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We define a cyclic basis for the vectorspace of truncated Fourier series. The basis has
several nice properties, such as positivity, summing to 1, that are often required in
computer aided design, and that are used by designers in order to control curves by
manipulating control points. Our curves have cyclic symmetry, i.e. the control points can
be cyclically arranged and the curve does not change when the control points are cyclically
permuted. We provide an explicit formula for the elevation of the degree from n to n + r,
r � 1 and prove that the control polygon of the degree elevated curve converges to the
curve itself if r tends to infinity. Variation diminishing property of the curve is also verified.
The proposed basis functions are suitable for the description of closed curves and surfaces
with C∞ continuity at all of their points.

© 2009 Elsevier B.V. All rights reserved.

Introduction

Plane curves or space curves are images of continuous functions. By choosing a specific basis in a fixed vectorspace of
functions, one can associate a geometric meaning to a coefficient, namely the control point. When the basis consists of
positive functions summing to 1, then the curve is in the convex hull of the control points, and the relation between curve
and control points is invariant under affine transformations.

Other properties of a basis are also important in design, even though they cannot be formulated so clearly: we want a
basis function to have one local maximum, and be as small as possible at points that are sufficiently far away from the max-
imum. In most cases endpoint interpolation is also required. Normalized totally positive basis with endpoint interpolation
property are properties satisfied by a normalized B-basis, which, in some sense, has optimal shape preserving properties
(Carnicer and Peña, 1993, 1994). Curves with B-basis can also be described by B-algorithms (cf. Mainar et al., 1999), which
is a corner cutting algorithm, and a special case of which is the de Casteljau subdivision algorithm.

Examples for such basis functions are the Bernstein polynomials and its numerous variations. Recently B-bases have been
found and studied in spaces including trigonometric functions as well (Zhang, 1996; Mainar et al., 2001).

In this paper, we will devise a basis for the vectorspace

Vn = 〈
1, cos(u), sin(u), . . . , cos(nu), sin(nu)

〉
of trigonometric polynomials of degree at most n, i.e. of truncated Fourier series. Peña (1997) proved that this space does
not have B-basis on the domain [0,π ], however it has on the interval of length < π , cf. Sánchez-Reyes (1998). Therefore,
our proposed cyclic basis is not a B-basis, however it shares the majority of their advantageous properties.
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In order to describe a closed curve by means of a Bernstein-like basis and control points d0,d1, . . . ,dn , the equality
d0 = dn has to be fulfilled, and d0 will be on the curve. This condition guaranties only C0 continuity at d0, for continuity
of order k at this point the degree of the curve has to be increased to n + k and its control points a j have to be specified
by a j = d j mod(n+1) ( j = 0,1, . . . ,n + k). In case of B-spline representation the degree does not have to be increased but the
control points have to be specified in the same manner.

Instead of endpoint interpolation property, in this paper we intend to parametrize closed curves. Thus, our basis will
have cyclic symmetry, i.e. the curve does not change when the control points are cyclically permuted. Further advantage
of the cyclic basis is that it does not need redundant control points and all points of the curve are of continuity C∞ .
This property of this basis is even more advantageous in surface modeling, since to fulfill the geometric constraints of Ck

continuity along the joint of patches is more complicated (e.g. think of the poles of a sphere composed of NURBS patches).
High order continuity is required typically in optical design. Reflector design of vehicle lamps, free-from lens con-

structions and other ultra-precision optical components naturally requires surfaces of very high order continuity with no
singularities. In these areas our method can provide a good alternative to currently used spline surfaces. Moreover, our
cyclic basis is useful for designing closed loops with circular symmetry, such as blossoms, ornaments, etc.

1. Trigonometric polynomials

Let n be a positive integer and we consider the vectorspace Vn . The class of curves that can be parameterized by such
functions (called trigonometric curves) includes numerous classical curves such as limaçon of Pascal, trifolium, epi-cycloid,
hypo-cycloid, etc., as special cases. They also arise naturally in numerous areas such as linear differential equations, Fourier
analysis, almost periodic functions (under the name of generalized trigonometric polynomials), representation of groups
(utilizing its periodicity), electrical circuit analysis (Lissajous curves, as often shown on oscilloscopes), fracture mechanics
(as the caustic pattern appearing when a fractured material is shone by a laser beam), etc. The class of trigonometric
curves has also been studied under different names (higher cycloid curves, higher planet motions) in Wunderlich (1947),
Wunderlich (1950), Pottmann (1984). Paper (Schuster, 2000) proposes a method for the interpolation of odd number of
points with closed curves, that are algebraic curves described by a trigonometric parametrization.

The union of all spaces Vn is closed under multiplication, because of the elementary trigonometric identities

cosα cosβ = cos(α + β) + cos(α − β)

2
, (1)

cosα sinβ = sin(β + α) + sin(β − α)

2
, (2)

sinα sinβ = cos(α + β) − cos(α − β)

−2
.

As a consequence, the class of trigonometric curves includes the polynomial Bézier curves (with a different parametrization).
It is a subclass of the class of rational Bézier curves, because the curves can be re-parametrized by setting u = arctan(t)/2,
and the result is a rational parametrization. These curves, called harmonic rational Bézier curves or HRB curves, have been
extensively studied in Ge et al. (1997), Sánchez-Reyes (1998).

If f is an arbitrary periodic and continuous function of bounded variation, then the Fourier expansion of f converges
uniformly to f by a theorem of Jordan (see Goldberg (1961)). In particular, this holds for piecewise differentiable functions.
As a consequence, any closed piecewise differentiable curve can be approximated by trigonometric curves.

In the forthcoming sections we will use persistently the identities

1 + cosα = 2 cos2 α

2
, (3)

n∑
i=0

cos(ϕ + iα) = sin (n+1)α
2 cos(ϕ + nα

2 )

sin α
2

, (4)

n∑
i=0

sin(ϕ + iα) = sin (n+1)α
2 sin(ϕ + nα

2 )

sin α
2

(5)

and

cos2n α = 1

22n

(
2n

n

)
+ 1

22n−1

n−1∑
k=0

(
2n

k

)
cos

(
2(n − k)α

)
. (6)

(From hereon, a number in parenthesis above the equality sign indicates that we apply the corresponding trigonometric
identity.)
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2. Basis

We want to achieve that a cyclic shift of control points has the same image curve, with a different parametrization of
course. By a result of Hong and Schicho (1998), a re-parametrization of a trigonometric curve is always linear, i.e. a phase
change. This implies that all basis functions are fixed if we fix one:

Ci,n(u) := C0,n

(
u + 2π i

2n + 1

)
for i = 1, . . . ,2n.

Hence it suffices to specify C0,n .
When we choose C0,n as a linear combination of 1, cos(u), . . . , cos(nu), we get symmetric functions. Then the curve will

also stay the same when we reverse the order of the control points.
The linear combinations of 1, cos(u), . . . , cos(nu) are exactly those trigonometric functions that can be written as poly-

nomials in cos(u) of degree at most n, hence we have

C0,n(u) := Pn(cos u),

for some polynomial Pn of degree at most n. The polynomial Pn should be non-negative in the interval [−1,1], in order
that C0,n be positive for all u. If we want C0,n to have a unique local maximum at u = 0 (unique up to periodicity), then
we need to have a unique maximum of Pn|[−1,1] at 1. We want to have C0,n as small as possible “elsewhere”, hence make
sure that Pn|[−1,1] is small elsewhere. It seems to us that the best choice for Pn is the zeroth Bernstein polynomial of order
n with nodes −1,1, properly scaled, i.e. we have

Pn := cn

(
1 + t

2

)n

,

where the constant cn is yet to be determined.

Theorem 1. With the definitions of Ci,n, C0,n, Pn above, we have that
∑2n

i=0 Ci,n is a constant.

Proof. The sum function
∑2n

i=0 Ci,n(u) can be expressed for all u ∈ R as

2n∑
i=0

Ci,n(u) = cn

2n

2n∑
i=0

(
1 + cos

(
u + 2iπ

2n + 1

))n

(3)= cn

2n∑
i=0

cos2n
(

u

2
+ iπ

2n + 1

)

(6)= cn

2n∑
i=0

(
1

22n

(
2n

n

)
+ 1

22n−1

n−1∑
k=0

(
2n

k

)
cos

(
(n − k)u + 2(n − k)iπ

2n + 1

))

= 2n + 1

22n

(
2n

n

)
cn + cn

22n−1

n−1∑
k=0

(
2n

k

) 2n∑
i=0

cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)

(4)= 2n + 1

22n

(
2n

n

)
cn + cn

22n−1

n−1∑
k=0

(
2n

k

)
sin((n − k)π) cos((n − k)u + 2n(n−k)π

2n+1 )

sin (n−k)π
2n+1

= 2n + 1

22n

(
2n

n

)
cn. �

Corollary 2. In order to ensure that these functions form a partition of unity, the constant cn must be defined as

cn = 22n

(2n + 1)
(2n

n

) = (2nn!)2

(2n + 1)! , (7)

for which the recursion{
c1 = 2

3 ,

cn = 2n
2n+1 cn−1, n > 1

holds.
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Theorem 3 (Linear independence). Functions

Ci,n(u) = cn

2n

(
1 + cos

(
u + 2π i

2n + 1

))n

(i = 0,1, . . . ,2n)

form a basis of vectorspace Vn.

Proof. Let us introduce the notation λn = 2π
2n+1 . Naturally, it is enough to prove that functions(

1 + cos(u + iλn)
)n

(i = 0,1, . . . ,2n) (8)

are linearly independent.
Functions (8) are periodic with the period 2π , thus we can study the properties of these functions on the interval

[−2π,0].
By contradiction, suppose that functions (8) are linearly dependent. In this case ∃a0,a1, . . . ,a2n ∈ R such that a2

0 + a2
1 +

· · · + a2
2n �= 0 and

2n∑
i=0

ai
(
1 + cos(u + iλn)

)n = 0, ∀u ∈ [−2π,0]. (9)

Substituting the angles uk = −kλn (k = 0,1, . . . ,2n) into Eq. (9), we get a homogeneous linear system for the unknown
parameters a0,a1, . . . ,a2n . The matrix representation of this system is given by

Λ2n+1 · A = 02n+1,1, (10)

where

Λ2n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2n (1 + cosλn)n . . . (1 + cos(2n − 1)λn)n (1 + cos 2nλn)n

(1 + cosλn)n 2n
. . .

.

.

. (1 + cos(2n − 1)λn)n

.

.

. (1 + cosλn)n
. . . (1 + cosλn)n

.

.

.

(1 + cos(2n − 1)λn)n
.
.
.

. . . 2n (1 + cosλn)n

(1 + cos 2nλn)n (1 + cos(2n − 1)λn)n . . . (1 + cosλn)n 2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

is a symmetric band diagonal matrix and A = [a0 a1 . . . a2n−1 a2n]T .
We will show that the homogeneous system (10) admits only the trivial solution a0 = a1 = · · · = a2n = 0, that contradicts

the linear dependence of the function system (8).
By means of the trigonometric identity cosα = cos(2π − α) we obtain that

cos(2n − i)λn = cos

(
2π − 2(2n − i)π

2n + 1

)
= cos

(
(i + 1)

2π

2n + 1

)
= cos(i + 1)λn (i = 0, . . . ,2n − 1). (12)

We introduce the variables

x0 = 2n, xi = x2n+1−i = (1 + cos iλn)n (i = 1,2, . . . ,n) (13)

and the notations

sλn
j = x0 + x1ω j + x2ω

2
j + · · · + x2nω

2n
j ( j = 0,1, . . . ,2n),

where ω j = e
2π i j
2n+1 ( j = 0,1, . . . ,2n) are the (2n + 1)th roots of unity.

By the help of equalities (12) and variables (13) the matrix Λ2n+1 takes the circulant form

Λ2n+1 =

⎡
⎢⎢⎣

x0 x1 . . . x2n

x2n x0 . . . x2n−1
.
.
.

.

.

.
. . .

.

.

.

x1 x2 . . . x0

⎤
⎥⎥⎦ ,

the eigenvalues of which are exactly the real numbers sλn
j ( j = 0,1, . . . ,2n). Thus, the determinant of Λ2n+1 can be ex-

pressed as

det Λ2n+1 =
2n∏

sλn
j . (14)
j=0
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Hereafter, we will show that sλn
j > 0 ( j = 0,1, . . . ,2n). The eigenvalues sλn

j ( j = 0,1, . . . ,2n) can be written in the form

sλn
j =

2n∑
k=0

xkω
k
j

(3)= 2n + 2n
n∑

k=1

(
ωk

j + ω2n+1−k
j

)
cos2n kλn

2

= 2n + 2n+1
n∑

k=1

cos( jkλn) cos2n kλn

2
.

By simple calculations we get the equality

cos
(
(2n + 1 − j)kλn

) = cos( jkλn) (k = 1,2, . . . ,n),

thus we have the symmetry

sλn
j = sλn

2n+1− j ( j = 1,2, . . . ,n).

Now, we give the closed form of the jth eigenvalue ( j = 0,1,2, . . . ,n).
In the case j = 0 we obtain

sλn
0 =

(2n
n

)
(2n + 1)

2n

using trigonometric identities (6), (4) and (2). (Technical details can be found in Róth et al. (2008).)
Applying the sequence of identities (6), (4), (1), (4) and (2) we obtain

sλn
j =

( 2n
n− j

)
(2n + 1)

2n
( j = 1,2, . . . ,n).

(Technical details can be found in Róth et al. (2008).)
Thus, the final form of (14) is

det Λ2n+1 = sλn
0

(
n∏

j=1

sλn
j

)2

> 0,

which means that the system (10) has only the trivial solution a0 = a1 = · · · = a2n = 0. �
Remark 4. The function system {Ci,n}2n

i=0 is not a totally positive (or order complete Chebyshev) system. A counterexample
can easily be constructed, e.g. for n = 2.

3. Cyclic curves

We list some geometric properties of the cyclic curve

an(u) =
2n∑

i=0

Ci,n(u)di, u ∈ [−π,π ], n � 1, (15)

Ci,n(u) = cn

2n

(
1 + cos

(
u + 2π i

2n + 1

))n

, (16)

of degree n, where di ∈ R
δ (δ � 2) are called control points and cn is defined by (7). Actually, the domain of (15) can be any

interval of length 2π , due to the periodicity of the basis functions.
Obviously, the curve is contained in the convex hull of its control points. The unique maximum of basis function Ci,n(u)

is at u = −2π i/(2n + 1), therefore control point di has the most significant effect on the shape of the curve in the neigh-
borhood of the point an(−2π i/(2n + 1)).

Ci,n(u) vanishes at u = π − 2π i/(2n + 1), thus control point di has no effect on the corresponding point. That is, this
point of the curve is invariant under the modification of control point di . Except this point, control point di affects all the
points of the curve, i.e. the curve is globally controlled. These properties are illustrated in Fig. 1.

However, we emphasize in the next proposition that while control points have a global effect on the shape, this influence
dramatically decreases on further parts of the curve, especially for higher values of n.

Proposition 5. The increase of n decreases the effect of control points on the shape of the curve.
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Fig. 1. Three different curves obtained by the translation of control point d0; point a2(π) is unchanged.

Fig. 2. Modeling of complex shapes; n = 7 left hand side, n = 4 right hand side.

Proof. Let us consider the basis function

C0,n(u) = cn

2n

(
1 + cos(u)

)n
, u ∈ [−π,π ]

and a small predefined constant ε ∈ (0,1). The angles where function C0,n equals to ε are

±arccos

(
2

(
ε

cn

) 1
n

− 1

)
.

Due to the properties of the basis functions, inequality C0,n(u) � ε holds between these two angles. It can be shown easily
that

lim
n→∞

(
n

√
(2n + 1)

(
2n

n

))
= 4

and

lim
n→∞

n
√

ε = 1.

Thus, we have the limits

lim
n→∞±arccos

(
2

(
ε

cn

) 1
n

− 1

)
= ±arccos 1 = 0,

which means that as degree n tends to infinity the control point d0 has zero influence on the curve. �
Several test examples show that this decrease of the influence is fast.
Using this curve description one can model various shapes by means of the specification of control points. This is

illustrated in Fig. 2.
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Fig. 3. Constrained shape modification.

Cyclic curves are uniquely determined by their control polygon, therefore we have only one option for their shape
modification which is control point repositioning. Like in case of any curve determined by the combination of control
points and basis functions, if we translate a control point, points of the curve will move along straight lines parallel to the
translation vector (functional translation). This enables us to implement shape modification subject to positional constraint.
Assuming that we want to move the point an(ũ) of the curve to the new location p by the translation of control point d j,

( j ∈ {0,1, . . . ,2n}), an easy calculation shows that the shift vector is

t = p − an(ũ)

C j,n(ũ)

provided C j,n(ũ) �= 0. Such a shape modification is illustrated in Fig. 3.

3.1. Hodograph, derivatives

Curve (15) can be written in the form

an(u) = cn

2n

2n∑
i=0

(
1 + cos(u + iλn)

)n
di

(3)= cn

2n∑
i=0

cos2n
(

u

2
+ iπ

2n + 1

)
di

(6)=
(2n

n

)
cn

22n

2n∑
i=0

di + cn

22n−1

2n∑
i=0

n−1∑
k=0

(
2n

k

)
cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di

(7)= 1

2n + 1

2n∑
i=0

di + 2

(2n + 1)
(2n

n

) 2n∑
i=0

n−1∑
k=0

(
2n

k

)
cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di,

where 1
2n+1

∑2n
i=0 di is the center of gravity of the control polygon.

Thus, the hodograph of curve (15) is

d

du
an(u) = − 2

(2n + 1)
(2n

n

) 2n∑
i=0

n−1∑
k=0

(
2n

k

)
(n − k) sin

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di .

The rth (r � 1) order derivatives of curve (15) are given by

dr

dur
an(u) = 2

(2n + 1)
(2n

n

) 2n∑
i=0

n−1∑
k=0

(
2n

k

)
(n − k)r cos

(
(n − k)u + 2(n − k)iπ

2n + 1
+ rπ

2

)
di .

3.2. Degree elevation

Assuming that we have a cyclic curve of degree n, we provide an explicit formula for the control points of that cyclic
curve of degree n + r, (r � 1) which describes exactly the given curve. Moreover, we show that the control polygon of the
degree elevated curve converges to the curve itself as r tends to infinity.
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Theorem 6 (Degree elevation). Let an(u) be the cyclic curve determined by the control polygon

Dn = [di]2n
i=0 ∈ M1,2n+1

(
R

δ
)

(δ � 2,n � 1)

and consider the curve

gn,r(u) := gn,r(u;Dn)

= 1

2n + 1

2n∑
i=0

di +
(2(n+r)

n+r

)
cn

22n−1

n−1∑
k=0

(2n
k

)
(2(n+r)

r+k

) 2n∑
i=0

cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di

= 1

2n + 1

2n∑
i=0

di + 2
(2(n+r)

n+r

)
(2n + 1)

(2n
n

) n−1∑
k=0

(2n
k

)
(2(n+r)

r+k

) 2n∑
i=0

cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di, u ∈ [−2π,0], r � 1

determined by the same sequence of points. Consider also the cyclic curve

an+r(u) = cn+r

2n+r

2(n+r)∑
j=0

(
1 + cos

(
u + 2 jπ

2(n + r) + 1

))n+r

dr
j, u ∈ [−2π,0]

of degree n + r determined by the control points

dr
j = gn,r

(
− 2 jπ

2(n + r) + 1

)
∈ R

δ, j = 0,1, . . . ,2(n + r). (17)

Then the equality

an(u) ≡ an+r(u), ∀u ∈ [−2π,0]
holds, i.e. the procedure above provides a closed formula for the elevation of the degree from n to n + r.

Proof. Here we present only an outline of the proof, the details of rather lengthy reformulations can be found in Róth et al.
(2008). We perform the following reformulations on the curve an+r .

an+r(u) = cn+r

2n+r

2(n+r)∑
j=0

(
1 + cos

(
u + 2 jπ

2(n + r) + 1

))n+r

dr
j

(2), (6)= 1

2n + 1

2n∑
i=0

di + s1(u) + s2(u) + s3(u),

where

s1(u) = cn+r

22(n+r)−1

(
1

2n + 1

2n∑
i=0

di

)

·
(

n+r−1∑
l=0

(
2(n + r)

l

) 2(n+r)∑
j=0

cos

(
(n + r − l)u + 2(n + r − l) jπ

2(n + r) + 1

))

(4)= 0,

s2(u) = 1

2(n + r) + 1

(2(n+r)
n+r

)
cn

22n−1

·
2(n+r)∑

j=0

n−1∑
k=0

(2n
k

)
(2(n+r)

r+k

) 2n∑
i=0

cos

(
2(n − k)π

(
i

2n + 1
− j

2(n + r) + 1

))
di

(4), (5)= 0

and

s3(u) = s31(u) + s32(u),

where
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s31(u) = cn+r

22(n+r)−1

(2(n+r)
n+r

)
cn

22n−1

·
2(n+r)∑

j=0

(
r−1∑
l=0

(
2(n + r)

l

)
cos

(
(n + r − l)u + 2(n + r − l) jπ

2(n + r) + 1

))

·
(

n−1∑
k=0

(2n
k

)
(2(n+r)

r+k

) 2n∑
i=0

cos

(
2(n − k)π

(
i

2n + 1
− j

2(n + r) + 1

))
di

)

(4), (5)= 0

and after an index transformation we obtain

s32(u) = cn+r

22(n+r)−1

(2(n+r)
n+r

)
cn

22n−1

·
2(n+r)∑

j=0

(
n−1∑
l=0

(
2(n + r)

r + l

)
cos

(
(n − l)u + 2(n − l) jπ

2(n + r) + 1

))

·
(

n−1∑
k=0

(2n
k

)
(2(n+r)

r+k

) 2n∑
i=0

cos

(
2(n − k)π

(
i

2n + 1
− j

2(n + r) + 1

))
di

)
.

It can be shown that in the expression above only those terms differ from zero that are independent of j. This happens
only in that subtotal where l = k. In any other subtotals we can rearrange the sum in such a way that for the innermost
summation (with respect to j) we can apply trigonometric identity (4) or (5) that results zero. Thus,

s32(u)
(4), (5 )= cn

22n−1

n−1∑
k=0

(
2n

k

) 2n∑
i=0

cos

(
(n − k)u + 2(n − k)π i

2n + 1

)
di .

Therefore,

an+r(u) = an(u), ∀u ∈ [−2π,0]. �
Proposition 7 (Convergence). Equality

lim
r→∞ gn,r(u) = an(u), ∀u ∈ [−2π,0]

holds, i.e. the control polygon Dn+r = [dr
i ]2(n+r)

i=0 of the degree elevated curve converges to the cyclic curve an(u).

Proof. Performing the reformulation

an(u) = cn

2n

2n∑
i=0

(
1 + cos

(
u + 2iπ

2n + 1

))n

di

= 1

2n + 1

2n∑
i=0

di + cn

22n−1

n−1∑
k=0

(
2n

k

) 2n∑
i=0

cos

(
(n − k)u + 2(n − k)iπ

2n + 1

)
di

and applying the limits

lim
r→∞
r�1

(2(n+r)
n+r

)
(2(n+r)

r+k

) = 1, ∀k ∈ {0,1, . . . ,n − 1}, n � 1

we obtain the equality

lim
r→∞ gn,r(u) = an(u), ∀u ∈ [−2π,0]. �

Fig. 4 illustrates this convergence by means of a planar curve of degree three and by a spatial curve of degree four.
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Fig. 4. (a) A plane cyclic curve of degree 3 with its original and degree elevated control polygons. (b) The loci of vertices of the degree elevated control
polygons converge to the cyclic curve. (c)–(d) A similar example is provided in case of a space cyclic curve of degree 4.

3.3. Variation diminishing

Before starting our results we have to borrow and explain a few concepts and properties that were introduced and
proved in Pólya and Schoenberg (1958).

Definition 8 (Cyclic variations of sign of finite real sequences). If d = {di}n
i=1 is a finite sequence of real numbers we shall denote

by v(d) the number of variations of sign in the terms of this sequence and the number

vc(d) =
{

0, if all di = 0,

v(di,di+1, . . . ,dn,d1,d2, . . . ,di−1,di), if di �= 0

denotes the cyclic variations of sign of sequence d.

If one thinks of the di as arranged clockwise in cyclic order, it becomes obvious that vc(d) does not depend on the
particular non-vanishing term di we start with. Notice that vc(d) is always an even number.

Definition 9 (Cyclic variations of sign of real 2π -periodic functions). Let f (u) be a real-valued function of period 2π . Let U the
set of all real sequences u = {ui}n that fulfill the condition
i=1
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u1 < u2 < · · · < un < u1 + 2π. (18)

The cyclic variations of sign of f (u) is defined by the number

vc( f ) = sup
u∈U

{
vc(d): d = {

f (ui)
}n

i=1

}
.

Note, the number vc( f ), if finite, is even (e.g., vc(sin u) = 2, vc(sin 2u) = 4, vc(| sin u|) = 0).

Definition 10 (Variation diminishing transformations on the circle). Such a transformation is characterized by a non-negative
weight-function, or kernel, Ω(u), of period 2π , of bounded variation and normalized by the conditions

1

2π

2π∫
0

Ω(u)du = 1, Ω(u) = 1

2

(
Ω(u + 0) + Ω(u − 0)

)
.

Let f (u) be an arbitrary 2π -periodic real-valued and integrable function. We say that the convolution transformation

g(u) = 1

2π

2π∫
0

Ω(u − ϕ) f (ϕ)dϕ (19)

is variation diminishing provided that the inequality

vc(g) � vc( f )

holds for each f . We mean the same thing if we say that Ω(u) is a variation diminishing kernel.

Definition 11 (de la Vallée Poussin kernels and means). The de la Vallée Poussin kernel is defined as

ωn(u) = 1(2n
n

)(2 cos
u

2

)2n

, n � 1, (20)

the Fourier expansion of which has the simple form

ωn(u) = 1(2n
n

) n∑
k=−n

(
2n

n + k

)
eiku = 1 + 2

n∑
k=1

n!
(n − k)!

n!
(n + k)! cos ku.

For Ω(u) = ωn(u) the transformation (19) becomes

Vn(u) = 1(2n
n

) 1

2π

2π∫
0

(
2 cos

u − ϕ

2

)2n

f (ϕ)dϕ

and defines the de la Vallée Poussin mean, or simply V -mean, of the function f (u).

It is easily verified that Vn(u) is a trigonometric polynomial of an order not exceeding n, which is readily expressed in
terms of the Fourier coefficients of f (u). Indeed, if

f (u) ≈
∞∑

k=−∞
fkeiku ( f−k = f̄k), (21)

we obtain

Vn(u) = 1(2n
n

) ∞∑
k=−∞

(
2n

n + k

)
fkeiku

by convoluting (20) and (21). In terms of real Fourier series (i.e., 2 fk = ak − ibk)

f (u) ≈ a0

2
+

∞∑
k=1

(ak cos ku + bk sin ku)

we find
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Vn(u) = a0

2
+ 1(2n

n

) n∑
k=1

(
2n

n + k

)
(ak cos ku + bk sin ku).

The main results of article (Pólya and Schoenberg, 1958) were the fact that the de Vallée Poussin kernels ωn (n � 1)
possess the cyclic variation diminishing property. However, the authors also demonstrated several lemmas. One of them
(see Lemma 3 in Pólya and Schoenberg (1958), p. 300) is very important for us:

Lemma 12. Let ϕ1,ϕ2, . . . , ϕm (m � 2) be m points in counterclockwise order on the circle such that

ϕ1 < ϕ2 < · · · < ϕm < ϕ1 + 2π

and let

Tn(u) =
m∑

k=1

ωn(u − ϕk)ak, Tn(u) �≡ 0,

where at least two among the ak do not vanish. Then

zc(Tn) � vc(a),

where a = {ak}m
k=1 and the number zc(Tn) denotes the number of real zeros of Tn(u) within a period, including multiplicities.

The following theorem proves that no hyperplane can intersect a cyclic curve more times than its control polygon.

Theorem 13 (Variation diminishing). Cyclic curve (15) of degree n � 1 possesses the cyclic variation diminishing property.

Proof. Consider the equation

H(x1, x2, . . . , xδ) = h1x1 + h2x2 + · · · + hδxδ = 0

of a hyperplane in R
δ , where

∑δ
i=1h2

i = 1. Let

di = H(di) = H(di1,di2, . . . ,diδ) (i = 0,1, . . . ,2n)

and consider the function

h(u) = H

(
2n∑

i=0

Ci,n(u)di

)
=

2n∑
i=0

Ci,n(u)H(di) =
2n∑

i=0

Ci,n(u)di .

Thus, it is sufficient to show that for all real sequences d = {di}2n
i=0 (where at least two among the di do not vanish) the

inequality

vc(h) � vc(d)

holds.
Observe that the basis function Ci,n(u) (i = 0,1, . . . ,2n) can be written in the form

Ci,n(u) = cn

2n

(
1 + cos

(
u + 2iπ

2n + 1

))n

= 22n

2n(2n + 1)
(2n

n

)2n cos2n
(

u

2
+ iπ

2n + 1

)

= 1

2n + 1

1(2n
n

)(2 cos

(
u

2
+ iπ

2n + 1

))2n

= 1

2n + 1
ωn

(
u + 2iπ

2n + 1

)
.

Thus, for arbitrary but fixed real sequence d = {di}2n
i=0 (where at least two among the di do not vanish)

h(u) =
2n∑

Ci,n(u)di = 1

2n + 1

2n∑
ωn

(
u + 2iπ

2n + 1

)
di .
i=0 i=0
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Now, using Lemma 12 (with settings m = 2n + 1, ϕm+1−k = − 2(k−1)π
2n+1 , am+1−k = dk−1, k = 1,2, . . . ,m, a = {ak}m

k=1) we
conclude that

vc(h) � zc(h) = zc

(
1

2n + 1

2n∑
i=0

ωn

(
u + 2iπ

2n + 1

)
di

)

= zc

(
1

2n + 1

m∑
k=1

ωn(u − ϕk)ak

)

= zc

(
m∑

k=1

ωn(u − ϕk)ak

)

� vc(a) = vc(d)

which completes the proof. �
Corollary 14 (Convexity preserving). If the control polygon [di]2n

i=0 of a plane cyclic curve (15) is convex then the curve itself is also
convex, i.e. it forms the boundary of a convex region in the plane.

Remark 15 ((Weak) Descartes system). The function system C = {Ci,n}2n
i=0 is a (weak) Descartes system due to the facts that∑2n

i=0 Ci,n(u) ≡ 1, ∀u ∈ [ϕ,ϕ + 2π ], ϕ ∈ R and system C has the cyclic variation diminishing property (cf. Proposition 5.9
in Carnicer (1999), pp. 39). However, we have to emphasize that system C is not a totally positive (or order complete
Chebyshev) system, cf. Remark 4.

3.4. Ellipses and circles

If n = 1 we obtain an ellipse. It means that we can specify a complete circle or ellipse by just three control points, while
using NURBS description we need at least six control points for C2 continuity at joints.

Theorem 16. If n = 1 the ellipse touches the sides of the control triangle at its midpoints, and the center of the ellipse is the centroid of
the triangle (cf. Fig. 5), i.e. the ellipse is the Steiner inellipse of the control triangle.

Proof. Using the notation u j = π(1 − 2 j/3), simple computation shows that

Ci,1(u j) =
{

0 if i = j,
1
2 otherwise.

Thus, the ellipse contains the midpoints of the sides, and at these points the sides must be tangential to the ellipse due to
the convex hull property.

Let us consider an affine transformation that transforms the ellipse to a circle. In our case this transformation takes the
tangential control triangle to a regular triangle that is tangential to the circle. The center of the inscribed circle of a regular
triangle coincides with the centroid of the triangle. Both the centroid and the center of conics are affine invariants, therefore
the proof is completed. �

By means of Theorem 16 we can easily construct (compute) a control triangle for a given ellipse. Natural questions are:
How many different control triangles has an ellipse (we do not consider control triangles with cyclically permuted vertices
different)? What is the locus of vertices of control triangles?

To answer these questions we consider the affinity we used in the proof of Theorem 16. It is obvious that there is a one
to one correspondence between the tangential regular triangles of the circle and the control triangles of the ellipse. The

Fig. 5. The center of the ellipse is the centroid of the control triangle.
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Fig. 6. The locus of control points of different representations with its control polygon.

tangential regular triangles of the circle form a one-parameter family (the family parameter is the rotation angle about the
center), and their vertices are on a circle that is concentric with the circle under consideration. Applying the inverse of the
affine transformation above, we obtain a one-parameter family of control triangles of the given ellipse the vertices of which
are on an ellipse that is concentric with the given one. Moreover, the ellipse of the control points can be obtained by a
double scaling from the given ellipse (cf. Fig. 6). Therefore, this ellipse is the Steiner circumellipse of the control triangle.

In what follows, we show that circles and ellipses can also be obtained for higher n values with special arrangements of
control points. We will make use of the following lemma.

Lemma 17. Trigonometric identities

2n∑
i=0

(
1 + cos

(
γ + (i − k)λn

))n
cos iλn =

( 2n
n−1

)
(2n + 1) cos(γ − kλn)

2n
, (22)

2n∑
i=0

(
1 + cos

(
γ + (i − k)λn

))n
sin iλn = −

( 2n
n−1

)
(2n + 1) sin(γ − kλn)

2n
(23)

hold ∀γ ∈ R (k = 0,1, . . . ,2n).

Proof. Identity (22) can be proved as follows.

2n∑
i=0

(
1 + cos

(
γ + (i − k)λn

))n
cos iλn

(3)= 2n
2n∑

i=0

cos2n
(

γ

2
+ (i − k)π

2n + 1

)
cos

2iπ

2n + 1

(6)= 1

2n

(
2n

n

) 2n∑
i=0

cos
2iπ

2n + 1
+ 1

2n−1

n−1∑
l=0

(
2n

l

) 2n∑
i=0

cos

(
(n − l)γ + 2(n − l)(i − k)π

2n + 1

)
cos

2iπ

2n + 1

(4)= 1

2n−1

n−1∑
l=0

(
2n

l

) 2n∑
i=0

cos

(
(n − l)γ + 2(n − l)(i − k)π

2n + 1

)
cos

2iπ

2n + 1

(1)= 1

2n

n−1∑
l=0

(
2n

l

)(
2n∑

i=0

cos

(
(n − l)γ − 2(n − l)kπ

2n + 1
+ 2(n − l − 1)iπ

2n + 1

)

+
2n∑

i=0

cos

(
(n − l)γ − 2(n − l)kπ

2n + 1
+ 2(n − l + 1)iπ

2n + 1

))

(4)= 1

2n

(
(2n + 1)

(
2n

n − 1

)
cos

(
γ − 2kπ

2n + 1

)
+

n−2∑
l=0

(
2n

l

)
sin((n − l − 1)π) cos((n − l)γ − 2(n−l)kπ

2n+1 + 2n(n−l−1)π
2n+1 )

sin (n−l−1)π
2n+1

+
n−1∑
l=0

(
2n

l

)
sin((n − l + 1)π) cos((n − l)γ − 2(n−l)kπ

2n+1 + 2n(n−l+1)π
2n+1 )

sin (n−l+1)π
2n+1

)

=
( 2n

n−1

)
(2n + 1)

2n
cos(γ − kλn).

The proof of identity (23) is analogous to that of identity (22), the difference is only in the applied identities. Instead of
identities (3), (6), (4), (1), (4) identities (3), (6), (5), (2), (5) have to be applied, respectively. �
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Theorem 18. Curve (15) is a circle if and only if its control points are the vertices of a 2n + 1 sided regular polygon. The radius rn of
the circle is

rn = R
n

n + 1
, (24)

where R is the radius of the circumscribed circle of the polygon.

Proof. At first we prove that if the control points are the vertices of a regular 2n + 1 sided polygon curve (15) is a circle. Let
us assume that the center of the polygon is the origin and its control points are di = [R cos iλn R sin iλn]T (i = 0,1, . . . ,2n),
where λn = 2π/(2n + 1).

The coordinate functions of curve (15) determined by these control points are

dx(u) = Rcn

2n

2n∑
i=0

(
1 + cos(u + iλn)

)n
cos iλn, (25)

dy(u) = Rcn

2n

2n∑
i=0

(
1 + cos(u + iλn)

)n
sin iλn. (26)

Introducing the notation

rn = dx(0) = Rcn

2n

2n∑
i=0

(
1 + cos(iλn)

)n
cos iλn, (27)

we show that[
dx(u)

dy(u)

]
=

[
rn cos u
−rn sin u

]
, ∀u ∈ [0,2π ].

Application of the case γ = k = 0 of (22) in Lemma 17 for the right hand side of (27) yields

rn = Rcn
( 2n

n−1

)
(2n + 1)

22n

from which we obtain (24) considering Eq. (7) of Corollary 2.
Applying the case γ = u,k = 0 of (22) in Lemma 17 for the right hand side of (25), and the case γ = k = 0 of (22) for

the right hand side of (27), we obtain the equality

dx(u) = rn cos u.

Applying the case γ = u,k = 0 of (23) in Lemma 17 for the right hand side of (26), and the case γ = k = 0 of (22) for
the right hand side of (27), we obtain the equality

dx(u) = −rn sin u.

Note, that

lim
n→∞ rn = R lim

n→∞
n

n + 1
= R,

i.e. the control polygon converges to the circle as n tends to infinity.
Now, we show that, if the curve (15) describes a circle then its control points form the vertices of a 2n + 1 sided regular

polygon, and the relation between the radius rn of the circle and the radius R of the circumscribed circle of the control
polygon is rn = Rn/(n + 1).

We assume that the center of the circle is the origin, control points di have the coordinates di = [xi yi]T (i = 0,1, . . . ,2n)

and the circle is c(u) = [r cos u r sin u]T , ∀u ∈ [−2π,0].
Control points di (i = 0,1, . . . ,2n) have to satisfy the conditions⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cn

2n

2n∑
i=0

(
1 + cos(u + iλn)

)n
xi = r cos u,

cn

2n

2n∑
i=0

(
1 + cos(u + iλn)

)n
yi = r sin u,

∀u ∈ [−2π,0]. (28)

Let us substitute uk = −kλn (k = 0,1, . . . ,2n) into Eqs. (28). We get linear systems
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M2n+1 X = C,

M2n+1Y = S, (29)

where M2n+1 = cn
2n Λ2n+1, X = [x0 x1 . . . x2n]T , Y = [y0 y1 . . . y2n]T , C = [r r cosλn . . . r cos 2nλn]T , S =

[0 r sinλn . . . r sin 2nλn]T . Matrix Λ2n+1 is specified in the proof of Theorem 3. We have seen that detΛ2n+1 �= 0, thus
the determinant of matrix M2n+1 is

det M2n+1 =
(

cn

2n

)2n+1

det Λ2n+1 �= 0.

Therefore, the systems (29) admit unique solutions. We will prove that these unique solutions are

xi = n + 1

n
r cos iλn

and

yi = n + 1

n
r sin iλn.

At first, we prove that

cn

2n

n + 1

n

2n∑
i=0

(
1 + cos(i − k)λn

)n
cos iλn = cos kλn (k = 0,1, . . . ,2n). (30)

Applying the case γ = 0 of (22) in Lemma 17 for the left hand side of (30), we obtain

cn(n + 1)

n22n

(
2n

n − 1

)
(2n + 1) cos kλn.

The usage of formula (7) of Corollary 2 yields Eq. (30).
Analogously, applying the case of γ = 0 of (23) and (7) we obtain equalities

cn

2n

n + 1

n

2n∑
i=0

(
1 + cos(i − k)λn

)n
sin iλn = sin kλn (k = 0,1, . . . ,2n). �

Corollary 19. Curve (15) is an ellipse if and only if its control points can be obtained from the vertices of a 2n + 1 sided regular polygon
by an affine transformation.

4. Cyclic surfaces

Using basis functions (16) we can define tensor product surfaces of degree (n,m) (n � 1, m � 1) as well in the form

sn,m(u, v) =
2n∑

i=0

2m∑
j=0

di j Ci,n(u)C j,m(v), u, v ∈ [−π,π ] (31)

where points di j are called control points that form the control net of the surface, and functions Ci,n(u) and C j,m(v) are
defined by (16).

Fig. 7. A sphere with its control net.
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Fig. 8. A free-form closed surface with n = 7, m = 9.

This type of surfaces is suitable for the description of closed surfaces (surfaces without boundary curve) with the advan-
tage of singularity free parametrization, i.e. all points of the surfaces are of C∞ continuity. A sphere, e.g. can be described
by 9 control points 3 of which are coincident (cf. Fig. 7). In Fig. 8 there is a free-form closed surface with n = 7, m = 9.

Control point di j (i = 0,1, . . . ,2n; j = 0,1, . . . ,2m) has no effect on isoparametric lines

sn,m

(
π − 2iπ

2n + 1
, v

)
and sn,m

(
u,π − 2 jπ

2m + 1

)

since Ci,n(π − 2iπ
2n+1 ) = C j,m(π − 2 jπ

2m+1 ) = 0. Except these two isoparametric lines control point di j affects the position of all
points of the surface.

An advantage of our closed C∞ continuous surface modeling method is that it is based on only the position of control
points and the resulting surface is described as a single surface instead of several patches that have to fulfill heavy geometric
constraints in order to achieve Ck continuity (k � 1, finite) along the joints of patches.

4.1. Degree elevation

Naturally, the degree elevation of the cyclic surface (31) is based on the closed formula (17), i.e. on the degree elevation
of cyclic curves. For an arbitrary control net

Dn,m = [di j]2n,2m
i=0, j=0 ∈ M2n+1, 2m+1

(
R

3)
let us introduce the notations

Dn,m,i,∗ = [di0,di1, . . . ,di,2m], i = 0,1, . . . ,2n,

Dn,m,∗, j = [d0 j,d1 j, . . . ,d2n, j]T , j = 0,1, . . . ,2m.

In order to construct a control net

Dn+p,m+q = [
dp,q

i, j

]2(n+p),2(m+q)

i=0, j=0 ∈ M2(n+p)+1, 2(m+q)+1
(
R

3), p � 1, q � 1

that fulfills the condition

sn+p, m+q(u, v) =
2(n+p)∑

i=0

2(m+q)∑
j=0

dp,q
i, j Ci,n+p(u)C j,m+q(v) ≡ sn,m(u, v), ∀(u, v) ∈ [−2π,0] × [−2π,0]

at first we have to calculate the intermediate control net

Dn,m+q =
[

gm,q

(
− 2 jπ

2(m + q) + 1
;Dn,m,i,∗

)]2n,2(m+q)

i=0, j=0
;

then the final one

Dn+p,m+q =
[

gn,p

(
− 2iπ

2(n + p) + 1
;Dn,m+q,∗, j

)]2(n+p),2(m+q)

i=0, j=0
.

The convergence property of cyclic curves is inherited by cyclic surfaces, i.e. the locus of control net Dn+p,m+q con-
verges to the surface sn,m(u, v) as parameters p and q tend to infinity. Fig. 9 depicts this convergence in case of the exact
description of a torus.
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Fig. 9. Exact description of a torus; transparent surfaces correspond to the loci of control nets that converge to the torus as degrees n � 1 and m � 1 tend
to infinity.

5. Conclusions

We defined a cyclic basis in the vectorspace

Vn = 〈
1, cos(u), sin(u), . . . , cos(nu), sin(nu)

〉
of trigonometric polynomials of degree at most n. By means of these functions we proposed a curve description method
using which one can model closed curves by control points.

This type of curve has properties such as singularity free parametrization (all points of the curve are of the same continu-
ity properties), convex hull, cyclic symmetry, closure for the affine transformation of its control points, global controllability
and variation diminishing. We provided a closed formula for the degree elevation from n to n + r, r � 1 and proved that the
control polygon of the degree elevated curve converges to the curve when r → ∞.

We discussed the special case n = 1, that results either an ellipse or a circle, in detail. We also described tensor product
surfaces by means of these basis functions.

Specification of control point configurations that result famous curves such as epi-cycloid, hypo-cycloid, Lissajous curve,
torus knots etc., is to be done in the future.
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