. Traditional numerical integra-
tors like the Runge-Kutta algorithm do not
conserve unitarity, and unitary algorithms
like the Crank-Nicholson scheme involve in-
verting a large matrix.

The Trotter-Suzuki algorithm approaches
the problem through a slightly different an-
gle. It decomposes the Hamiltonian as a
sum of matrices that are easy to exponen-
tiate [5], which are then used to approxi-
mate the exponential of the full Hamilto-
nian. The end result is an algorithm that is
easy to parallelize. For the case of a single
particle in real space that we treat here, the
algorithm discretizes the domain with a fi-
nite mesh and calculates the pairwise evolu-
tion between neighboring sites in the mesh.
The Trotter-Suzuki algorithm has been suc-
cessfully used [3, 5, 6]. Efficient kernels for
contemporary multicore CPUs and GPUs
have already been developed [1].

This paper introduces a distributed vari-
ant of the Trotter-Suzuki algorithm using
existing high-performance kernels. Our im-
plementation improves the single-node effi-
ciency of the CPU and GPU kernels, it is
able to use multiple GPUs in a single sys-
tem, and also introduces a hybrid kernel to
deal with large quantum systems that do
not fit the GPU memory. The implementa-
tion also scales in a cluster, the CPU vari-
ant shows an almost linear speedup with the
number of nodes, whereas the GPU vari-
ant is more efficient when the device has a
higher load.

The rest of this paper is organized as fol-
lows. Section 2 gives a brief overview of
the foundations of the Trotter-Suzuki algo-
rithm. Section 3 provides the details of the
distributed kernels, and Section 4 discusses

the benchmark results on a large cluster. Fi-
nally, Section 5 concludes the paper and of-
fers an insight on our future work.

2. Trotter-Suzuki Algorithm and Effi-
cient Kernels

The non-relativistic Schrödinger equation
describing the evolution of a quantum sys-
tem is

− ı~∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉, (1)

where H(t) is the Hamiltonian of the sys-
tem, and |ψ(t)〉 the state of the system at
time t. By choosing a basis, the Hamilto-
nian can be written as a Hermitian matrix
H. The formal solution to the Schrodinger
equation for a time-independent Hamilto-
nian 1 is given by

|ψ(t)〉 = e−
ı
~Ht|ψ(0)〉 ≡ U(t)|ψ(0)〉, (2)

where |ψ(0)〉 is the initial state of the sys-
tem, with norm |〈ψ(0)|ψ(0)〉|2 = 1, and
U(t) is the quantum evolution operator as-
sociated to Hamiltonian H. Since H is
Hermitian, it is easy to see that the evo-
lution operator is unitary, and that the
norm of the state vector is constant over
time, |〈ψ(t)|ψ(t)〉|2 = |〈ψ(0)|U †U |ψ(0)〉|2 =
|〈ψ(0)|ψ(0)〉|2 = 1 Thus, it is crucial that
the numerical solution of the evolution oper-
ator be unitary [5], or the norm of the wave
function – which gives the total probability
of finding the particle somewhere, and must
equal one – would not be conserved.

The Trotter-Suzuki algorithm decom-
poses the Hamiltonian into small diagonal

1The general time-dependent form of the
Trotter-Suzuki algorithm is a trivial extension of
the one we present [11].

2

or block diagonal matrices, where the expo-
nential is easy to compute. The decomposi-
tion is based on the Trotter formula [15]:

ex(A+B) = lim
n→∞

(
exA/nexB/n

)n
,

where A and B are M ×M matrices. For
sufficiently large n, ex(A+B)/n ≈ exA/nexB/n.
The Trotter formula is readily generalized
to the case of more than two contributions
to H by writing H =

∑p
i=1Hi. This allows

for choosing a decomposition that can be
exploited to construct efficient algorithms.
The error of the Trotter formula scales as
(x/n)2 times the norm of the commutator
between A and B. Higher order approx-
imations were later developed by Suzuki
[13, 14], who obtained expressions that are
unitary for all orders.

To explain the algorithm, let us assume a
one-dimensional Hamiltonian with the form
H = − ~2

2m
∂2

∂x2 +V(x), where m is the mass of
the particle, and V(x) the potential energy.
Discretizing the Schrödinger equation using
a finite mesh of points spaced by a distance
a, the Hamiltonian matrix H is like that
of a tight-binding chain – a tridiagonal ma-
trix. Such a matrix can be split as a sum of
a diagonal matrix, and two block-diagonal
commuting matrices made up of 2 × 2 ma-
trices:

H = H0 +H1 +H2,

where the components are as follows. The
diagonal matrix H0 is written as

H0 =


ε1 0
0 ε2 0

. . .

0 εL

 ,

where εl = V(na) + ~2/ma2 is the effective
energy at site l, L is the number of sites.

The block diagonal matrices H1 and H2 are
written as

H1 =



0 V
V 0 0

0 0 V
V 0

. . .

0 0


,

and

H2 =



0 0
0 0 V

V 0
. . .

0 V
V 0


,

where V = −~2/2ma2 is the tunneling ele-
ment between the sites. The exponential of
a block matrix is itself a block matrix build
from exponentials of 2× 2 matrices. These
plane rotation matrices can be written as

M =

(
cos ∆t

~ |V | −ı sin ∆t
~ |V |

−ı sin ∆t
~ |V | cos ∆t

~ |V |

)
,

where ∆t is the discrete time step. Using
the above decomposition, the first-order ap-
proximation of the unitary time step evolu-
tion operator is given by

U1 (∆t) = e−ı
∆t
~ H0e−ı

∆t
~ H1e−ı

∆t
~ H2 .

Approximants correct up to second order
are obtained by symmetrization [5, 12]:

U2 (∆t) = UT
1 (∆t)U1 (∆t) , (3)

where AT is the transpose of matrix A. Ex-
tending the algorithm for more than one
dimension is also straightforward, as we
can simply perform a decomposition of the

3

Hamiltonian into five parts: the diagonal
energies, and two terms for each dimen-
sion. Our implementation is based on the
second order formulation of Equation 3.
Higher order approximants are expressed as
a sequence of applications of the first and
second order operators. For example, the
fourth order evolution operator is

U4 (∆t) = U2 (p∆t)U2 (p∆t)

U2 ((1− 4p)∆t)

U2 (p∆t)U2 (p∆t) , (4)

where p = (4− 41/3)−1 [13].
Because of its structure, the cost of ap-

plying any order of the Trotter-Suzuki op-
erator scales linearly in time and memory.
A general external potential is straightfor-
ward to implement and always adds a cost L
in time. Therefore, we perform our bench-
marks assuming a flat potential landscape,
V(x) = constant, which leads to H0 induc-
ing a global phase factor in the wave func-
tion which we can ignore.

Notice in the above discussion that at no
point an assumption was made about the
“importance” of a particular contribution to
the Hamiltonian. This is the reason why the
Trotter-Suzuki approach can be used where
perturbation methods break down [5].

3. Distributing the Workload Across
a Cluster

We took the optimized CPU and GPU
kernels of [1] as our starting point. These
kernels use a double-buffered data ac-
cess pattern: the result is not calcu-
lated in place, but to a new buffer, and
when a new iteration starts, the buffers
are swapped. There are two CPU ker-
nels: cache-optimized, and another cache-
optimized that is further optimized to use
the SSE instruction set of the CPU.

Calculate halo Start halo exchange Finish halo exchange

Calculate rest of the evolution

C
o
m

m
u
n
ica

tio
n
 b

a
rrie

r

Figure 1: A general overview of communication and
computation pattern within one iteration in the dis-
tributed implementation

Cache optimization means that the in-
put data is divided into blocks. A similar
block division is present in the GPU ker-
nel, where, instead of a hardware cache, the
shared memory of the simultaneous multi-
processors is used to fetch and explicitly
cache data. This block division results in
extra calculations: a halo for each block has
to be computed to get the correct results for
the internal cells. This extra work pays off
by the benefit of cached access to the data.

The unit of calculation of our distributed
version is a process. Using a similar com-
putational structure to the above, we refer
to a block assigned to a process as a tile.
The block division in a single node is sim-
ple: the halo computed by a block is sim-
ply discarded, and the next block reads its
own halo from the main memory. In a dis-
tributed version the halos between the tiles
have to be sent across the processes. Using
a two-dimensional grid of processes, a tile
contains elements of halos belonging to a to-
tal of eight other tiles: left, right, top, and
bottom neighbours, and also the four diag-
onal neighbours. To minimize the number
of communication requests, a wave pattern

4

is used in the communication: left and right
neighbours receive the halo first. This halo
has the height of the inner cells of the tile
(see Figure 1). Then the horizontal halos
are sent to the top and bottom neighbours
– the width is the full tile width. In this way
the appropriate corner elements are propa-
gated to the diagonal neighbours.

Communication is performed asyn-
chronously, but there is a communication
barrier between the left-right and the
top-bottom halo exchanges due to data
dependency. The generic approach to
computation and calculations attempts to
overlap the two by as much as possible,
calculating the halo first and starting
the communication simultaneously to the
calculation of the rest of the evolution step
(Figure 1).

The step of starting the halo exchange
initiates the asynchronous left-right halo ex-
change. The last step, finishing the halo ex-
change, has a communication barrier wait-
ing for the first exchange to finish. Af-
ter this, it initiates the asynchronous top-
bottom halo exchange, and has a second
barrier, waiting for this communication to
finish. There are variations to this pattern,
as detailed below.

3.1. The CPU kernels

The cache optimized kernels of [1] used
OpenMP, a directive-driven parallelization
of the code to use the power multicore archi-
tecture [4]. We found that using our explicit
parallelization, the overall performance was
better by 30 % if we used the same number
of process within a node as there are cores.
Hence, even single node execution is accel-
erated by our approach. This finding cor-
responds well with other benchmarks that
compare OpenMP parallelism with more ex-
plicit forms of parallelism [8].

Finishing the halo exchange cannot be
efficiently overlapped with communication.
This means that once the computation of
the iteration is completed, there is a com-
munication overhead while the vertical ha-
los are exchanged.

3.2. The GPU kernel

The GPU kernel had to be adjusted to
work with communication. As it is cus-
tomary in GPU programming, the device
keeps the double-buffered matrices in its
own memory, whereas MPI communication
is performed from the host memory. This
increases complexity as asynchronous mem-
ory copies from the device and to the device
have to be performed.

To work with such transfer efficiently, we
implemented the kernel with streams. A
GPU stream is basically a queue of tasks
for the GPU to perform: kernel execu-
tion, memory copies from and to the device.
Given two streams, memory copies in one
stream can overlap with computation in the
other stream. We use two streams, queue-
ing the halo computation and the memory
copies in stream one, and the computation
of the rest of cells in stream two. Since a
kernel launch with streams returns the con-
trol to the calling process immediately, this
also means that while stream two is execut-
ing, every halo exchange can be completed
before the iteration is finished. Hence the
distributed GPU version has a much bet-
ter communication efficiency than the CPU
variant.

The communication routine typically
does an internal buffering of the data to be
sent. This extra memory copy is unseen
by the user. To avoid it, we use pinned
memory, a specific way to allocate host
memory for data that will be exchanged

5

with the GPU. Pinned memory avoids in-
ternal buffering when it comes to communi-
cation, hence further increasing communi-
cation performance.

We use one process per GPU and single-
node execution with multiple GPUs is pos-
sible.

3.3. The hybrid kernel

Using streams means most cores of a mul-
ticore CPU idle while waiting for the GPU
to complete the calculations. GPUs also
have less memory, limiting the size of the
quantum system for which the evolution is
computed. To address these two issues, we
introduce a hybrid kernel.

The algorithm first calculates the maxi-
mum amount of the tile that can be com-
puted on the GPU assigned to the process.
Then, using only one stream, it launches
the kernel for the corresponding elements
on the internal area of the tile. After the
asynchronous kernel launches, it proceeds
to calculate the halo and start the halo ex-
change. Once the halo exchange is initiated,
the elements not in the halo and not on the
GPU are computed by the CPU. Finishing
the halo exchange includes an extra step, an
internal halo exchange between the part of
the tile associated with the GPU and the
rest of the matrix.

This kernel also uses one process per
GPU. This means that in an eight-core sys-
tem with two GPUs, six cores would be idle.
To utilize the power of the extra cores, we
use the same directive-driven parallelism as
the original CPU kernels of [1], relying on
OpenMP. Hence all cores and all GPUs con-
tribute to the work.

 0

 5000

 10000

 15000

 20000

 25000

 10000 15000 20000 25000 30000 35000

M
e

m
o

ry
 r

e
q

u
ir
e

m
e

n
t

(M
b

y
te

s
)

Matrix dimension

Device memory available to the user (1xTesla M2090)

Device memory available to the user (2xTesla M2090)

Host memory available to the user

Single precision
Double precision

Figure 2: Memory requirements of the Trotter-
Suzuki algorithm on a single node

4. Discussion

4.1. Experimental configuration

The implementation of the distributed al-
gorithm used MPI for communication2. We
used bullx MPI, which is compatible with
the MPI 2.1 standard, and it is built around
OpenMPI. The compiler was the Intel Com-
piler Chain, with all optimization turned on
and OpenMP enabled. While these are pro-
prietary tools, the code can also be compiled
with open source software, such as Open-
MPI and GCC. The GPU code was im-
plemented with CUDA and compiled with
CUDA 4.0, running with the corresponding
runtime.

The benchmarks were performed on the
Minotauro cluster at the Barcelona Su-
percomputing Center. Every node has
two Intel Xeon E5649 six-core processors
with 12MB of cache memory, clocked at
2.53GHz, running Linux operating system
with 24 GByte of RAM memory. Every
node is equipped with two NVIDIA M2090

2The source code is available at https://

github.com/peterwittek/trotter-suzuki-mpi

6

https://github.com/peterwittek/trotter-suzuki-mpi
https://github.com/peterwittek/trotter-suzuki-mpi

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(a) Single precision

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(b) Double precision

Figure 3: Execution time, linear system size: 24576 (single precision), 17472 (double precision)

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(a) Single precision

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(b) Double precision

Figure 4: Execution time, linear system size: 49152 (single precision), 34944 (double precision)

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(a) Single precision

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32

T
im

e
 (

s
)

Nodes

cpu
sse

cuda
hybrid

(b) Double precision

Figure 5: Execution time, linear system size: 98304 (single precision), 69888 (double precision)

cards, each one with 512 CUDA cores and 6
GByte of GDDR5 memory. The MPI com-
munication across the nodes is through an
Infiniband Network.

Figure 2 illustrates the memory con-
straints on this cluster with respect to the
size of the quantum system. The bench-

marks below were chosen so as to maximize
the memory usage on different cluster sizes.

4.2. Benchmark results

The benchmarks ran ten iterations on in-
creasing cluster sizes, using a synthetic state
in a square domain of different lengths L,

7

(a) CPU without SSE

(c) GPU

(b) CPU with SSE

(d) Hybrid

Figure 6: MPI traces on four nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Average load Average/maximum

CPU
SSE

CUDA
Hybrid

Figure 7: Load balance on four nodes

where L = 24576, 49152, and 98304 in sin-
gle precision, and L = 17472, 34944, 69888
in double precision. Note that since this is
a two dimensional quantum system, the di-
mension of the corresponding Hilbert space
is L2, and the Hamiltonian matrices would
have size L2 × L2. The dimensions were
chosen so as to fill the device memory on
cluster sizes one, four, and sixteen nodes.

GPUs have a better a performance when the
load is higher, whereas CPUs are less sen-
sitive to the load. Choosing the matrix di-
mensions to fit the GPUs in certain config-
urations shows how the overall GPU perfor-
mance decays as the cluster size increases,
and it is also fair with respect to the CPU
kernels due to their insensitivity to the load.
The timing results are plotted in Figures 3,
4, and 5. The results show only the time
taken in the main loop of the evolution (as
depicted in Figure 1), as the initalization
takes considerably different amounts of time
with different types of kernels.

The CPU kernels show an almost linear
scaling: the execution time is divided by ap-
proximately two as the cluster size is dou-
bled. Communication overhead increases
with the cluster size, so eventually the ad-
vantage of SSE optimization vanishes with
large clusters (see also the next section on

8

parallel efficiency).
The GPU kernel has a more interesting

scaling pattern. When the device memory
is loaded to at least 50 %, the scaling is close
to linear, just as in the case of CPU kernels.
Then the execution time of individual GPUs
remains almost constant, the curve flattens
out, and there is little benefit to gain by this
kernel in large clusters.

The hybrid kernel trails the GPU kernel
in cases where the problem would fit the
GPU memory, with the execution time be-
ing marginally longer. The real advantage
is in cases where the device memory is in-
sufficient. In such cases, the speedup can be
close to 2x in double precision compared to
the CPU kernels.

4.3. Parallel efficiency

Analysing the MPI traces reveals impor-
tant information about the communication
patterns (Figure 6). We restrict our atten-
tion to four nodes alone, other cluster sizes
show similar patterns. The CPU kernels
communicate in an almost identical pattern
irrespective of the SSE optimization. Both
of them are quite close to being optimal.
Without SSE optimization, the average load
is 94 %, so on average, the communica-
tion overhead is approximately 6 % (Fig-
ure 7). The variation of load is small, the
average/maximum ratio is 0.97. The SSE-
optimized kernel has slightly worse indica-
tors, with an average load of 90 %. This in-
dicates that as the computation gets more
efficient, the communication becomes a bot-
tleneck.

The GPU kernel apparently has a very
different pattern. Only a fraction of the
processes do any kind of work, the ones
that are associated with a GPU. The plot
of the MPI trace does not show the time
spent in the CUDA kernel, since the launch

is asynchronous with streams. Having no
computational load, the CPU spends most
of its time communicating, resulting in an
average load of barely 71 %, and an aver-
age/maximum ratio of 0.72, meaning that
there is little variation across the processes.

The trace of the hybrid kernel is surpris-
ing, as it looks similar to the GPU trace.
While there are considerably more threads,
the ones that are associated with GPU op-
erations follow the same pattern as above,
resulting in long waits. The rest of the
threads, however, overlap communication
extremely efficiently. The overall load bal-
ance and parallel efficiency are very similar
to the GPU case.

5. Conclusions and Future Work

In this paper we have shown a dis-
tributed variant of the Trotter-Suzuki al-
gorithm based on efficient kernel imple-
mentations. We have improved the single-
node efficiency of CPU kernels by replac-
ing OpenMP directives by explicit MPI par-
allelization, and the GPU kernel by using
streams. We have shown that our algorithm
scales almost ideally, and that our hybrid
kernel is efficient for calculating the evolu-
tion of large systems in smaller clusters.

The implementation can be improved in
different ways. The current breakdown of
tasks is entirely manual and hard-coded:
halo calculation, halo communication, and
calculation of internal cells, the latter which
might be split between CPU and GPU re-
sources. When we regard the computations
alone, there is a well-defined task, the cal-
culation of a block. The block size is dif-
ferent on the CPU and the GPU. The for-
mer is larger, but it is an integer multiple of
the GPU block size, so we can use the CPU
block size as the unit of calculation. Our im-

9

plementation is a typical thread-parallel ap-
proach, where heavy processes perform the
work. Task-based parallelism is another ap-
proach, and the task in our case would be
the calculation of a block. OmpSs is a vari-
ant of OpenMP which takes this approach
to parallelism [2]. It handles heterogeneous
hardware that includes GPUs and CPUs,
and takes care of the memory copies based
on explicitly expressed data dependencies.
Asynchronous communication can also be
defined as a task. Hence theoretically it is
possible to have a hybrid approach that is
not hard-coded, but the distribution of halo
calculation and internal cell calculation is
decided by the OmpSs runtime. This also
means that part of the halo might be cal-
culated by the GPU, and it should also be
easier to work on a cluster where some nodes
have GPUs and others do not. To achieve
this flexibility, we are working on an OmpSs
version of our implementation.

Another clear direction is to extend our
implementation to three dimensional sys-
tems. The variety of possible decomposi-
tion strategies in this case is large, and a
flexible implementation would be very use-
ful to test out the performance of the differ-
ent choices. The extension to three dimen-
sions is also motivated by recent theoretical
and experimental developments in ultracold
atomic gases [9], which could not be simu-
lated in a single computer with enough pre-
cision.

6. Acknowledgment

This work was carried out while P.
W. was visiting the Department of Com-
puter Applications in Science & Engineer-
ing at the Barcelona Supercomputing Cen-
ter, funded by the “Access to BSC Fa-
cilities” project of the HPC-Europe2 pro-

gramme (contract no. 228398).

References

[1] Bederián, C., Dente, A., December 2011.
Boosting quantum evolutions using Trotter-
Suzuki algorithms on GPUs. In: Proceed-
ings of HPCLatAm-11, 4th High-Performance
Computing Symposium. Córdoba, Argentina.

[2] Bueno, J., Martinell, L., Duran, A., Farreras,
M., Martorell, X., Badia, R., Ayguade, E.,
Labarta, J., August 2011. Productive cluster
programming with OmpSs. In: Proceedings of
Europar-11. Bordeaux, France, pp. 555–566.

[3] Cucchietti, F. M., Pastawski, H. M., Wisni-
acki, D. A., 2002. Decoherence as decay of the
Loschmidt echo in a Lorentz gas. Physics Re-
view E 65, 045206.

[4] Dagum, L., Menon, R., 1998. OpenMP: an in-
dustry standard API for shared-memory pro-
gramming. Computational Science & Engi-
neering 5 (1), 46–55.

[5] De Raedt, H., 1996. Computer simulation of
quantum phenomena in nano-scale devices.
Annual Reviews of Computational Physics 4,
107–146.

[6] De Raedt, H., Hams, A. H., Michielsen,
K., De Raedt, K., 2000. Quantum computer
emulator. Computer Physics Communications
132 (1–2), 1 – 20.

[7] Haidar, A., Tomov, S., Yamazaki, I., Dong, T.,
Dongarra, J., Solca, R., Schulthess, T., May
2012. MAGMA: A breakthrough in solvers
for eigenvalue problems. In: GPU Technology
Conference. San Jose, CA, USA.

[8] Krawezik, G., June 2003. Performance com-
parison of MPI and three OpenMP program-
ming styles on shared memory multiproces-
sors. In: Proceedings of SPAA-03, 15th An-
nual Symposium on Parallel Algorithms and
Architectures. San Diego, CA, USA, pp. 118–
127.

[9] Lewenstein, M., Sanpera, A., Ahufinger, V.,
Damski, B., Sen, A., Sen, U., 2007. Ultra-
cold atomic gases in optical lattices: mimick-
ing condensed matter physics and beyond. Ad-
vances in Physics 56 (2), 243–379.

[10] ”Ozdo ğan, C., 2007. Scaling behavior of
TBMD code with parallel eigensolver. In: Sci-
ence and Supercomputing in Europe Report.
HPC-Europe, pp. 1040–1043.

10

[11] Poulin, D., Qarry, A., Somma, R., Ver-
straete, F., 2011. Quantum simulation of time-
dependent Hamiltonians and the convenient il-
lusion of Hilbert space. Physical Review Let-
ters 106 (17), 170501.

[12] Suzuki, M., 1985. Decomposition formulas of
exponential operators and Lie exponentials
with some applications to quantum mechanics
and statistical physics. Journal of Mathemati-
cal Physics 26, 601.

[13] Suzuki, M., 1990. Fractal decomposition of ex-
ponential operators with applications to many-
body theories and Monte Carlo simulations.
Physics Letters A 146 (6), 319–323.

[14] Suzuki, M., 1993. General decomposition the-
ory of ordered exponentials. Proceedings of the
Japan Academy. Ser. B: Physical and Biologi-
cal Sciences 69 (7), 161–166.

[15] Trotter, H., 1959. On the product of semi-
groups of operators. Proceedings of the Amer-
ican Mathematical Society 10, 545–551.

11

	1 Introduction
	2 Trotter-Suzuki Algorithm and Efficient Kernels
	3 Distributing the Workload Across a Cluster
	3.1 The CPU kernels
	3.2 The GPU kernel
	3.3 The hybrid kernel

	4 Discussion
	4.1 Experimental configuration
	4.2 Benchmark results
	4.3 Parallel efficiency

	5 Conclusions and Future Work
	6 Acknowledgment

