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SUBGROUPS OF ARBITRARY EVEN ORDINARY DEPTH

HAYDER ABBAS JANABI∗, THOMAS BREUER AND ERZSÉBET HORVÁTH

Abstract. We show that for each positive integer n, there exist a group G and a subgroup H such

that the ordinary depth d(H,G) is 2n. This solves the open problem posed by Lars Kadison whether

even ordinary depth larger than 6 can occur.

1. Introduction

The notion of depth was originally defined for von-Neumann algebras, see [9]. Later it was also

defined for Hopf algebras, see [20]. For some recent results in this direction, see [11, 17, 10]. In [19]

and later in [4], the depth of semisimple algebra inclusions was studied, by Burciu, Kadison and

Külshammer. First results concerned the depth 2 case. Later these were generalized for arbitrary n.

In the case of group algebra inclusion CH ⊆ CG it was shown that the depth is at most 2 if and only

if H is normal in G, see [19]. For similar results on group algebras over commutative rings, see [3].

Let F be a field. We say that the depth of the group algebra inclusion FH ⊆ FG is 2n, for

a positive integer n, if FG ⊗FH · · · ⊗FH FG (n + 1-times FG) is isomorphic to a direct summand

of ⊕a
i=1FG ⊗FH · · · ⊗FH FG (n times FG) as FG − FH-bimodules (or equivalently as FH − FG-

bimodules) for some positive integer a.

Furthermore, FH is said to have depth 2n+1, for a positive integer n, in FG if the same assertion

holds for FH − FH-bimodules, for some positive integer a. Finally FH has depth 1 in FG if FG is

isomorphic to a direct summand of ⊕a
i=1FH as FH − FH bimodules, for some positive integer a.
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The ordinary depth d(H,G) of a subgroup H in a finite group G is defined as the minimal depth of

the group algebra inclusion CH ⊆ CG. This is well defined. It is shown in [1, Remark 4.5] by Boltje,

Danz and Külshammer that the depth of group algebra inclusion does not depend on the field, only

on the characteristic. If the characteristic is prime then we get the notion of modular depth. From

now on we will always consider group algebras over C.
The ordinary depth can be obtained from the so called inclusion or Frobenius matrix M . If

χ1, . . . , χs are all of the irreducible characters of G and ψ1, . . . , ψr are all of the irreducible char-

acters of H, then mi,j := (ψG
i , χj). Let M = (mi,j). Some kinds of powers of M are defined by

M (1) := M , M (2l) := M (2l−1)MT , M (2l+1) := M (2l)M , for positive integers l, and M (0) is the r × r

unit matrix. The ordinary depth d(H,G) can be obtained as the smallest positive integer n such

that M (n+1) ≤ aM (n−1) for some positive integer a, where the inequality of matrices means that this

inequality holds componentwise.

The results on characters in [4] help to determine d(H,G). Two irreducible characters α, β ∈
Irr(H) are called related, α ∼G β, if they are constituents of χH , for some χ ∈ Irr(G). The distance

dG(α, β) = m is the smallest integer m such that there is a chain of irreducible characters of H

such that α = ψ0 ∼G ψ1 · · · ∼G ψm = β. If there is no such chain then dG(α, β) = −∞ and

if α = β then the distance is zero. If X is the set of irreducible constituents of χH then we set

m(χ) := max{min{dG(α, ψ);ψ ∈ X};α ∈ Irr(H)}. We will use the following result from [4].

Theorem 1.1. [4, Theorem 3.6, Theorem 3.10]

Let H be a subgroup of a finite group G.

(i) Let m ≥ 1. Then H has ordinary depth ≤ 2m+1 in G if and only if the distance between two

irreducible characters of H is at most m.

(ii) Let m ≥ 2. Then H has ordinary depth ≤ 2m in G if and only if m(χ) ≤ m − 1 for all

χ ∈ Irr(G).

Thus we have the following.

Corollary 1.2. Let H be a subgroup of a finite group G. The ordinary depth d(H,G) is the minimal

possible positive integer which can be determined from the upper bounds (i) and (ii) of Theorem 1.1

and from

(iii) d(H,G) ≤ 2 if and only if H is normal in G, see [19, Corollary 3.2],

(iv) d(H,G) = 1 if and only if G = HCG(x) for all x ∈ H, see [2, Theorem 1.7].

We will also use the following result from [4].

Theorem 1.3. [4, Theorem 6.9] Suppose that H is a subgroup of a finite group G and N = CoreG(H)

is the intersection of m conjugates of H. Then d(H,G) ≤ 2m. If additionally N ≤ Z(G) holds then

d(H,G) ≤ 2m− 1.

In recent publications, several authors determined the ordinary depth of subgroups in some special

series of groups, e.g. PSL(2, q), Suzuki groups, Ree groups, symmetric and alternating groups, see
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[4], [6], [7], [14], [15]. In [5], twisted group algebra inclusions for symmetric and alternating groups

are studied.

It is known that odd ordinary depth of a subgroup in a finite group can be arbitrarily large: It is

shown in [4] that the (minimal) ordinary depth of the symmetric group Sn in Sn+1 is 2n− 1.

Lars Kadison posed the following open problem on his homepage, see [18]: Are there subgroups of

(minimal) ordinary depth 2n where n > 3?

If one looks at the results of the above papers or the calculations presented in [13], one has the

impression that in most cases the depth of subgroups is odd. However still one can find examples of

arbitrarily large even depth. In our examples wreath products will play an important role. In this

short note we will always consider ordinary depth, so in the following depth will always mean ordinary

depth.

The main result of this paper is the following.

Theorem 1.4. There exists a series of groups and subgroups (Gn,Hn) such that d(Hn, Gn) = 2n for

every positive integer n.

2. Constructing examples

An example of a subgroup H of depth 6 in a group G is mentioned in [4] as found with GAP [8]:

One takes G = AGL(2, 3) and H = NG(P ), where P ∈ Syl3(G). Note that |G| = 432 and |H| = 108.

The smallest examples of depth 6 are G of structure C2×C2
4 ⋊C3 and H ∼= C2

4 , and G of structure

C2×C4
2 ⋊C3 and H ∼= C4

2 , see [13]. The groups G can be found in the Small groups library of GAP [8]

as SmallGroup(96, 68) and SmallGroup(96, 229), respectively.

More examples of depth 6 were found with GAP [8] among maximal subgroups of some alternating

groups, see [13]: d(24 : (S3 × S3), A8) = 6 and d(S7, A9) = 6.

The following examples of subgroups of depth 8 had been constructed earlier by the third author

with the help of the GAP system [8], see [13]: d(A15 ∩ (S12 × S3), A15) = 8, d(26 : U4(2), O
−
8 (2)) = 8,

and d(G ∩ (A8 ×A8), G) = 8, for G = ((C2 ≀ C2) ≀ C2) ≀ C2.

It was shown already in [4] that d(D8, S4) = 4 holds. The first author found with GAP that

d(D8×S4, S4 ≀C2) = 8. Continuing this process, we obtained that d((D8×S4)×(S4 ≀C2), (S4 ≀C2)≀C2) =

16. In general, we can define

• G0 := S4, H0 := D8,

• Gn := Gn−1 ≀ C2, Hn := Hn−1 ×Gn−1 < Gn−1 ×Gn−1 < Gn,

and get d(Hn, Gn) = 2n+2.

The idea of the proof is to use Theorem 1.3 to prove that d(Hn, Gn) ≤ 2n+2. Then we show that

the depth cannot be at most 2n+2 − 1 = 2(2n+1 − 1) + 1, since by Corollary 1.2 then the distance of

any two characters of Hn would be at most 2n+1 − 1, however there are irreducible characters of Hn

of distance exactly 2n+1. The proof is a rather complicated induction, see [16].
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We wanted to simplify the construction. Our aim was also to construct as depth more even numbers.

We can generalize the first two steps of the former construction in another way as follows:

• d(D8, S4) = 4,

• d(D8 × S4, S4 ≀ C2) = 8,

• d(D8 × S4 × S4, S4 ≀ C3) = 12.

In general, we take

• G1 := S4, H1 := D8,

• Gn := G1 ≀ Cn, Hn := H1 ×Gn−1
1 < Gn

1 < Gn.

Then we have that d(Hn, Gn) = 4n. The proof is again using Theorem 1.3 to prove that d(Hn, Gn) ≤
4n. If d(Hn, Gn) ≤ 4n− 1 = 2(2n− 1)+ 1, then by Corollary 1.2 any two irreducible characters of Hn

have distance at most 2n− 1. However, one can show that there exist irreducible characters of Hn of

distance 2n.

If we want to get every even number then we can use a modified construction. We take the Klein

four group V4 ◁ S4 instead of D8 and get:

• d(V4, S4) = 2,

• d(V4 × S4, S4 ≀ C2) = 4,

• d(V4 × S4 × S4, S4 ≀ C3) = 6.

In general, we have a series of groups and subgroups such that d(Hn, Gn) = 2n holds. The idea of

the proof will be the same as before, for the inequality we will use again Theorem 1.3, and to prove

that it cannot be a strict inequality, we find two irreducible characters of distance n in Hn. For that,

we consider suitable characters of the base group of the wreath product and define a Cartesian product

of graphs that encodes the relation ∼.

3. Proof of Theorem 1.4

Let G be the symmetric group on four points, and N be its normal Klein four subgroup. Set

G1 = G, H1 = N . Then d(H1, G1) = 2, by Corollary 1.2. Define for n ≥ 2

σn =

4∏
j=1

(j, j + 4, j + 8, · · · , j + 4(n− 1)),

Gn = ⟨G, σn⟩,

Hn = ⟨N,Gσn , Gσ2
n , . . . , Gσn−1

n ⟩.

Let Cn denote the cyclic group of order n. Then Hn < Gn
∼= G ≀ Cn and

Hn
∼= N ×Gn−1 ≤ Gn < G ≀ Cn.
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Let Nn = CoreGn(Hn), the largest normal subgroup of Gn that is contained in Hn. Then N1 = N ,

and

Nn = ⟨N,Nσn , . . . , Nσn−1
n ⟩ =

n−1∩
i=0

Hσi
n

n

is an intersection of n conjugates of Hn, and Theorem 1.3 yields d(Hn, Gn) ≤ 2n. Set

Kn = ⟨G,Gσn , . . . , Gσn−1
n ⟩ ≤ Gn.

Then Hn ≤ Kn
∼= Gn.

The character tables of N and G are as follows, where the columns are indexed by the conjugacy

classes of the elements g1 = (), g2 = (1, 3)(2, 4), g3 = (1, 2)(3, 4), g′3 = (1, 2, 3), g4 = (1, 4)(2, 3),

g′4 = (1, 3), g5 = (1, 2, 3, 4).

g1 g2 g3 g4

ν1 1 1 1 1

ν2 1 1 −1 −1

ν3 1 −1 1 −1

ν4 1 −1 −1 1

g1 g2 g′3 g′4 g5

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 2 2 −1 0 0

χ4 3 −1 0 1 −1

χ5 3 −1 0 −1 1

χ1|N = ν1

χ2|N = ν1

χ3|N = 2ν1

χ4|N = ν2 + ν3 + ν4

χ5|N = ν2 + ν3 + ν4

Set

Xn = {χi1 × χi2 × · · · × χin ∈ Irr(Kn); i1 ∈ {4, 5}, ij ∈ {1, 2, 3} for 2 ≤ j ≤ n}

and

Yn =
{
χGn ;χ ∈ Xn

}
.

Let Γ1 be the undirected graph with vertex set {4, 5} and edge set {{4, 5}}, Γ0 be the undirected

graph with vertex set {1, 2, 3} and edge set {{1, 3}, {2, 3}, {1, 2}}. For n ≥ 2, let Γn be the Cartesian

product of Γ1 and n− 1 copies of Γ0, that is, Γn has vertex set

{(i1, i2, . . . , in); i1 ∈ {4, 5}, ij ∈ {1, 2, 3} for 2 ≤ j ≤ n} ,

and there is an edge between (i1, i2, . . . , in) and (i′1, i
′
2, . . . , i

′
n) if and only if there is a (unique) j such

that ik = i′k for k ̸= j and ij ̸= i′j and either {ij , i′j} = {4, 5} or {ij , i′j} ⊂ {1, 2, 3}.

Lemma 3.1.

(i) Yn ⊆ Irr(Gn), and mapping χ to χGn defines a bijection from Xn to Yn.

(ii) For ψ ∈ Yn and ψ′ ∈ Irr(Gn), if ψ|Hn and ψ′|Hn have a common constituent then ψ′ ∈ Yn.

(iii) Let ψ = χGn, ψ′ = (χ′)Gn for χ, χ′ ∈ Xn, with ψ ̸= ψ′. Then ψ|Hn and ψ′|Hn have a common

constituent if and only if there is an edge between (i1, i2, . . . , in) and (i′1, i
′
2, . . . , i

′
n) in Γn, where

χ = χi1 × χi2 × · · · × χin and χ′ = χi′1
× χi′2

× · · · × χi′n.

(iv) The distance of the vertices (4, 1, 1, . . . , 1) and (4, 2, 2, . . . , 2) of Γn is n− 1.

(v) The distance dGn(αn, ωn) of the characters αn := ν2 × χ1 × · · · × χ1 and

ωn := ν2 × χ2 × · · · × χ2 of Hn is n.
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Proof. Let ψ = χGn , where χ = χi1 × χi2 × · · · × χin ∈ Xn, that is, χi1 is faithful and the other χij

are not.

For part (i), χ has inertia subgroup Kn inside Gn. Hence by Clifford’s Theorem, see [12, Theo-

rem 6.11], χGn is irreducible. The irreducible constituents of the restriction ψ|Kn are the n conjugates

of χ by σn, i. e., those characters where the n components of χ are cyclically permuted. Thus each

constituent has exactly one faithful component. Hence χ is the only constituent of ψ|Kn that lies in

Xn. Thus we get an inverse to the map χ 7→ χGn .

For part (ii), consider the restriction of the constituents of ψ|Kn to Hn. We get irreducible con-

stituents where the first component is a nontrivial character of N and all other components are non-

faithful characters of G, and irreducible constituents where the first component is the trivial character

of N and exactly one other component is faithful. Let ψ′ ∈ Irr(Gn) have the property that ψ′|Hn and

ψ|Hn have a common irreducible constituent, which means that 0 ̸= (ψ|Hn , ψ
′|Hn) = ((ψ|Hn)

Gn , ψ′).

If this constituent is of the first kind then inducing it to Kn yields a character with first component

χ4 + χ5 and all other components non-faithful. If the common constituent is of the second kind then

inducing it to Kn yields a character with first component χ1 + χ2 + 2χ3 and exactly one other com-

ponent faithful. (Here we used that (µ × θ2 × · · · × θn)
Kn = (µG × θ2 × · · · × θn), where θi ∈ Irr(G),

for i = 2 · · ·n, µ ∈ Irr(N).)

In both cases, the irreducible constituents are cyclic shifts of characters in Xn, thus inducing further

from Kn to Gn yields characters all whose irreducible constituents lie in Yn. Now note that ψ′ is one

of them.

For part (iii), note that there is an edge between (i1, i2, . . . , in) and (i′1, i
′
2, . . . , i

′
n) in Γn if and only

if χ := χi1 × χi2 × · · · × χin and χ′ := χi′1
× χi′2

× · · · × χi′n differ in exactly one component χij ,

χi′j
, such that χij |N and χi′j

|N have a common constituent. Let ψ := (χi1 × χi2 × · · · × χin)
Gn , and

ψ′ := (χi′1
× χi′2

× · · · × χi′n)
Gn . Then ψ|Kn contains as a constituent χi1 × χi2 × · · · × χin and all

its cyclic shifts, ψ′
Kn

contains as a constituent χi′1
× χi′2

× · · · × χi′n and all its cyclic shifts. When

restricted further to Hn the scalar product can be nonzero if and only if some of cyclic shifts of χ and

some of cyclic shifts of χ′ have in the first component a restriction that have a common component

and all other components are equal. But then they must be shifted in the same way, since otherwise

the faithful components were in different place. Thus χi1 × χi2 × · · · × χin and χi′1
× χi′2

× · · · × χi′n

differ in exactly one component χij , χi′j
, such that χij |N and χi′j

|N have a common constituent.

For part (iv), observe that any shortest path from (4, 1, . . . , 1) to (4, 2, . . . , 2) in Γn replaces in each

step exactly one 1 by a 2.

For part (v), fix n and let αn ∼Gn ψ1 ∼Gn ψ2 ∼Gn · · · ∼Gn ψm ∼Gn ωn be a shortest path

of related characters in Irr(Hn), of length m + 1. This means that there are irreducible characters

Φ1,Φ2, . . . ,Φm+1 of Gn such that αn and ψ1 are constituents of Φ1|Hn , ψi and ψi+1 are constituents of

Φi+1|Hn , for 1 ≤ i ≤ m− 1, and ψm and ωn are constituents of Φm+1|Hn . By Frobenius reciprocity we

have that (αGn
n ,Φ1) ̸= 0. Since αKn

n = (χ4+χ5)×χ1× · · ·×χ1 is a sum of characters in Xn, we know

that Φ1 ∈ Yn, and part (ii) implies that Φi ∈ Yn for all i ∈ {1, 2, . . . ,m + 1}. Let Θi be the unique
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character in Xn with the property Φi = ΘGn
i , for 1 ≤ i ≤ m+ 1. By part (iii), Θi and Θi+1 differ in

at most one component. Now Θ1 has n− 1 components χ1, and Θm+1 has n− 1 components χ2, thus

m ≥ n− 1 holds. Conversely, any path of length n− 1 between (4, 1, 1, . . . , 1) and (4, 2, 2, . . . , 2) in Γn

yields a path of related characters from αn to ωn, of length n, hence m+ 1 = n. □

In order to prove that d(Hn, Gn) = 2n, it remains to show that d(Hn, Gn) ≥ 2n holds. If

d(Hn, Gn) ≤ 2n−1 = 2(n−1)+1, then by Corollary 1.2 we have that every two irreducible characters

of Hn have distance at most n − 1. However, the characters αn and ωn constructed in Lemma 3.1

have distance n, which is a contradiction. So we are done.
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