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Abstract. We study the dynamics of a SEIR epidemic model with nonlinear treatment
function, that takes into account the limited availability of resources in community. Under some
conditions we prove the existence of two possible equilibria: the disease-free equilibrium and
the endemic equilibrium. Using Lyapunov’s method and Li’s geometrical approach, We also
show that the reproduction number 𝑅0 is a threshold parameter: the disease-free equilibrium
is globally asymptotically stable when the basic reproduction number is less than unity and
the unique endemic equilibrium is globally asymptotically stable when the basic reproduction
number is greater than this critical value. In the end, we give some concluding remarks
concerning the role of treatment on the epidemic propagation.

Keywords: SEIR epidemic model; generalized incidence rates; local and global asymptotic
stability; treatment; Lyapunov-LaSalle’s principle; geometric approach; compound matrix.

Mathematics Subject Classification: 34C23, 34D23, 92D30.

1. Introduction
Infectious diseases remain to be one of the main sources of deaths for the human beings. The goal of
research in epidemiology is to develop vaccines, treatments and intervention strategies for stopping the
spread of infectious diseases and hence reducing the deaths.

One important approach to understand transmissionmechanisms of infectious diseases ismathematical
modeling. In this optic, the differential equations play a crucial role because such equations describe the
impact of principal parameters on the spread of diseases. For example, we cite the SIR epidemic model
and the SEIR epidemic model which provide good descriptions of infectious diseases (see [5, 11, 16, 17]).

Moreover, the epidemiological models describe the effect of treatment on transmission of infection.
The modeling of this effect may be taken into account by introducing a treatment function in an epidemi-
ological model. However, this function changes from one work to another.

In this work, we propose to study the role of treatment on the epidemics transmission. For this, we
propose the following SEIR epidemic model with treatment function:

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝐴 − 𝑓(𝑆, 𝐼) − 𝑑𝑆,

𝑑𝐸
𝑑𝑡 = 𝑓(𝑆, 𝐼) − (𝑑 + 𝜎)𝐸,

𝑑𝐼
𝑑𝑡 = 𝜎𝐸 − (𝑑 + 𝛾)𝐼 − 𝑇(𝐼),

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 − 𝑑𝑅 + 𝑇(𝐼).

(1.1)
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Here 𝐴 = 𝑑𝑁 is the recruitment rate, where 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 is the total number of population, 𝑆
is the number of susceptible individuals, 𝐼 is the number of infectious individuals, 𝐸 is the number of
exposed individuals, 𝑅 is the number of recovered individuals, 𝑑 is the natural death, 𝛾 is the recovery
rate of the infectious individuals, 𝜎 is the rate at which exposed individuals become infectious, 𝑓(𝑆, 𝐼)
is the incidence function, which representing the number of new exposed individuals arising in a host
population per unit of time and 𝑇(𝐼) is treatment function which describing the number of recovered
individuals by treatment per unit of time.

As in [8], We assume that the incidence function 𝑓 ∶ ℝ2
+ ⟶ℝ+ is continuously differentiable in the

interior of ℝ2
+ satisfying the following hypotheses.

(𝐻0): 𝑓(0, 𝐼) = 𝑓(𝑆, 0) = 0 for 𝑆, 𝐼 ≥ 0.

(𝐻1): 𝑓(𝑆, 𝐼) is a strictly monotone increasing function of 𝑆 ≥ 0, for any fixed 𝐼 > 0, and a monotone
increasing function of 𝐼 ≥ 0, for any fixed 𝑆 ≥ 0.

(𝐻2): 𝜙(𝑆, 𝐼) = 𝑓(𝑆,𝐼)
𝐼 is bounded and monotone decreasing function of 𝐼 > 0, for any fixed 𝑆 ≥ 0, and

𝐾(𝑆) = lim𝐼→0+ 𝜙(𝑆, 𝐼) is continuous on 𝑆 ≥ 0.

For the treatment function 𝑇 ∶ ℝ+ ⟶ ℝ+ we say that it is continuously differentiable and concave
satisfying the following hypotheses:

(𝑇0): 𝑇(0) = 0.

(𝑇1): The treatment rate 𝑇(𝐼)
𝐼 is monotone increasing.

The concavity of the treatment function is explained by limited availability of resources in community.
The condition (𝑇0) is natural: no treatment if there is no infected individuals and the condition (𝑇1)
takes into account the efforts of the concerned community and if necessary the efforts of international
organizations to deal with any increase in number of infected individuals.

In (1991, [1]), Anderson and May proposed a treatment function as follows:

𝑇(𝐼) = 𝑘𝐼 (1.2)

In (2004, [25]), Wang and Run used the following function

𝑇(𝐼) = {
0, if 𝐼 = 0,
𝑘, if 𝐼 > 0 (1.3)

In (2006, [10, 26]), it is assumed that the treatment function is proportional to the number of infective
individuals when it is below the capacity and constant when the number of infective individuals reaches
the capacity. Namely, they used the following treatment function

𝑇(𝐼) = {
𝑘𝐼, if 0 ≤ 𝐼 ≤ 𝐼0,
𝑘𝐼0, if 𝐼 ≥ 𝐼0

(1.4)

where 𝐼0 is the infective level at which the health-care system reaches capacity; that is, treatment increases
linearly with I before the capacity is reached and is constant afterward. It was shown that the model has
bistable endemic equilibria when 𝐼0 is low and backward bifurcation can occur.

In (2008, [22]) Zhang and et al. introduced the following saturated treatment:

𝑇(𝐼) = 𝑟𝐼
1 + 𝑘𝐼 , (1.5)

where 𝑟 > 0, 𝑘 ≥ 0, 𝑟. This function approaches a capacity limit as 𝐼 gets large. In (2012, [23]) Zhou and
Fan modified the function (1.5) to

𝑇(𝐼) = 𝛼𝐼
𝜔 + 𝐼 , (1.6)
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In (2011, [7]), Eckalbar studied an SIR epidemicmodel with the following quadratic treatment function

𝑇(𝐼) = max{𝛾𝐼 − 𝑔𝐼2; 0}, (1.7)

where 𝑟, 𝑔 > 0. The authors supposed that a society’s capacity for providing treatment may diminished
during a severe epidemic as a critical equipment and supplies are exhausted or as health care workers fall
victim to the disease.

In (2012, [4]), Sarah Al-Sheikh studied the model (1.1) with a bilinear incidence rate (i.e., 𝑓(𝑆, 𝐼) =
𝛽𝑆𝐼) and the treatment function (1.4). The author used Lyapunov’s functions and second additive com-
pound matrix to prove that there is a sharp threshold parameter 𝑅0 which completely determines the
global dynamics of the system. It is shown that this kind of treatment rate leads to the existence of multiple
endemic equilibria where the basic reproduction number plays a big role in determining their stability.

In (2012, [24]), X. Zhou and J. Cui studied the model (1.1) with 𝑓(𝑆, 𝐼) = 𝛽𝑆𝐼 and the treatment func-
tion (1.6). The backward bifurcation and global dynamics are shown by compound matrix and geometric
approach.

In (2012, [10]), Z. Hu et al. analyzed the following SIR epidemic model with nonlinear incidence rate,
vertical transmission, and the treatment function (1.4):

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝑏𝑚(𝑆 + 𝑅) − 𝑏𝑆 − 𝛽𝑆𝐼

1 + 𝛼𝐼 + 𝑝𝛿𝐼,

𝑑𝐼
𝑑𝑡 =

𝛽𝑆𝐼
1 + 𝛼𝐼 + (1 − 𝑝)𝛿𝐼 − 𝛾𝐼 − 𝛿𝐼 − 𝑇(𝐼),

𝑑𝑅
𝑑𝑡 = 𝛿𝐼 − 𝑏𝑅 + 𝑏(1 − 𝑚)(𝑆 + 𝑅) + 𝑇(𝐼),

(1.8)

The authors established that a backward bifurcation occurs when 𝑅0 < 1, that is, the disease-free equi-
librium coexists with an endemic equilibrium, and system (1.8) has multiple endemic equilibrium when
𝑅0 > 1 where a bifurcation diagram displays forward bifurcations. Furthermore, it is shown that when
there are two endemic equilibria, one of them is always unstable and the other one is stable under
certain conditions. When there are three endemic equilibria, bistable endemic equilibria can occur. The
dynamical behaviors of system (1.8) is determined by the existence of limit cycles.

In (2013, [13]), J. Li and N. Cui analyzed an SIRS epidemic model with the treatment function as
follows:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = (1 − 𝑝)𝐴 − 𝛽𝑆𝐼

1 + 𝛼𝐼2
− 𝑑𝑆 + 𝛾𝑅,

𝑑𝐼
𝑑𝑡 = 𝑝𝐴 − 𝛽𝑆𝐼

1 + 𝛼𝐼2
− (𝑑 + 𝜇 + 𝜐)𝐼 − 𝑇(𝐼),

𝑑𝑅
𝑑𝑡 = 𝑚𝐼 − (𝑑 + 𝛾)𝑅 + 𝑇(𝐼).

(1.9)

The authors investigated the existence of equilibrium and proved the global asymptotical stability of
the endemic equilibrium by using Dulac’s criteria and Poincare-Bendixson Theorem. Furthermore, they
obtained that the model (1.9) undergoes a Hopf bifurcation.

In (2014, [21]), J. Zhang et al. explored the dynamics of the following SEIR epidemic with saturated
incidence rate and saturated treatment function:

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝐴 − 𝛽𝑆𝐼

1 + 𝑘𝐼 − 𝑑𝑆,

𝑑𝐸
𝑑𝑡 = 𝛽𝑆𝐼

1 + 𝛼𝐼 − (𝑑 + 𝜖)𝐸,

𝑑𝐼
𝑑𝑡 = 𝜖𝐸 − (𝑑 + 𝜇 + 𝜐)𝐼 − 𝑟𝐼

1 + 𝑘𝐼 ,

𝑑𝑅
𝑑𝑡 = 𝜐𝐼 − 𝑑𝑅 + 𝑟𝐼

1 + 𝑘𝐼 .

(1.10)
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By means of Lyapunov functional and a geometric approach, the authors established that under the
condition 𝑅0 > 1, 0 ≤ 𝑘 < 𝑘1, and 𝑑 > 𝑟, the endemic equilibrium of system (1.10) is globally
asymptotically stable.

In (2015, [2]), Dubey et al. investigated the impact of awareness programs as well as treatment on an
SIR model. They showed that if the exposure to the awareness program is high and adequate treatment is
available, then the infection can be eliminated.

In (2015, [3]), Dubey et al. considered the incidence function as Beddington-DeAngelis type and the
treatment rate as Holling type II (saturated). They showed that the disease-free equilibrium is locally
asymptotically stable when reproduction number is less than one and obtained the global stability of the
endemic equilibrium using Lyapunov function. Also, they investigated the existence of Hopf bifurcation
by using Andronov-Hopf bifurcation theorem.

In the present article, we extend the model from [3, 4] to include general nonlinear incidence function
𝑓(𝑆, 𝐼), and we establish the complete global dynamics. Especially, to establish the global stability of
the endemic equilibrium, we use a geometrical approach [15] and a Lyapunov function. our results are
consistent with those in [3, 4], in the special case 𝑓(𝑆, 𝐼) = 𝛽𝑆𝐼 .

The rest of this paper is organized as follows. In section 2, some preliminary results that will be
useful in the rest of this work are established. In section 3, the existence and uniqueness of disease-
free equilibrium and endemic equilibrium of the SEIR model (1.1) are given. In section 4, stability and
instability of the disease-free equilibrium are discussed. In section 8, local asymptotic stability of the
endemic equilibrium is obtained by Hurwitz’s criteria. The global stability of the endemic equilibrium is
proved by Li’s geometrical approach [15] in section 6, and by Lyapunov’s method in section 7. Finally,
in section 9, a brief discussion is given to conclude this paper.

2. Preliminary Results
In this section we present some preliminary results that will be useful in the rest of this work.

Lemma 2.1. The equation𝑁− 𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)] = 0 has a unique positive solution 𝐼0.

Proof. Define the function 𝑔 on ℝ+ by 𝑔(𝐼) = 𝑁 − 𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)]. We have 𝑔(0) = 𝑁 > 0 and

𝑔( 𝜎𝐴
(𝑑+𝜎)(𝑑+𝛾) ) = − 𝑑+𝜎

𝜎𝑑 𝑇(𝐼) < 0. Furthermore, by the hypothesis (𝑇1), we have 𝑔′(𝐼) = −𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾) +

𝑇 ′(𝐼)] < 0. Thus the equation𝑁− 𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)] = 0 has a unique positive solution.

Lemma 2.2 (see [8]). The following statements are logically equivalent.

(i): The function 𝑇(𝐼)
𝐼 is monotone increasing function.

(ii): 𝑇(𝐼)
𝐼 − 𝑇 ′(𝐼) ≤ 0.

Lemma 2.3 (see [8]). The following statements are equivalent:

(i): The function 𝑓(𝑆,𝐼)
𝐼 is monotone decreasing function of 𝐼 > 0, for any fixed 𝑆 ≥ 0.

(ii): 𝑓(𝑆;𝐼)
𝐼 − 𝜕𝑓(𝑆,𝐼)

𝜕𝐼 ≥ 0.

3. Existence and Uniqueness of Equilibria
The first three equations in system (1.1) do not depend on the fourth equation, and therefore this equation
can be omitted without loss of generality. Hence, system (1.1) can be rewritten as
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⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑑𝑆
𝑑𝑡 = 𝐴 − 𝑓(𝑆, 𝐼) − 𝑑𝑆,

𝑑𝐸
𝑑𝑡 = 𝑓(𝑆, 𝐼) − (𝑑 + 𝜎)𝐸,

𝑑𝐼
𝑑𝑡 = 𝜎𝐸 − (𝑑 + 𝛾)𝐼 − 𝑇(𝐼),

(3.1)

Therefore, we will study (3.1) in the following feasible region:

Ω = {(𝑆,𝐸, 𝐼) ∈ ℝ3
+ ∶ 𝑆 + 𝐸 + 𝐼 ≤ 𝑁}.

We can easily verify that Ω is positively invariant with respect to (3.1).
Let the basic reproduction number

𝑅0 =
𝜎𝐾(𝑁)

(𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′
𝑑 (0))

,

where 𝑇 ′
𝑑 (0) is the right derivative at the 𝐼 = 0. The following theorem presents the existence and

uniqueness of the possible equilibria.

Theorem 3.1. System (3.1) always has a disease-free equilibrium 𝑃0 = (𝑁, 0, 0) which exists for all
parameter values. On the other hand, if 𝑅0 > 1 then system (3.1) also admits an unique endemic
equilibrium: 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗).

Proof. A steady state (𝑆, 𝐸, 𝐼) of model (3.1) satisfying the following system.

⎧⎪
⎨
⎪⎩

𝐴 − 𝑑𝑆 − 𝑓(𝑆, 𝐼) = 0,
𝑓(𝑆, 𝐼) − (𝑑 + 𝜎)𝐸 = 0,
𝜎𝐸 − (𝑑 + 𝛾)𝐼 − 𝑇(𝐼) = 0.

(3.2)

If 𝐼 = 0, then 𝐸 = 0, and 𝑆 = 𝑁 , therefore the disease-free equilibrium 𝑃0 = (𝑁, 0, 0) of (3.1) exists for
all parameters values.

Furthermore, if 𝐼 ≠ 0, then we have

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑆 = 𝑁 − 𝑑 + 𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)],

𝐸 = 𝑑 + 𝛾
𝜎 𝐼 + 𝑇(𝐼)

𝜎 ,

𝑓(𝑆, 𝐼) = 𝑑 + 𝜎
𝜎 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)].

(3.3)

For 𝑆0 = 𝑁 − 𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)], we consider the following function on the interval [0, 𝐼0] ∶

ℎ(𝐼) = 𝜙(𝑆0, 𝐼) − 𝑑 + 𝜎
𝜎 [(𝑑 + 𝛾) + 𝑇(𝐼)

𝐼 ] ,

where 𝐼0 is the unique solution of the equation𝑁− 𝑑+𝜎
𝜎𝑑 [(𝑑 + 𝛾)𝐼 + 𝑇(𝐼)] = 0 (see Lemma 2.1). By (𝐻1)

and (𝐻2), the function ℎ is continuous and

ℎ′(𝐼) = 𝜕𝜙(𝑆0, 𝐼)
𝜕𝐼 − (𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′(𝐼))

𝜎𝑑
𝜕𝜙(𝑆0, 𝐼)

𝜕𝑆 − (𝑑 + 𝜎)
𝜎 (

𝑇(𝐼)
𝐼(𝑡) )

′
≤ 0,

then ℎ is monotone decreasing function of 𝐼 > 0. Furthermore, if 𝑅0 > 1, we have

lim
𝐼→0+

ℎ(𝐼) =
(𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′

𝑑 (0))
𝜎 (𝑅0 − 1) > 0,

doi:10.11131/2017/101266 Page 5



Research in Applied Mathematics

and

ℎ(𝐼0) = −
(𝑑 + 𝜎)((𝑑 + 𝛾) + 𝑇(𝐼0)

𝐼0 )
𝜎 < 0,

where 𝐼0 is a root of the equation𝑁− (𝑑+𝜎)((𝑑+𝛾)𝐼+𝑇(𝐼))
𝑑𝜎 = 0. Hence, there exist unique endemic equilibrium

𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗) in
∘
T. The proof of Theorem 3.1 is completed.

4. On the Stability of the Disease-Free Equilibrium
We have the following theorem on the global asymptotic stability of the disease-free equilibrium 𝑃0 of
(3.1).

Theorem 4.1. (i): If 𝑅0 ≤ 1, then the disease free equilibrium 𝑃0 is globally asymptotically stable.

(ii): If 𝑅0 > 1, then the disease free equilibrium 𝑃0 is unstable.

Proof. (i) Define a Lyapunov functional

𝑊0(𝑡) = 𝑉0(𝑡) + 𝑈0(𝑡),

where

𝑉0(𝑡) = ∫
𝑆

𝑁 (1 −
𝐾(𝑁)
𝐾(𝑢) ) 𝑑𝑢,

and

𝑈0(𝑡) = 𝐸 + 𝑑 + 𝜎
𝜎 𝐼.

We will show that 𝑑𝑊0(𝑡)
𝑑𝑡 ≤ 0 for all 𝑡 ≥ 0. We have:

𝑑𝑉0(𝑡)
𝑑𝑡 = 𝜇 (1 −

𝐾(𝑁)
𝐾(𝑆) ) (𝑁 − 𝑆) − 𝑓(𝑆, 𝐼) + 𝐾(𝑁)

𝐾(𝑆) 𝑓(𝑆, 𝐼),

and

𝑑𝑈0(𝑡)
𝑑𝑡 = 𝑓(𝑆, 𝐼) − (𝑑 + 𝜎)(𝑑 + 𝛾)

𝜎 𝐼 − 𝑑 + 𝜎
𝜎 𝑇(𝐼).

Then

𝑑𝑊0(𝑡)
𝑑𝑡 = 𝜇 (1 −

𝐾(𝑁)
𝐾(𝑆) ) (𝑁 − 𝑆) + 𝜙(𝑆, 𝐼)

𝐾(𝑆) 𝐾(𝑁)𝐼 −
(𝑑 + 𝜎)(𝑑 + 𝛾)

𝜎 𝐼 − 𝑑 + 𝜎
𝜎 𝑇(𝐼).

By the hypotheses (𝐻1) and (𝐻2) we obtain that

(1 −
𝐾(𝑁)
𝐾(𝑆) ) (𝑁 − 𝑆) ≤ 0,

where strict equality holds if and only if 𝑆 = 𝑁 and

𝜙(𝑆, 𝐼)
𝐾(𝑆) ≤ 1.

Furthermore, It follows from the hypothesis (𝑇1) that

𝑇 ′
𝑑 (0) ≤

𝑇(𝐼)
𝐼 .
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Hence

𝑑𝑊0(𝑡)
𝑑𝑡 ≤

(𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′
𝑑 (0))𝐼

𝜎 (𝑅0 − 1).

Therefore, 𝑅0 ≤ 1 ensures that 𝑑𝑊0(𝑡)
𝑑𝑡 ≤ 0 for all 𝑡 ≥ 0, where 𝑑𝑊0(𝑡)

𝑑𝑡 = 0 holds if (𝑆, 𝐸, 𝐼) = (𝑁, 0, 0).
Hence, it follows from system (3.1) that {𝑃0} is the largest invariant set in {(𝑆,𝐸, 𝐼)|

𝑑𝑊0(𝑡)
𝑑𝑡 = 0}. From

the Lyapunov-LaSalle asymptotic stability, we obtain that 𝑃0 is globally asymptotically stable. This
completes the proof of the claim (i).

(ii) The characteristic equation at the disease-free equilibrium 𝑃0 is given by

(𝜆 + 𝑑)(𝜆2 + 𝑎1𝜆 + 𝑎0) = 0, (4.1)

where

𝑎1 = 2𝑑 + 𝜎 + 𝛾 + 𝑇 ′
𝑑 (0),

𝑎0 = (𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′
𝑑 (0))(1 − 𝑅0).

Since 𝑎1 > 0, it is easy to show that (4.1) has a real positive root when 𝑅0 > 1. Hence, 𝑃0 is unstable
when 𝑅0 > 1. This prove the claim (ii).

5. Local Stability of the Endemic Equilibrium
We have the following theorem on the local asymptotic stability of the endemic equilibrium 𝑃 ∗ of (3.1).

Theorem 5.1. Suppose the hypothesis (𝐻0)–(𝐻2) and (𝑇0)–(𝑇1) hold.
If 𝑅0 > 1, then the endemic equilibrium 𝑃 ∗ is locally asymptotically stable.

Proof. Let 𝑥 = 𝑆 − 𝑆∗, 𝑦 = 𝐸 − 𝐸∗ and 𝑧 = 𝐼 − 𝐼∗.
Then by linearizing system (3.1) around 𝑃 ∗, we have

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑑𝑥
𝑑𝑡 = −(𝑑 +

𝜕𝑓(𝑆∗, 𝐼∗)
𝜕𝑆 )𝑥(𝑡) − 𝜕𝑓(𝑆∗, 𝐼∗)

𝜕𝐼 𝑧(𝑡),

𝑑𝑦
𝑑𝑡 =

𝜕𝑓(𝑆∗, 𝐼∗)
𝜕𝑆 𝑥(𝑡) − (𝑑 + 𝜎)𝑦(𝑡) + 𝜕𝑓(𝑆∗, 𝐼∗)

𝜕𝐼 𝑧(𝑡),

𝑑𝑧
𝑑𝑡 = 𝜎𝑦(𝑡) − (𝑑 + 𝛾 + 𝑇 ′(𝐼∗))𝑧(𝑡)

(5.1)

The characteristic equation associated to system (5.1) is given by

𝜆3 + 𝑎2𝜆2 + 𝑎1𝜆 + 𝑎0 = 0, (5.2)

where

𝑎2 = 3𝑑 + 𝜎 + 𝛾 + 𝜕𝑓(𝑆∗, 𝐼∗)
𝜕𝑆 + 𝑇 ′(𝐼∗),

𝑎1 = (𝑑 + 𝛾 + 𝑇 ′(𝐼∗))(𝑑 + 𝜎) − 𝜎 𝜕𝑓(𝑆
∗, 𝐼∗)
𝜕𝐼 + (2𝑑 + 𝜎 + 𝛾 + 𝑇 ′(𝐼∗)) (𝑑 +

𝜕𝑓(𝑆∗, 𝐼∗)
𝜕𝑆 ) ,

𝑎0 = (𝑑 +
𝜕𝑓(𝑆∗, 𝐼∗)

𝜕𝑆 ) (𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑇 ′(𝐼∗)) − 𝑑𝜎 𝜕𝑓(𝑆
∗, 𝐼∗)
𝜕𝐼 .
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By using Lemma 2.3 and equations in system (3.1) (second and third), we can easily obtain that

(𝑑 + 𝛾 + 𝑇(𝐼∗)
𝐼∗ ) (𝑑 + 𝜎) ≥ 𝜎 𝜕𝑓(𝑆

∗, 𝐼∗)
𝜕𝐼 .

Furthermore, it follows from Lemma 2.2 that

(𝑑 + 𝛾 + 𝑇 ′(𝐼∗))(𝑑 + 𝜎) ≥ 𝜎 𝜕𝑓(𝑆
∗, 𝐼∗)
𝜕𝐼 ,

this inequality leads to

𝑎𝑖 > 0, 𝑖 = 0, 1, 2,

and

𝑎1𝑎2 − 𝑎0 > 0.

Hence, by the Hurwitz’s criterion, we have the local stability of 𝑃 ∗ for 𝑅0 > 1. This concludes the proof
of Theorem 5.1.

6. Global Stability of the Endemic Equilibrium by
Geometrical Approach

In order to study the global stability of the endemic equilibrium 𝑃 ∗, we use the geometrical approach
which is developed in the papers of Smith [19] and Li andMuldowney [15]. We obtain that 𝑃 ∗ is globally
asymptotically stable when 𝑅0 > 1.

Let
∘
Ω be the interior of

Ω = {(𝑆,𝐸, 𝐼) ∈ ℝ3
+ ∶ 𝑆 + 𝐸 + 𝐼 ≤ 𝑁}.

To show the existence of a compact set in
∘
Ω that is absorbing for (3.1) is equivalent to proving that

(3.1) is uniformly persistent, which means that there exists a constant 𝑐 > 0 such that every solution

(𝑆, 𝐸, 𝐼) of (3.1) with (𝑆(0), 𝐸(0), 𝐼(0)) in
∘
Ω satisfies

lim inf
𝑡→∞

𝑆(𝑡) ≥ 𝑐, lim inf
𝑡→∞

𝐸(𝑡) ≥ 𝑐, lim inf
𝑡→∞

𝐼(𝑡) ≥ 𝑐 (6.1)

Here 𝑐 is independent of initial data in
∘
Ω, see [15]. We can prove the following result.

Proposition 6.1. The system (3.1) is uniformly persistent if and only if 𝑅0 > 1.

Proof. By Theorem 4.3 in [9], we can see that uniform persistence of system (3.1) is equivalent to
instability of the disease-free equilibrium 𝑃0 = (𝑁, 0, 0). Combine the local stability analysis for this
equilibrium in Theorem 4.1 and Theorem 4.3 in [9], we know that system (3.1) is uniformly persistent if
and only if 𝑅0 > 1.

Let |.| denote a vector norm in ℝ𝑛, (𝑛 ∈ ℕ). The Lozinski ̆𝑖 measure of a (𝑛2) × (𝑛2) matrix 𝐵 with
respect to the norm |.| is defined as 𝜇(𝐵) = limℎ→0+

|𝐼𝑛+ℎ𝐵|−1
ℎ where 𝐼𝑛 is the unit matrix.

We state our main result in the following theorem.

Theorem 6.2. Assume that 𝑅0 > 1. Then the unique endemic equilibrium 𝑃 ∗ is globally asymptotically

stable in
∘
Ω.
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Proof. By Proposition 6.1, when 𝑅0 > 1, there exists a compact set 𝐾 in
∘
Ω that is absorbing for (3.1).

The proof of the Theorem consists of choosing a suitable vector norm in ℝ3 and a 3 × 3 matrix-valued
function 𝐴(𝑥) so that

𝑞2 ∶= lim sup
𝑡→∞

sup
𝑥0∈𝐾

1
𝑡 ∫

𝑡

0
𝜇1(𝐵(𝑥(𝑠, 𝑥0)))𝑑𝑠 < 0 (6.2)

where 𝜇(𝐵) = limℎ→0+
|𝐼+ℎ𝐵|−1

ℎ , 𝐵 = 𝐴𝑔𝐴−1 +𝐴𝐽 [2]𝐴−1, 𝑥 = (𝑆,𝐸, 𝐼) and 𝑔(𝑥) denote the vector field
of (3.1), i.e. 𝑑𝑥(𝑡)𝑑𝑡 = 𝑔(𝑥). The Jacobian matrix 𝐽 = 𝜕𝑔

𝜕𝑥 associated with a general solution 𝑥(𝑡) of (3.1) is
given by:

𝐽 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑑 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 0 −𝜕𝑓(𝑆, 𝐼)𝜕𝐼

𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 −𝑑 − 𝜎 𝜕𝑓(𝑆, 𝐼)

𝜕𝐼

0 𝜎 −𝑑 − 𝛾 − 𝑇 ′(𝐼)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The second additive compound matrix 𝐽 [2] of the Jacobian matrix 𝐽 is given by

𝐽 [2] =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2𝑑 − 𝜎 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆

𝜕𝑓(𝑆, 𝐼)
𝜕𝐼

𝜕𝑓(𝑆, 𝐼)
𝜕𝐼

𝜎 −2𝑑 − 𝛾 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 − 𝑇 ′(𝐼) 0

0 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 −2𝑑 − 𝛾 − 𝜎 − 𝑇 ′(𝐼)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Set the function 𝐴(𝑥) = 𝐴(𝑆,𝐸, 𝐼) = diag{1, 𝐸𝐼 ,
𝐸
𝐼 }. Then,

𝐴𝑔𝐴−1 = diag{0, 𝐸
′

𝐸 − 𝐼′
𝐼 , 𝐸

′

𝐸 − 𝐼′
𝐼 } ,

where the matrix 𝐴𝑔 is obtained by replacing each entry 𝑎𝑖𝑗 of 𝐴(𝑥) by its derivative in the direction of
𝑔. The matrix 𝐵 = 𝐴𝑔𝐴−1 + 𝐴𝐽 [2]𝐴−1 can be written in the following block form

𝐵 =
⎛
⎜
⎜
⎝

𝐵11 𝐵12

𝐵21 𝐵22

⎞
⎟
⎟
⎠
, (6.3)

where 𝐵11 = −2𝑑 − 𝜎 − 𝜕𝑓(𝑆,𝐼)
𝜕𝑆 ,

𝐵12 =
𝐼
𝐸 (

𝜕𝑓(𝑆, 𝐼)
𝜕𝐼

𝜕𝑓(𝑆, 𝐼)
𝜕𝐼 ) , 𝐵21 =

⎛
⎜
⎜
⎝

𝜎𝐸
𝐼

0

⎞
⎟
⎟
⎠

𝐵22 =
⎛
⎜
⎜
⎜
⎝

𝐸′

𝐸 − 𝐼′
𝐼 − 2𝑑 − 𝛾 − 𝜕𝑓(𝑆, 𝐼)

𝜕𝑆 − 𝑇 ′(𝐼) 0

𝜕𝑓(𝑆, 𝐼)
𝜕𝑆

𝐸′

𝐸 − 𝐼′
𝐼 − 2𝑑 − 𝜎 − 𝛾 − 𝑇 ′(𝐼)

⎞
⎟
⎟
⎟
⎠

Let (𝑢, 𝑣, 𝑤) denote the vectors in ℝ3, we select a norm in ℝ3 as

|(𝑢, 𝑣, 𝑤)| = max{|𝑢|, |𝑣| + |𝑤|},
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and let 𝜇1 denote the Lozinski ̆𝑖 measure with respect to this norm. Using the method of estimating 𝜇1 in
([18]), we have

𝜇1(𝐵) ≤ sup(𝑔1, 𝑔2) (6.4)

where

𝑔1 = 𝜇1(𝐵11) + |𝐵12| (6.5)

𝑔2 = 𝜇1(𝐵22) + |𝐵21|, (6.6)

|𝐵12|, |𝐵21| are matrix norms with respect to the 𝑙1 vector norm. We have

𝜇1(𝐵11) = −2𝑑 − 𝜎 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 , (6.7)

|𝐵12| =
𝐼
𝐸
𝜕𝑓(𝑆, 𝐼)
𝜕𝐼 , (6.8)

|𝐵21| =
𝜎𝐸
𝐼 . (6.9)

To calculate 𝜇1(𝐵22), we add the absolute value of the off-diagonal one in each column of 𝐵22, and then
take the maximum of two sums, (see [6]), we obtain

𝜇1(𝐵22) =
𝐸′

𝐸 − 𝐼′
𝐼 − 2𝑑 − 𝛾 − 𝜕𝑓(𝑆, 𝐼)

𝜕𝑆 (6.10)

𝑔1 = −2𝑑 − 𝜎 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 + (

𝜕𝑓(𝑆, 𝐼)
𝜕𝐼 )

𝐼
𝐸 , (6.11)

𝑔2 =
𝜎𝐸
𝐼 + 𝐸′

𝐸 − 𝐼′
𝐼 + 𝜎𝐸

𝐼 − 2𝑑 − 𝛾 − 𝑇 ′(𝐼) + max{0; −𝜎} (6.12)

Rewriting the second and the third equations in (3.1), we obtain respectively,

𝐸′

𝐸 = 𝑓(𝑆, 𝐼)
𝐸 − (𝑑 + 𝜎) (6.13)

𝐼′
𝐼 = 𝜎𝐸

𝐼 − (𝑑 + 𝛾) − 𝑇(𝐼)
𝐼 (6.14)

Substituting (6.13) into (6.11) and (6.14) into (6.12), respectively, we have

𝑔1 =
𝐸′

𝐸 − 𝑑 − 𝜕𝑓(𝑆, 𝐼)
𝜕𝑆 + 𝜕𝑓(𝑆, 𝐼)

𝜕𝐼
𝐼
𝐸 − 𝑓(𝑆, 𝐼)

𝐸 (6.15)

𝑔2 =
𝐸′

𝐸 − 𝑑 + 𝑇(𝐼)
𝐼 − 𝑇 ′(𝐼) (6.16)

Using the inequality in Lemma (2.2), we have

𝑔1 ≤
𝐸′

𝐸 − 𝑑 (6.17)

Furthermore, if the treatment function 𝑇(𝐼) satisfies the hypothesis (𝑇1), then by applying Lemma (2.3),
we obtain

𝑔2 ≤
𝐸′

𝐸 − 𝑑 (6.18)
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Then, we have

𝜇1(𝐵) ≤
𝐸′

𝐸 − 𝑑 (6.19)

Since (3.1) is uniformly persistent when 𝑅0 > 1, there exists 𝑐 > 0 and 𝑡0 > 0 such that 𝑡 > 𝑡0 implies

𝑐 ≤ 𝐸(𝑡) ≤ 𝑁, and 𝑐 ≤ 𝐼(𝑡) ≤ 𝑁

for all (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝐾 .
And for 𝑡 > 𝑡0 we have

1
𝑡 ∫

𝑡

0
𝜇1(𝐵)𝑑𝑠 ≤

1
𝑡 ∫

𝑡0

0
𝜇1(𝐵)𝑑𝑠 +

1
𝑡 log

𝐸(𝑡)
𝐸(𝑡0)

− 𝑑 𝑡 − 𝑡0
𝑡 ≤ −𝑑

2 , (6.20)

for all (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝐾 , which implies

𝑞2 < 0 (6.21)

This concludes the proof.

7. Global Stability of the Endemic Equilibrium by
Lyapunov’s Method

In this section, we give a proof of the global asymptotic stability of the endemic equilibrium 𝑃∗ for
𝑅0 > 1.

Theorem 7.1. Assume that the hypothesis (𝐻0)–(𝐻2) and (𝑇0)–(𝑇1) hold. If 𝑅0 > 1, then the endemic
equilibrium 𝑃∗ of system (3.1) is the only equilibrium and is globally asymptotically stable.

Proof. We define the following Lyapunov functional.

𝑉(𝑡) = ∫
𝑆

𝑆∗ (1 −
𝑓(𝑆∗, 𝐼∗)
𝑓(𝑢, 𝐼∗) ) 𝑑𝑢

+𝑑 + 𝜎
𝜎 (𝐼 − 𝐼∗ − 𝐼∗ ln 𝐼

𝐼∗) + 𝐸 − 𝐸∗ − 𝐸∗ ln 𝐸
𝐸∗

(7.1)

The time derivative of the function 𝑉(𝑡) along the positive solution of system (3.1) becomes

𝑑𝑉(𝑡)
𝑑𝑡 = (1 −

𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) )(𝐴 − 𝑓(𝑆, 𝐼) − 𝑑𝑆)

+𝑑 + 𝜎
𝜎 (1 −

𝐼∗
𝐼 ) (𝜎𝐸 − (𝑑 + 𝛾)𝐼 − 𝑇(𝐼))

+(1 −
𝐸∗

𝐸(𝑡))(𝑓(𝑆, 𝐼) − (𝑑 + 𝜎)𝐸)
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Using the relations 𝐴 = 𝑑𝑆∗ +𝑓(𝑆∗, 𝐼∗) , (𝑑 + 𝜎)𝐸∗ = 𝑓(𝑆∗, 𝐼∗), and 𝜎𝐸∗ = (𝑑+ 𝛾)𝐼∗ +𝑇(𝐼∗) we have

𝑑𝑉(𝑡)
𝑑𝑡 = 𝑑(𝑆∗ − 𝑆)(1 −

𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) )

+𝑓(𝑆∗, 𝐼∗)(2 +
𝑓(𝑆, 𝐼)
𝑓(𝑆, 𝐼∗) −

𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) − 𝐼∗𝐸

𝐼𝐸∗ − (𝑑 + 𝛾)𝐼 + 𝑇
𝜎𝐸∗ + (𝑑 + 𝛾)𝐼∗

𝜎𝐸∗

+ 𝑇𝐼∗
𝜎𝐸∗𝐼 − 𝐸∗𝑓(𝑆, 𝐼)

𝐸𝑓(𝑆∗), 𝐼∗)

= 𝑑(𝑆∗ − 𝑆)(1 −
𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) )

+𝑓(𝑆∗, 𝐼∗)(−1 −
𝐼
𝐼∗ +

𝑓(𝑆, 𝐼)
𝑓(𝑆, 𝐼∗) +

𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) )

+𝑓(𝑆∗, 𝐼∗)(4 −
𝐼∗𝐸
𝐼𝐸∗ − 𝑓(𝑆∗, 𝐼∗)

𝑓(𝑆, 𝐼∗) − 𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) − 𝐸∗

𝐸
𝑓(𝑆, 𝐼)
𝑓(𝑆∗, 𝐼∗))

+ 𝐼
𝐼∗ −

𝑇(𝐼∗)
𝜎𝐸∗ − 𝑇(𝐼)

𝜎𝐸∗ −
(𝑑 + 𝛾)𝐼
𝜎𝐸∗ + 𝐼∗𝑇(𝐼)

𝜎𝐸∗𝐼

From hypothesis (𝐻1), we have

(1 −
𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) ) (𝑆∗ − 𝑆) ≤ 0,

and from hypothesis (𝐻1) and (𝐻2), we have

−1 − 𝐼
𝐼∗ +

𝑓(𝑆, 𝐼)
𝑓(𝑆, 𝐼∗) +

𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) = (

𝐼
𝐼∗ −

𝑓(𝑆, 𝐼)
𝑓(𝑆, 𝐼∗))(

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) − 1) ≤ 0.

Furthermore, since

ln(
𝐼∗𝐸
𝐼𝐸∗) + ln(

𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) ) + ln(

𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) ) + ln(

𝐸∗

𝐸
𝑓(𝑆, 𝐼)
𝑓(𝑆∗, 𝐼∗)) = 0,

then, we can easily obtain that

4 − 𝐼∗𝐸
𝐼(𝑡)𝐸∗ − 𝑓(𝑆∗, 𝐼∗)

𝑓(𝑆, 𝐼∗) − 𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) − 𝐸∗

𝐸
𝑓(𝑆, 𝐼)
𝑓(𝑆∗, 𝐼∗)

= 𝑔 (
𝐼∗𝐸
𝐼𝐸∗) + 𝑔 (

𝑓(𝑆∗, 𝐼∗)
𝑓(𝑆, 𝐼∗) ) + 𝑔 (

𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) ) + 𝑔 (

𝐸∗

𝐸
𝑓(𝑆, 𝐼)
𝑓(𝑆∗, 𝐼∗))

where 𝑔(𝑥) = 1 − 𝑥 + ln(𝑥).
Since the function 𝑔 is always non-positive for any 𝑥 > 0, and 𝑔(𝑥) = 0 if and only if 𝑥 = 1, we obtain

4 − 𝐼∗𝐸
𝐼𝐸∗ − 𝑓(𝑆∗, 𝐼∗)

𝑓(𝑆, 𝐼∗) − 𝐼
𝐼∗

𝑓(𝑆, 𝐼∗)
𝑓(𝑆, 𝐼) − 𝐸∗

𝐸
𝑓(𝑆, 𝐼)
𝑓(𝑆∗, 𝐼∗) ≤ 0.

Finally, from the hypothesis (𝑇1), we have

𝐼
𝐼∗ −

𝑇(𝐼∗)
𝜎𝐸∗ − 𝑇(𝐼)

𝜎𝐸∗ −
(𝑑 + 𝛾)𝐼
𝜎𝐸∗ + 𝐼∗𝑇(𝐼)

𝜎𝐸∗𝐼 = (𝐼 − 𝐼∗)
𝜎𝐸∗ (

𝑇(𝐼∗)
𝐼∗ − 𝑇(𝐼)

𝐼 ) ≤ 0.

Thus 𝑑𝑉(𝑡)
𝑑𝑡 is non-positive. Consequently the functional 𝑉(𝑡) satisfies all the conditions of Theorem 5.3 of

Kuang [12]. This concludes the proof of Theorem (7.1).
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Figure 1: The effect of a treatment on the evolution of infectious individuals: without treatment (left) and with
treatment (right).
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Figure 2: The effect of a treatment on the evolution of exposed individuals: without treatment (left) and with
treatment (right).
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8. Numerical Simulations
In this section, we give a numerical simulations supporting the theoretical analysis given in the previous
sections. Consider the following incidence functions:

𝑓(𝑆, 𝐼) = 𝛽𝑆𝐼
1 + 𝛼1𝑆 + 𝛼2𝐼

,

and

𝑇(𝐼) = 𝑟1𝐼2
1 + 𝑟2𝐼

.

Let’s compare the principal results of SEIRmodel (system (1.1) with treatment) and SEIRImodel (system
(1.1) without treatment) by a numerical illustration.

We take the following parameters:

𝛼1 = 0.9, 𝛼2 = 0.9, 𝛽 = 0.1, 𝜇 = 0.005, 𝛾 = 0.02, 𝑟1 = 0.5, 𝑟2 = 0.1, 𝜎 = 1/10.

In Figures 1 and 2, the SEIR epidemic model (with treatment) and the SEIRI epidemic model (without
treatment) generate the same global asymptotic proprieties. However, we find that the treatment decreases
the number of exposed and infectious individuals at equilibrium (see Figure 1 and Figure 2).

9. Discussion
In (2014, [21]), Zhang studied the model (1.10) with saturated incidence rate and saturated treatment
function. The author used a geometric approach to prove that there is a sharp threshold parameter𝑅0 (the
basic reproduction number) which completely determines the global dynamics of the endemic equilibrium
under the restriction 0 ≤ 𝑘 < 𝑘1, and 𝑑 > 𝑟. In this work, we presented an extension of Zhang’s paper
[21] by choosing a generalized nonlinear incidence function and generalized treatment function. Our
main contribution is to show that the endemic equilibrium is globally asymptotically stable without any
restriction on the parameter values and depend only on the property of treatment function. Further, we
show that Lyapunov’s method and Li’s geometrical approach give the same results.
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