

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 69

An Adjacency matrix-based Multiple Fuzzy Frequent Itemsets mining

(AMFFI) technique

Mahendra N Patel1, Dr. S.M. Shah2, Suresh B. Patel3*

Submitted: 06/12/2021 Accepted : 29/01/2022 DOI: 10.1039/b000000x

Abstract: Recently, discovering helpful information from a database consisting of transactions has been a critical research topic. Several

frequent itemsets mining for association rule mining, algorithms that can only handle binary databases have proposed. Transactions using

numerical values, on the other hand, are ubiquitous in real-world applications. Thus, with reference to the quantitative transactional

database, several algorithms were developed and “fuzzy frequent itemsets” (FFI) were discovered. Most of them just consider the term

having maximum cardinality. As a result, the number of fuzzy regions processed is equal to the number of original elements. Multiple

fuzzy zones of an item, on the other hand, give a better result for making a correct decision. This study presents an AMFFI-miner

(Adjacency matrix-based Multiple Fuzzy Frequent Itemsets) for discovering multiple FFIs out of a quantitative transactional database. An

adjacency matrix and fuzzy-list structure were designed to find multiple FFIs by scanning database only once and generates less number

of candidate itemsets. Join two nodes if its co-occurrence between two fuzzy linguistics terms satisfies minimum support threshold by

finding the co-occurrence between two fuzzy linguistics terms directly from the adjacency matrix, thus reducing the number of nodes

joining and speeding up discovering multiple FFI. Experiments carried out to compare the suggested method's performance to that of

existing methodologies based on running time, memory utilization, and the number of nodes joining.

Keywords: Fuzzy-sets, multiple fuzzy frequent itemsets, multiple regions, List structure, Adjacency Matrix

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

1. Introduction

Multiple Techniques belonging to “Data mining” are used for

discovering the valuable “knowledge from datasets” called as

(KDD)[1]. Methods of KDD are mainly classified as association

rule mining (ARs) [1-3], Classification [4][5], and Clustering [6].

Amongst all of the techniques employed for mining frequent

itemsets (FIs), the ARs are the most commonly used one. Apriori

algorithm is first presented by Agrawal et al. [2] to mine ARs in a

“level-wise” approach. It first generates candidate itemsets and

applies pruning on them for finding the FIs at each level. This

method requires scanning the database multiple times and

generating numerous candidate itemsets, which is a time-

consuming computation.

Han et al.[7] proposed a data structure called FP-tree (Frequent –

Pattern Tree) to detect FIs without candidate generation using FP-

growth mining technique. The FIs can discover quickly using this

technique.

Quantitative databases provide higher details for analyzing and

taking decision in real-world scenarios than typical binary

databases. Quantitative databases built on crisp sets, on the other

hand, are difficult to manage. To manage quantitative databases

using fuzzy set theory, pre-established membership functions are

employed for translating the quantitative values of a transaction

into a representation of language concepts [8]. Hong et. al [9]

proposed a level-wise strategy for mining fuzzy data to produce

“fuzzy frequent itemsets”(FFIs). The maximum cardinality value

is use in this method to generate frequent itemsets at each level.

The maximum cardinality mechanism minimizes the cost of

discovery calculation fuzzy frequent itemsets, but some

information may be lost. Hong et. al [10] presented an effective

strategy to discover complete fuzzy frequent itemsets using the

Gradual Data-Reduction Strategy. Lin et al. then provided a

number of techniques MFFIs can be mined depending on their tree

topology [11-13]. Despite the fact that tree-based algorithms beat

Apriori-like algorithms technique, MFFI mining still necessitates

computation. Next, Lin et al. [14] proposed various algorithms, for

discovering FIIs from their designed fuzzy list structure. Lin et al.

[15] proposed two pruning procedures to reduce size of search

space. However, the levels of calculation costs needed for

discovering the multiple FFIs are still required.

This study proposes an adjacency matrix and a “fuzzy-list”

structure for mining multiple FFIs called AMFFI-miner

(Adjacency matrix-based multiple fuzzy frequent itemsets). In this

method, first, scan the database and generate an adjacency matrix

and fuzzy list. Join two nodes if its co-occurrence between two

fuzzy linguistics terms is greater or equal to minimum support

threshold by finding directly from the adjacency matrix, thus

reducing the number of nodes joining so AMFFI-miner algorithm

generates a smaller number of candidate itemsets to minimize

search space. Find L2 (2-frequent itemsets) directly from the

adjacency matrix. As a result, the cost of computing mining MFFIs

1 Ph.D. Scholar, Gujarat Technological University, Ahmedabad, India

 ORCID ID:0000-0002-4342-1070
2 Computer Engineering, L.D.C.E., Ahmedabad, India

 ORCID ID:0000-0002-4937-4527
3 Information Technology Department, GEC Gandhinagar, India

 ORCID ID:0000-0003-2861-8972

* Corresponding Author Email: mnpatel32@gmail.com

https://creativecommons.org/licenses/by-sa/4.0/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 70

can be greatly decreased. Experimental results prove superiority of

proposed approach as compared to other prevalent techniques.

2. Related Work

Delgado et. al [16] proposed method to find fuzzy ARs for both

types of databases namely relational and quantitative. Hong et. al

[17] presented a novel method based on Apriori Tid data structure

to get frequent patterns for increasing itemsets from quantitative

databases. Hong et. al [18] used an FP-tree structure called FUFP-

tree for reducing execution time in case of insertion or arrival of

new data. Lin et. al [19] used the same FP-tree-like structure called

FFP-tree (fuzzy frequent pattern) to discover FFIs from

quantitative databases. There are some limitations which are

resolved by Lin et. al [20][21]. Here, the authors proposed a

compressed fuzzy frequent pattern (CFFP-tree) structure and the

upper bound fuzzy frequent pattern (UBFFP-tree) structure. The

CFFP-tree [20] and UBFFP-tree [21] structures, like the FFP-tree

[19], use a global sorting approach for reducing the amount of tree

nodes. In UBFFP [21] method used upper bound value for mining

FFIS then CFFP-tree [20] method. Li et. al [22] proposed the FC-

Tree structure and FCFI-miner (Fuzzy closed frequent itemsets

miner) for discovering FFIS. In this method, the author used a

superset pruning strategy for speeding up mining. To find complete

information of all linguistic terms in the fuzzy set, authors discover

MFFIs (Multiple fuzzy frequent itemsets). Hong et. al [11]

proposed MFFP-tree structure and MFFP-growth mining method

to discovering MFFIs. Similarly authors designed CMFFP-tree

[12] and UBMFFP-tree [13] methods to generate MFFIs based on

CFFP-tree [20] and UBFFP-tree [21], respectively. Lin et. al [15]

designed a Fuzzy-list structure and MFFI-miner method to

discover MFFIs. In this method author used two different pruning

strategies for reducing the search space, running time and running

space. In [23], authors used complex fuzzy list (CFL)-structure

same like fuzzy list structure [15] and used type-2 membership

function for discovering MFFIs. Fuzzy-set theory based various

algorithms for discovering the knowledge in different application

domains are also developed [24-26].

3. Problem Fundamentals and Research Gap

The Itemset-I = {i1, i2, . . .,im} is a finite set of m unique items. The

quantitative database D contains n number of transactions such that

D= {T1, T2, T3, . . . , Tn}. In which each transaction says Tq ∈ D

and Tq ∈ I. As well as each transaction has a unique identifier, that

says TID. Each transaction Tq consists item with its purchase

quantity value, say wiq. A k length itemsets K= {i1, i2…ik} is called

k-itemsets.

Table 1 shows a sample quantitative dataset, say D, consisting of

seven transactions in the following example. In this example,

consider minimum support Ø=1. Membership function £ shown in

figure 1.

Table 1. Sample dataset (Quantitative)

Transaction ID Item: Quantity

TID_1 A: 5; B: 10; C: 2; D: 9

TID_2 B: 8; C: 2; E: 3

TID_3 A: 5; B: 3; C: 10; E: 11

TID_4 A: 1; C: 8; D: 3

TID_5 A: 5; B: 2; C: 6

TID_6 B: 3; C: 10; D: 2; E: 2

TID_7 C: 3; E: 9

Fig. 1. Membership values

Table 2. Fuzzy dataset

Transaction

ID

Linguistic terms of items

TID_1 AL-0.2 + AM-0.8, BM-0.2 + BH-0.8, CL-0.8 + CM-
0.2, DM-0.4 + DH-0.6

TID_2 BM-0.6 + BH-0.4, CL-0.8 + CM-0.2, EL-0.6 + EM-0.4

TID_3 AL-0.2 + AM-0.8, BL-0.6 + BM-0.4, CM-0.2 + CH-

0.8, EH-1.0

TID_4 AL-1.0, CM-0.6 + CH-0.4, DL-0.6 + DM-0.4

TID_5 AL-0.2 + AM-0.8, BL-0.8 + BM-0.2, CM-1.0

TID_6 BL-0.6 + BM-0.4, CM-0.2 + CH-0.8, DL-0.8 + DM-

0.2, EL-0.8 + EM-0.2

TID_7 CL-0.6 + CM-0.4, EM-0.4 + EH-0.6

Fuzzy frequent itemsets mining method generally follow the

following three steps.

Step 1: Find membership value of each item:

Quantities of an item i say wiq represented in a linguistic variable

say Li. In natural language representation, linguistic terms Li will

be (Li1, Li2,…,Lih). Here h is defined by the membership function

and h= no. of fuzzy regions of an item. For example, a 3-linguistic

term membership function generates High-H, Middle-M and Low-

L. Similarly, a 2-linguistic term membership function generates

High-H and Low-L. Based on the membership function £, fuzzy

terms are obtained from the quantitative value. The fuzzy linguistic

term is fuzzy set fiq, where i is an item in a transaction Tq.

fiq={ Li1 - fwiq1 + Li2 - fwiq2 + + Lih- fwiqh}.

Fwiqk is the fuzzy value of k-th linguistic terms of Lik, 1≤ k≤h, and

fwiqk⊆ [0, 1].

For example, item A with quantity five is represented in linguistic

terms (AL- 0.2, AM- 0.8, AH- 0.0) by 3-term membership function

£ used in the above example. First, apply membership function £

to transform quantitative dataset into fuzzy set say D’ of different

linguistic terms for all item shown in Table 2. In fuzzy set

generated linguistic terms are denoted as fuzzy itemsets. Here in

example AL-0.2 consider as linguistic variable A-low with 0.2

fuzzy values, same style use for other all.

Step 2: Find scalar cardinality of each fuzzy itemsets and 1-

fuzzy frequent itemsets:

The scalar cardinality of fuzzy itemset Lik denoted as sup (Lik). In

this step, find the support of each fuzzy itemsets. This defined as

follow:

Sup (Lik) =∑ (fwiqk)𝑞=𝑛
𝑞=0, 𝐿𝑖𝑘⊆Tq ^ Tq𝜖𝐷′ .

Where fwiqk is the fuzzy value of fuzzy item Lik and D' is a fuzzy

dataset.

For example, the fuzzy value of AL is 0.2, 0.2, 1.0, and 0.2 from

transactions 1, 3, 4, and 5, respectively, according to the example

taken. Scalar cardinality or support of AL = 1.6, it is a summation

of all of its fuzzy values. Find scalar cardinality of all fuzzy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 71

itemsets. If scalar cardinality >= Ø, where Ø is the minimum

support threshold then, save the corresponding fuzzy item into

fuzzy 1-frequent itemsets (FL1). Verify for each fuzzy item sup

(Lik), if satisfied with minimum support threshold then store in

FL1.

FL1= FL1 ∪ (sup (Lik) >= Ø).

Step 3: Finding the support value:

Fuzzy 1-frequent itemsets (FL1) generate next-level fuzzy

frequent itemsets say fuzzy k-itemsets where k ≥2. Using join

operation joins fuzzy items from FL1 and generates candidate set

say FC2 (fuzzy 2-candidate itemsets). Consider itemset X created

by joining itemset A and B from FL1. Sup(X) = Support of

itemset:X, calculated by summing up the minimum fuzzy value of

fuzzy itemset A and B from truncation Tq, where X ⊆ Tq and Tq

∈ D’. This defined as follow:

Sup(X) = 𝑋 ∈ 𝐿𝑖 ∕ ∑ 𝑚𝑖𝑛(fwaql, fwbql)
𝑞=𝑛
𝑞=0, X⊆Tq^ Tq𝜖𝐷′ .

From FC2 itemsets that satisfy minimum support threshold Ø then

store in fuzzy 2-frequent itemsets (FL2). The same way

subsequently finds fuzzy k-frequent itemsets.

4. Proposed works

In this section, a proposed two-phase approach generates multiple

fuzzy frequent itemsets. In phase 1, construct adjacency matrix and

fuzzy-list from quantitative dataset D. Next, efficiently discover

multiple fuzzy frequent itemsets from adjacency matrix and fuzzy-

list using AMFFI-miner method. In proposed approach efficiently

generates complete MFFIs by scanning the database only one time.

4.1. Phase 1(Adjacency matrix and fuzzy list construction):

Fuzzy list construction takes place in the first phase. Algorithm 1

shows the construction of the Adjacency matrix and fuzzy list for

2-fuzzy itemsets.

Items arranged in ascending order in transaction Tq, Tq ∈ D. Let

us considers 3-term membership function £. First, construct

adjacency matrix says AdjMat (M) of size (m *3) X (M *3). Here,

m= total no. of items as per D. Here required matrix size is three-

time more than the number of items (m). Matrix size is based on

membership function. Use the 2-term membership function; then,

the matrix size is two times more than the number of items.

AdjMat (M) = (m *t)X (m*t). Here m= total no. of items as per D

and t = no. of fuzzy region as per membership function.

Scan transaction Tq and applying membership function £ to

transform quantitative dataset into a fuzzy dataset of that

transaction whose TID is q. Generate a pair of transformed fuzzy

itemsets for different fuzzy variables from transaction Tq.

Calculate the minimum fuzzy value of each pair, and then update

the adjacency matrix's correspondence cell value by adding it and

inserting the associated fuzzy list.

AdjMat (Li, Lj) =AdjMat (Li, Lj) +min (fwiq, fwjq)

Where Li and Lj are fuzzy items whose fuzzy value fwiq and fwjq

respectively.

Construct the fuzzy list for Li and Lj if not exist. This fuzzy list

inserted transaction id q (TID of Tq) and minimum fuzzy value of

pair as min (fwiq, fwjq).

Algorithm 1: Construction of the Adjacency matrix and fuzzy

list for 2-fuzzy itemsets

Input: Quantitative dataset D, No. of Items M

Output: Adjacency matrix AM and Fuzzy-list FL

Step 1: Initialize Matrix AM for (M * no of the fuzzy region) X (

M * no of the fuzzy region)

Step 2: Initialize TID=1

Step 3: Read line L from D

Step 4: Repeat through step 7 while L is not the end of file D

Step 5: Apply membership function on each item's quantitative

value in L and create fuzzy linguistic terms fl[] of all items.

Step 6: Store fuzzy value in adjacency matrix AM for all co-

occurrences of fuzzy linguistic terms

Define FV= min (fuzzy value of fl[i], fuzzy value of fl[j])

AM (fl[i], fl[j]) + = FV

Create Fuzzy-List of “ ’ fl[i] ‘+’ fl[j]’ “if not exist

Create element with (TID, FV) & insert into Fuzzy-List of “ ’ fl[i]

‘+’ fl[j]’ “

Step 7: Increment TID by 1 and Read Next Line from D into L

Step 8: Finished.

Let us consider an example for the quantitative dataset as table 1

and membership function as fig 1 for 5 different items from A to

E. The corresponding constructed the adjacency matrix shown in

fig 2.

Scan first transaction (A: 5, B: 10, C: 2, D: 9) from dataset D and

apply the membership to create fuzzy set (AL-0.2 + AM-0.8, BM-

0.2 + BH-0.8, CL-0.8 + CM-0.2, DM-0.4 + DH-0.6) as shown in

table 2. So created pair of transformed fuzzy itemsets are AL-BM,

AL-BH, AL-CL, AL-CM, AL-DM, AL-DH, AM-BM, AM-BH,

AM-CL, AM-CM, AM-DM, AM-DH, BM-CL, BM -CM, BM -

DM, BM-DH, BH-CL, BH -CM, BH -DM, BH-DH, CL-DM, CL-

DH, CM-DM, and CM-DH. Update all pair co-occurrences into

adjacency matrix with minimum fuzzy value as shown in fig 3.

Initially, there is no fuzzy-list created, therefor construct fuzzy-list

for each pair and TID=1 and minimum fuzzy value is inserted. In

figure 4 shown some pairs (AL-BM, BM -DM, CL-DH) Fuzzy-

list. The same procedures followed for the next transaction. After

reading all transaction adjacency matrix (M) looks like shown in

figure 5 and figure 6 shown some pair (AL-BM, BM -DM, CL-

DH) Fuzzy-list.

Fig. 2. Adjacency Matrix

Fig. 3. Adjacency Matrix after a 1st-row scan

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 72

Fig. 4. Fuzzy-list after a 1st-row scan

Fig. 5. Adjacency Matrix after all row scan

Fig. 6. Fuzzy list after all row scan

4.2. Phase 2(AMFFI-miner to mine MFFIs):

In case of quantitative transaction data, the proposed AMFFI

algorithm improved Apriori-like [16][17], FP-tree-like

[12][13],[18-22], and the fuzzy-list-like [15][23] methods in

finding FFIs. To reduce the huge no. of candidate generation, we

utilize the upper triangular of adjacency matrix M.

In this phase, mine MFFIs from the adjacency matrix (M) row-by-

row using fuzzy lists generated in phase1.

Scan the row from M and identify the cell with value >= Ø. Fuzzy-

lists with RowNumber-ColumnNumber of an identified cell

fetched from fuzzy-lists and declared as fuzzy 2-frequent itemsets

say FL2 of this row. Subsequently, generate fuzzy k-frequent

itemsets say FLk (K>2) recursively by intersection operation by

TIDs on FLk-1. Use the binary search method to find combined

fuzzy lists quickly. The fuzzy list (FLk) for k-frequent itemsets

(k>2) is constructed by combining existing fuzzy list of FLk-1.

Newly constructed fuzzy list consist elements those have common

Tid in existing fuzzy list.

To reduce the search space and candidate set, not join fuzzy

itemsets that cannot generate its superset that knows directly from

adjacency matrix M. I.e., considering running example where Ø=1,

read the second row from M. Here, the row number is A.M whose

cells BL and CM satisfied the min support value. Thus, get FL2

from this row is AM-BL and AM-CM. By joining this possible

superset is AM-BL-CM from FL2.However, the proposed method

does not join this because it knows that generated superset does not

satisfy the min support value. Here AM-BL and AM-CM are fuzzy

frequent itemsets. Its superset AM-BL-CM is possible or not

checked by BL row and CM column cell value. If it is greater or

equal to min_support value, it may be possible; otherwise, not. In

our example, this value is zero, which does not satisfy the Ø means

its superset is impossible. Extensions of these are not fuzzy

frequent itemsets, so discarded them before joining. This way

minimizes join operation so vast reducing the candidate set,

ultimately improving the running time performance. The AMFFI

and AMFFI-miner methods show in Algorithm 2 and Algorithm 3,

respectively.

Algorithm 2: AMFFI method

Input: AM: adjacency Matrix; FLs: the fuzzy-list; Minsupport

Output: MFFIs

Step 1: Initializations

for each row in AM do

Initialize fuzzy-list

L.FL ← null;

Step 2: for each cell in row

 If cell value >= minsupport

Get fuzzy-list of (F[row.id][cell.id]) from FLs into temp

 Add temp to L.FL

 Call AMFFI-miner with L.FL and row_id

Algorithm 3: AMFFI-miner

Input: AM adjacency Matrix; FLs, fuzzy-list; Minsupport, row_id

(fuzzy linguistic term)

Output: MFFIs

Step 1: for each fuzzy-list A in FLs do

Step 2: if SUM.A.if>= minsupport then

 MFFIs ← A ∪ MFFIs.

Step 3:temp.FLs ← null;

Step 4: for each fuzzy-list B after A in FLs do

 If A.ITEM = B.ITEM then

 Continue;

 If AM [A.ITEM][B.ITEM] >= minsupport then

temp.FL ← temp.FLs + Construct (A, B);

Step 5: AMFFI-Miner (temp.FLs);

Step 6: Return MFFIs.

5. Evaluation of Experimental Results

Here we present the performance analysis of proposed method as

compared to MFFI-Miner [15]. In [15] authors, make a comparison

of its own method MFFI-miner with other two methods: GDF [10]

and UBMFFP tree [21]. The proposed AMFFI and MFFI-miner

methods coded using Java. The results are analyzed on two real-

life datasets, chess [27], mushroom [27], as well as one synthetic

dataset, T10I4D100k [27]. In the datasets, the quantities of items

give randomly in the 1 to 20 intervals. The experimental results

analyzed in terms of runtime, join count and memory utilization.

5.1. Runtime Analysis:

The implemented3-term fuzzy linguistic AMFFI and MFFI-miner

[15] were evaluated with different minimum support thresholds to

compare execution running time. The output of execution running

time evaluated on chess dataset shown in Fig 7, mushroom dataset

shown in Fig 8 and T10I4D100k dataset shown in Fig 9.

Fig. 7. Execution time comparisons: Chess dataset

Tiid Fuzzy Value Tiid Fuzzy Value Tiid Fuzzy Value

1 0.2 1 0.2 1 0.6

3 0.2 6 0.2

5 0.2

A.L-B.M B.M -D.M C.L-D.H

Tiid Fuzzy Value Tiid Fuzzy Value Tiid Fuzzy Value

1 0.2 1 0.2 1 0.6

A.L-B.M B.M -D.M C.L-D.H

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 73

Fig. 8. Execution time comparisons: Mushroom dataset

Fig. 9. Execution time comparisons: T10I4D100k dataset

MFFI-miner [15] outperforms the GDF [10] and the UBMFFP tree

[21] in terms of running time. The proposed AMFFI method

outperforms MFFI-miner method. Thus it proves to be the fastest

amongst the three namely MFFI-miner [15], GDF [10] and

UBMFFP tree [21]. The AMFFI method also exhibits its

robustness when a lower minimum support threshold taken.

5.2. Join counts Analysis:

In this section, performance evaluated for the number of join count

that occurs when generating MFFIs. The number of join counts for

the chess dataset shown in Fig 10, mushroom dataset in Fig 11, and

T10I4D100k dataset in Fig 12.

The result shows that the AMFFI method generates fewer join

counts (candidate itemsets). It also observed that the most

remarkable performance given the AMFFI method is the number

of join counts. As compared to state-of-the-art methods, the

proposed AMFFI method generates fewer candidate itemsets.

Fig. 10. Number of joint count comparisons on Chess dataset

Fig. 11. Number of joint count comparisons on Mushroom dataset

Fig. 12. Number of joint count comparisons on T10I4D100k dataset

5.3. Memory Usage Analysis:

Here, performance evaluated concerning the utilization of memory

when evaluating experiments. The memory usage shows for the

chess dataset in Fig 13, mushroom dataset in Fig 14 and

T10I4D100k dataset in Fig 15.

The result shows that on the chess and mushroom dataset AMFFI

method requires less memory than the existing MFFI-miner

method. It also observed that on the synthetic T10I4D100k dataset

AMFFI method requires more memory than the MFFI-miner

method. From doing other experiments with different datasets, we

can derive a special case where number of items in a dataset is

higher than 1000, the proposed AMFFI will need a higher memory.

Fig. 13. Memory usage comparisons on Chess dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1), 69–74 | 74

Fig. 14. Memory usage comparisons on Mushroom dataset

Fig. 15. Memory usage comparisons on T10I4D100k dataset

6. Conclusions:

With an objective to mine multiple fuzzy frequent itemsets

efficiently, this paper presents an adjacency matrix as data

structure and the AMFFI method. In comparison to the state-of-

the-art methods, It generate fewer candidate itemsets by using an

efficient search strategy. In addition, it generates fewer join counts

(candidate itemsets), which in turn increasing the execution time

performance. As far as the memory requirement is concerned, it is

directly proportionate to the number of items in the dataset as

discussed as a special case in section 5.3, in all other scenarios it

utilizes comparatively less memory.

References

[1] R. Agrawal, S. Member, T. Imielinski, and A. Swami, “Database

Mining: A Performance Perspective” IEEE Transactions on

Knowledge and Data Engineering, vol. 5, no. 6, pp. 914–925, 1993.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules” The International Conference on Very Large Data Bases, pp.

487-499, 1994.

[3] R. Agrawal and R. Srikant, “Mining Sequential Patterns” The

International Conference on Data Engineering, pp. 3-14, 1995.

[4] M. Antonelli, P. Ducange, F. Marcelloni, and A. Segatori, “A novel

associative classification model based on a fuzzy frequent pattern

mining algorithm” Expert Syst. Appl., vol. 42, no. 4, pp. 2086–2097,

2015.

[5] K. Hu, Y. Lu, L. Zhou, and C. Shi, “LNAI 1711 - Integrating

Classification and Association Rule Mining: A Concept Lattice

Framework” The 7th International Workshop on New Directions in

Rough Sets Data Mining, and Granular-Soft Computing, pp. 443–447,

1999.

[6] P. Berkhin, “A Survey of Clustering Data Mining Techniques”

Grouping Multidimensional Data, pp. 25-71, 2006.

[7] J. Han and R. Mao, “Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach” Data Mining and

Knowledge Discovery, vol. 8. no. 1, pp. 53–87, 2004.

[8] J. Friedman and L. A. Z. Fuzzy, “Similarity relations and fuzzy

orderings” fuzzy sets Information and Control, vol. 8, pp. 338–353,

1965.

[9] T.-P. Hong, C.-S. Kuo, and S.-C. Chi, “Mining association rules from

quantitative data” Intelligent Data Analysis, vol. 3, no. 5, pp. 363–376,

1999.

[10] Hong, Tzung-Pei, “An Effective Gradual Data-Reduction Strategy for

Fuzzy Itemset Mining,” Int. J. Fuzzy Syst., vol. 15, no. 2, pp. 170-181,

2013.

[11] T.-P. Hong, C.-W. Lin, and A. T.-C. Lin, “The MFFP-tree fuzzy

mining algorithm to discover complete linguistic frequent itemsets”

Computational Intelligence, vol. 30, no. 1, pp. 145–166, 2014.

[12] J. C. W. Lin, T. P. Hong, and T. C. Lin, “A CMFFP-tree algorithm to

mine complete multiple fuzzy frequent itemsets,” Appl. Soft Comput.

J., vol. 28, pp. 431–439, 2015.

[13] J. C. W. Lin, T. P. Hong, T. C. Lin, and S. T. Pan, “An UBMFFP tree

for mining multiple fuzzy frequent itemsets,” Int. J. Uncertainty,

Fuzziness Knowlege-Based Syst., vol. 23, no. 6, pp. 861–879, 2015.

[14] J. C. W. Lin, T. Li, P. Fournier-Viger, and T. P. Hong, “A fast

Algorithm for mining fuzzy frequent itemsets,” in Journal of

Intelligent and Fuzzy Systems, vol. 29, no. 6, pp. 2373–2379, 2015.

[15] J. C. W. Lin, T. Li, P. Fournier-Viger, T. P. Hong, J. M. T. Wu, and J.

Zhan, “Efficient Mining of Multiple Fuzzy Frequent Itemsets,” Int. J.

Fuzzy Syst., vol. 19, no. 4, pp. 1032–1040, 2017.

[16] M. Delgado, N. Marín, D. Sánchez, and M. A. Vila, “Fuzzy association

rules: General model and applications,” IEEE Trans. Fuzzy Syst., vol.

11, no. 2, pp. 214–225, 2003.

[17] T. P. Hong, C. S. Kuo, and S. L. Wang, “A fuzzy AprioriTid mining

algorithm with reduced computational time,” Appl. Soft Comput. J.,

vol. 5, no. 1, pp. 1–10, 2004.

[18] T. P. Hong, C. W. Lin, and Y. L. Wu, “Incrementally fast updated

frequent pattern trees,” Expert Syst. Appl., vol. 34, no. 4, pp. 2424–

2435, 2008.

[19] C. W. Lin, T. P. Hong, and W. H. Lu, “Linguistic data mining with

fuzzy FP-trees,” Expert Syst. Appl., vol. 37, no. 6, pp. 4560–4567,

2010.

[20] W. H. L. Lin, Chun Wei, Tzung Pei Hong, “An efficient tree-based

fuzzy data mining approach,” Int. J. Fuzzy Syst., vol. 12, no. 2, pp.

150–157, 2010.

[21] C. W. Lin and T. P. Hong, “Mining fuzzy frequent itemsets based on

UBFFP trees,” J. Intell. Fuzzy Syst., vol. 27, no. 1, pp. 535–548, 2014.

[22] H. Li, Y. Zhang, M. Hai, and H. Hu, “Finding Fuzzy Close Frequent

Itemsets from Databases,” Procedia Comput. Sci., vol. 139, pp. 242–

247, 2018.

[23] Lin, J. C. W., Wu, J. M. T., Djenouri, Y., Srivastava, G., & Hong,

"Mining multiple fuzzy frequent patterns with compressed list

structures" 2020 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), pp. 1-8, 2020

[24] S. Kar and M. M. J. Kabir, “Comparative analysis of mining fuzzy

association rule using genetic algorithm” The International

Conference on Electrical, Computer and Communication

Engineering, pp. 1–5, 2019.

[25] D. K. Srivastava, B. Roychoudhury, and H. V. Samalia, “Fuzzy

association rule mining for economic development indicators” Int. J.

Intell. Enterp., vol. 6, no. 1, pp. 3–18, 2019.

[26] L. Wang, Q. Ma, and J. Meng, “Incremental fuzzy association rule

mining for classification and regression,” IEEE Access, vol. 7, pp.

121095–121110, 2019.

[27] “Frequent Itemset Mining Dataset Repository” http://fimi.ua.ac.be/

data

