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CRYSTALS-Dilithium and Falcon are digital signature algorithms based on cryptographic lattices, that are considered secure

even if large-scale quantum computers will be able to break conventional public-key cryptography. Both schemes have been

selected for standardization in the NIST post-quantum competition. In this work, we present a RISC-V HW/SW codesign that

aims to combine the advantages of software- and hardware implementations, i.e. lexibility and performance. It shows the use

of lexible hardware accelerators, which have been previously used for Public-Key Encryption (PKE) and Key-Encapsulation

Mechanism (KEM), for post-quantum signatures. It is optimized for Dilithium as a generic signature scheme but also accelerates

applications that require fast veriication of Falcon’s compact signatures. We provide a comparison with previous works

showing that for Dilithium and Falcon, cycle counts are signiicantly reduced, such that our design is faster than previous

software implementations or other HW/SW codesigns. In addition to that, we present a compact Globalfoundries 22 nm ASIC

design that runs at 800 MHz. By using hardware acceleration, energy consumption for Dilithium is reduced by up to 92.2%,

and up to 67.5% for Falcon’s signature veriication.

CCS Concepts: • Security and privacy→ Hardware security implementation; • Hardware→ Application speciic

integrated circuits.

Additional Key Words and Phrases: Post-Quantum, NIST PQC, Digital Signatures, HW/SW Codesign, CRYSTALS-Dilithium,

Falcon, RISC-V

1 INTRODUCTION

In 1994, Peter Shor presented an algorithm that severely threatens today’s public key cryptography under the
assumption that large-scale quantum computers are available [30]. This algorithm, simply known as Shor’s
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algorithm, allows to solve the problems of discrete logarithm and integer factorization within feasible time. These
problems are the basis for today’s public-key cryptography and thus, new ways must be found to provide secure
communication. One class of algorithms that fulills these requirements is called lattice-based cryptography. Due
to their eiciency with respect to performance and parameter sizes, these algorithms seem to be well suited for
constrained devices.
In order to evaluate the diferent options and deine new standards for post-quantum secure algorithms,

the National Institute of Standards and Technology (NIST) initiated the Post-Quantum Cryptography (PQC)
competition1. The process started in 2016 and consists of two tracks. The irst track contains PKE and KEMs and
is currently in its fourth round. Recently NIST announced the irst set of algorithms for standardization [24]. The
second track contains Digital Signature Algorithms (DSAs) and NIST decided to extend this competition to a
fourth round. For that, NIST called for new candidates.
Among the irst DSA candidates selected for standardization are two lattice-based schemes, i.e. CRYSTALS-

Dilithium [23] and Falcon [10]. Dilithium is built on the Fiat-Shamir with Aborts [22] principle and bases its
security on the Module Learning with Errors (M-LWE) and Module Short Integer Solution (M-SIS) problem.
Falcon, however, is a hash-and-sign signature scheme that operates on NTRU lattices and requires a trapdoor
sampler for signature generation. Similar to Dilithium, Falcon’s security is based on the Shortest Integer Solution
(SIS) problem for NTRU lattices. Both schemes have diferent advantages. An advantage of Dilithium is that its
operations are quite simple compared to Falcon’s operations. More concretely, Dilithium performs polynomial
multiplication with integer coeicients, whereas Falcon also operates on complex polynomials. In addition to that,
Dilithium only requires uniform sampling, whereas Falcon requires Gaussian sampling with varying center and
standard deviation. However, an advantage of Falcon is its compactness and performance of signature veriication,
which can be crucial for certain applications like the certiicate veriication part of the TLS 1.3 handshake, secure
boot or authenticated irmware updates. Therefore, a uniied design with Dilithium as a signature scheme and
Falcon for fast signature veriication is a desirable goal for a wide range of applications.

Related Works: Several designs implementing Dilithium on embedded systems have been presented in the past.
Round 2 versions of the NIST submissions have been implemented in software [15, 16, 28], in hardware [3, 4,
29, 31, 32] or as a HW/SW codesign [20, 36]. For round 2 Falcon versions, the veriication procedure has been
implemented in [31]. For the inal round versions, several implementations for Dilithium [1, 2, 5, 6, 17, 21, 34]
and Falcon [6, 26, 27] were published. In [7], Bos et al. optimized a platform independent C implementation of
Dilithium with the goal of low memory consumption. Most of these designs are either pure SW implementations
beneiting from its lexibility, or HW implementations beneiting from high performance, but lacking lexibility.
Combining both advantages by integrating speciic hardware accelerators into RISC-V platforms has previously
been applied to several lattice-based KEMs e.g. [11, 12]. Inspired by this, Nannipieri et al. integrate a Dilithium-
tailored ALU that supports several operations required for polynomial arithmetic into an open-source 64 bit
RISC-V processor [25]. Concurrent to our work, [35] presented a co-processor for Dilithium targeting high-
performance applications. Their baseline features the 64 bit Rocket Core implementing the RV64IMC instruction
set.

Contribution: In this work, we present a hardware accelerated RISC-V platform for eicient signature generation
and veriication. The design integrates accelerators that fully support the Dilithium signature scheme but also
speed up signature veriication for Falcon signatures. This combines the advantages of both schemes, i.e. an
overall eicient signature scheme (Dilithium) with application-speciic fast veriication of compact signatures
(Falcon). Additionally, supporting lexible signature veriication of two diferent schemes allows for authenticated
irmware updates even if the security of one scheme is threatened. This increases the conidence in the system

1https://csrc.nist.gov/projects/post-quantum-cryptography
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when migrating towards post-quantum cryptography. Furthermore, in scenarios like TLS 1.3 where signatures
must be generated but some parts of the handshake require only veriication, additional lexibility can improve
performance and bandwidth requirements. In contrast to the 64 bit design in [25], our design is based on a 32 bit
RISC-V platform and also accelerates the Keccak-based shake functions that are used in several lattice-based
NIST submissions. We therefore provide:

• An assembled HW/SW codesign supporting all parameter sets of 1) the full Dilithium scheme and 2) Falcon
veriication in a uniied design.
• A step towards a crypto-agile system by supporting accelerated veriication of two diferent signature
schemes for authentication. Furthermore, we depict the beneits of lexible signature verication with
respect to the applicability in scenarios like TLS 1.3.
• A comparison of cycle counts with previous work showing improvements over previous SW implementa-
tions for embedded systems and HW/SW codesigns.
• An analysis of resource cost in terms of memory consumption using hardware acceleration for signature
schemes.
• A 22nm Globalfoundries chip design running at 800 MHz including numbers for area, power, and energy
consumption. The design shows signiicant reduction in energy consumption by making use of hardware
acceleration. We further compare the ASIC design with previous designs.

Organization: Section 2 gives an introduction of the signature schemes and some mathematical notation is
introduced. The system architecture and integrated accelerators are presented in Section 3. The results with
respect to performance and area numbers are discussed in Section 4 and the 22 nm ASIC design is presented.
In addition to that we explain the beneit of providing the additional veriication procedure of Falcon. Finally,
Section 5 concludes this work.

2 PRELIMINARIES

2.1 Polynomial Notation and Number Theoretic Transform (NTT)

Let R� = Z�/� (�) denote a polynomial ring with an integer modulus � and the cyclotomic polynomial � (�).
Dilithium and Falcon are both speciied for � (�) = �� + 1. Let � ∈ R� be a single polynomial. Vectors of

polynomials are written in bold lowercase letters, i.e. � ∈ R�� and matrices of polynomials in bold uppercase

� ∈ R�×�� for dimensions � and � . We denote with←U the sampling of uniformly distributed random bits.

Polynomial arithmetic is often performed in Number Theoretic Transform (NTT) domain, which is eicient
for polynomial multiplication. It can be seen as a variant of the Fast Fourier Transform (FFT) operating in the
inite ield Z� instead of C. Using the NTT transformation efectively reduces the complexity of polynomial

multiplication from O(�2) down to O(� log2 �). That is, for two polynomials �, � ∈ R�/� (�), the product

� = � ·� can be eiciently calculated as � = ��� −1 (��� (�) ⊙ ��� (�)), where ⊙ denotes the coeicient wise
multiplication and ��� () and ��� −1 () the transformation to and from NTT domain, respectively.

Let � be a polynomial of degree �−1, the transformation �̂ = ��� (�) and �� (resp. �̂� ) denote the �-th coeicient
of � (resp. �̂). Then the functions ��� () and ��� −1 () are deined as follows:

��� (�) : �̂� =

�−1︁

�=0

� � ·�
� �
� ·� � ��� −1 (�̂) : �� =

1

�
·�−�

�−1︁

�=0

�
−� �
� · �̂ � (1)

�� ∈ Z� is called the �-th root of unity such that ��
� = 1��� � and ��

� ≠ 1��� �, ∀� ∈ [1, � − 1]. The powers of
�� are usually called twiddle factors and can either be precomputed and stored in memory, or can be computed
on-the-ly when needed. Furthermore, �� is the 2�-th root of unity and allows to use a length-� NTT instead of a
length-2� NTT. They can also be precomputed and merged into the twiddle factors.
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For realizing the NTT transformations, there exist mainly two algorithms, i.e. Cooley-Tukey [8] and Gentleman-
Sande [14]. Due to the structure of their equations as shown in Eqs. (2) and (3), they are usually referred to as
butterly units.

� ′ = � + ���

�′ = � − ���
(2)

Eq. 2. Cooley-Tukey buterfly

� ′ = � + �

�′ = (� − �)��
(3)

Eq. 3. Gentleman-Sande buterfly

Both signature schemes Dilithium and Falcon have parameters chosen such that NTT can be eiciently used.
Therefore, the rest of this work assumes NTT multiplications whenever polynomials or vectors of polynomials
are multiplied.

2.2 CRYSTALS-Dilithium

In the following, an introduction of Dilithium according to the oicial NIST submission speciication is given [23].
The signature scheme is based on the Fiat Shamir with Aborts principle [22] and is selected for standardization in
the NIST PQC competition. The latest version provides parameter sets for three NIST security levels: Dilithium-II,
Dilithium-III and Dilithium-V for security levels 2, 3 and 5. The underlying security is based on the M-LWE
and M-SIS problem operating on vectors of polynomials. In Dilithium, the M-LWE distribution is denoted as
(�, � = ��1 + �2) for � ∈ R

�×�
� , �1 ∈ R

�
� and �2 ∈ R

�
� , whereas all elements �, �1 and �2 are uniformly distributed

and �1. The M-SIS problem is deined as inding an � ∈ R�� such that �� = 0 for � ∈ R�×�� and the norm of � is

below some predeined boundary � .
The polynomials have dimension � = 256 for all security levels. Similarly, the modulus � = 223 − 213 + 1 =

8, 380, 417 is the same for each parameter set. All operations for seed extension, sampling and hashing are
performed using the Keccak based functions shake128 or shake256. The dimensions � and � are set to (4, 4),
(6, 5) and (8, 7) for the three security levels.

Key Generation: Algorithm 1 provides a simpliied version of the key generation procedure. In a irst step, the
seeds � and � ′ as well as the secret � are sampled uniformly random. Note, that in the oicial document, they
are not directly sampled, but are derived from a hash function seeded with a truly random seed. As these details
are not necessarily relevant for our work, we omit them from Algorithm 1 for simplicity. In line 2 of Algorithm 1,
the public matrix � ∈ ��×�� is expanded from � . All sampled coeicients that are not in the range of [0, � − 1] are
rejected. As � is used for multiplications later on, it is directly sampled and stored in NTT representation. The
secret polynomial vectors �1 and �2 are expanded from � ′ via rejection sampling, i.e. only the coeicients in the
range [−�, �] are kept. The multiplication ��1 is performed in NTT domain and as � is already sampled in NTT
domain, only �1 has to be converted. Finally, Power2Round() splits � into an upper part and lower part, which
are then part of public key and secret key. This also serves as a compression of the public key, as only the upper
part �1 of � has to be transmitted. The lower part �0 is then recovered during veriication by the use of a hint. �� is
the hash of the public key (�, �1) computed by the hash function � .

Signature Generation: Algorithm 2 provides an overview of the signature generation process in Dilithium. The
core part is the rejection loop starting at line 5. On an abstract level, a candidate signature � is generated for a
challenge � and has to pass two security checks in line 13. The irst security check veriies that the norm of � is
suiciently small and does not leak information about the secret �1. The second check is required for security
but also for correctness: As �0 is not part of the public key due to compression, a hint must specify which parts
of �1 require carry bits during signature veriication. If too many carry bits would be required, no hint can be
generated. As a result, if one of these checks fail, i.e. the � � -branch is taken, the rejection loop must restart and

ACM Trans. Embedd. Comput. Syst.
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Algorithm 1 Dilithium KeyGen

Input: -
Output: (��, ��)

1: �, � ′, � ←U ⊲ Uniformly sampled
2: �← ExpandA(�) ⊲ � ∈ ��×�� , sampled in NTT domain

3: (�1, �2) ← ExpandS(� ′) ⊲ �1, �2 ∈ �
�
� × �

�
�

4: � ← ��1 + �2
5: (�1, �0) ← Power2Round(�)

6: �� ← � (� ∥ �1)

7: return �� = (�, �1), �� = (�, �, ��, �1, �2, �0)

a new candidate signature is generated. On success, the hint � is generated, and the signature tuple (�̃, �,�) is
returned.
Inspecting Algorithm 2, it shows that there are several hash operations and seed expansions again using

shake128 and shake256. Furthermore, the multiplications ��, ��1, ��2 and ��0 are performed in NTT domain.
For deinitions of the functions HighBits(), LowBits(), SampleInBall() or MakeHint, we refer to the oicial
speciication [23].

Algorithm 2 Dilithium Sign

Input: Secret key �� , message�
Output: Signature �

1: �← ExpandA(�) ⊲ � ∈ ��×�� , sampled in NTT domain

2: � ← � (�� ∥ �)

3: � ′ ← � (� ∥ �)

4: (�,�) = ⊥, � = 0
5: while (�,�) = ⊥ do

6: � ← ExpandMask(� ′, �) ⊲ � ∈ �̃��1
7: � ← ��

8: �1 ← HighBits(�)

9: �̃ ← � (� ∥ �1)

10: � ← SampleInBall(�̃)

11: � ← � + ��1
12: �0 ← LowBits(� − ��2)

13: if ∥�∥∞ ≥ �1 − � OR ∥�0∥∞ ≥ �2 − � then

14: (�,�) = ⊥ ⊲ Bad signature, reiterate
15: else

16: �← MakeHint(−��0,� − ��2 + ��0) ⊲ Good signature
17: end if

18: � ← � + �

19: end while

20: return � = (�̃, �,�)

ACM Trans. Embedd. Comput. Syst.
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Signature Veriication: Finally, Algorithm 3 provides an overview of the Dilithium signature generation. In
lines 3-4, the challenge � is recovered from the signature and the hint � is used to recreate�′

1
. Both parts are then

used to perform several checks in line 5. At irst, it is checked whether the norm of the received signature part �
is within its deined boundary �1 − � . In addition to that,�′

1
is hashed with � and the result is compared to match

the transmitted challenge �̃ . Finally, the correct format of the hint � is veriied. Only if all of these checks are
valid, the signature is accepted, otherwise it is rejected.

Algorithm 3 Dilithium Verify

Input: Public Key �� , message� , signature � = (�̃, �,�)

Output: Accept or reject

1: �← ExpandA(�) ⊲ � ∈ ��×�� , sampled in NTT domain

2: � ← � ( � (� ∥ �1) ∥ �)

3: � ← SampleInBall(�̃)
4: �′

1
← UseHint(�,�� − ��1 · 2

� )

5: if ∥�∥∞ < �1 − � AND �̃ = � (� ∥ �′

1
) AND # of 1’s in � ≤ � then

6: return ������

7: else

8: return �� ����

9: end if

2.3 Falcon

Falcon is a hash-and-sign signature scheme that operates on NTRU lattices and makes use of a trapdoor sampler.
It also operates on polynomial rings. However, Falcon partially computes on complex numbers and requires
double-precision loating point arithmetic. This makes the scheme less eicient for embedded devices that usually
don’t provide a Floating Point Unit (FPU), let alone with double-precision. In such cases, loating point operations
must be emulated with integer arithmetic, which is even less eicient. The efect of the FPU emulation for
Falcon has been analyzed in [18] in more detail. Falcon is speciied for the two parameter sets Falcon-512 and
Falcon-1024 for NIST security levels 1 and 5. The lattice dimensions are � = 512 for Falcon-512 and � = 1024 for
Falcon-1024. The modulus � = 12, 289 is the same for both parameter sets. In contrast to Dilithium, Falcon does
require Gaussian sampling in addition to uniform sampling.

Algorithm 4 provides a simpliied version of the signature veriication procedure according to [10]. Note, that
in the original speciication, the Falcon signature is (�, �) where � is a compressed version of �2. Therefore, �
has to be decompressed before being processed. We omitted this step as it is not relevant for the remainder of
this work and assume that �2 is directly part of the signature. Falcon’s veriication routine only operates on
integer polynomials and is compact by design. It consists of basically three steps: At irst, the message � is
hashed with the salt � to a point � . Then, the signature polynomial �1 is recovered from � , �2 and the public key
polynomial ℎ. Finally, it is checked whether the norm of the signature tuple (�1, �2) is within its deined boundary
⌊�2⌋. Therefore, the veriication only consists of hashing, a single NTT multiplication and some straightforward
polynomial operations (i.e. addition/subtraction, norm computation).
Inspecting Algorithms 1 to 4 indicates, that there are mainly two operations frequently used. One common

operation in lattice-based cryptography is the use of a hash function for hashing or sampling. For Dilithium and
Falcon this is both realized by the Keccak based shake128 and shake256 functions, which are part of the SHA-3
standard. The PQM4 benchmark 2 has evaluated, that hashing makes up about 67.1%/37.3%/60.1% of the overall

2https://github.com/mupq/pqm4/blob/master/benchmarks.md

ACM Trans. Embedd. Comput. Syst.
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Algorithm 4 Falcon Verify

Input: Public key �� = ℎ, message� , signature � = (�, �2), acceptance bound ⌊�
2⌋

Output: Accept or reject

1: � ← HashToPoint(� ∥ �)
2: �1 ← � − �2ℎ ��� �

3: if ∥ (�1, �2) ∥
2 ≤ ⌊�2⌋ then

4: ������

5: else

6: �� ����

7: end if

computation time of Dilithium-2’s key generation, signature generation and veriication, respectively. For the
higher security levels, this percentage even increases. For Falcon, the benchmark reports 29.3% and 26.9% of
execution time accounted for hash operations for security level 1 and 5.

The second frequent operation is the polynomial multiplication. Although in Falcon’s verify function only one
multiplication is performed, it is a frequent operation in Dilithium. For instance, the matrix-vector multiplications
��1, �� and �� in the keygen, sign and verify procedure involve several polynomial multiplications.

As a result, it is an obvious choice to accelerate the NTT transformation and pointwise multiplications, as well
as the functions shake128 and shake256 using dedicated hardware. The accelerators and the resulting HW/SW
system will be subject of Section 3.

2.4 Parameter Comparison of Dilithium and Falcon

A summary of the parameters of Dilithium and Falcon is provided in Table 1. It depicts the remarkable compactness
of Falcon with respect to the size of the public key and signature. Comparing Dilithium-V with Falcon-1024, it
shows that Falcon’s combined size of the public key and signature is less than half of Dilithium’s size for the
same security level. This underlines the suitability of Falcon for applications, that mostly require fast and eicient
signature veriication. Therefore, our goal is to provide a generic HW/SW codesign platform that accelerates 1)

Table 1. Parameter comparison between Dilithium and Falcon

Dilithium-II Dilithium-III Dilithium-V Falcon-512 Falcon-1024

NIST level 2 3 5 1 5
Ring degree � 256 256 256 512 1024
Modulus � 8, 380, 417 8, 380, 417 8, 380, 417 12, 289 12, 289
⌈���2 (�)⌉ 23 23 23 14 14

|�� | (B) 1, 312 1, 952 2, 592 897 1, 793
|���| (B) 2, 420 3, 293 4, 595 666 1, 280
|�� | + |���| (B) 3, 732 5, 245 7, 187 1, 563 3, 073

Dilithium as a generic and eicient signature scheme and 2) fast veriication for compact Falcon signatures.

ACM Trans. Embedd. Comput. Syst.
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3 SYSTEM DESIGN AND ACCELERATORS

As a baseline for our design we chose the PULPino1 microcontroller from the Parallel Ultra-Low-Power (PULP)
project, originally developed in collaboration between ETH Zurich and the University of Bologna. This microcon-
troller instantiates CV32E40P (formerly known as RI5CY), a single core 4-stage pipeline RISC-V processor [13] that
implements the base integer instruction set (RV32I), compressed instruction set (RV32C) as well as the multiplica-
tion instruction set extensions (RV32M). In addition to that, the core supports the optional single-precision loating
point extensions (RV32F). However, as both Dilithium and Falcon have no use for single-precision loating-point
arithmetic, we do not consider the RV32F extension and use the RV32IMC coniguration as baseline. As the core
and the Instruction Set Architecture (ISA) is fully open-source, it can be easily extended with further instructions
and hardware accelerators. For software compilation the corresponding PULP compilation toolchain2 with lag
-O3 has been used. A Xilinx UltraScale+ FPGA (xczu9eg-fvb1156-2e) is used as test platform to implement the
RISC-V core.
When designing hardware accelerators, there are basically two design options. One can add custom ISA

instructions to the system and integrate the corresponding accelerators directly into the pipeline of the processor.
This form is commonly referred to as tightly-coupled accelerators and is very well suited for lightweight operations
where the accelerators have relatively low resource consumption. A second option is to implement a dedicated,
standalone accelerator that is connected to the system bus and has its own address space. This type is often called
loosely-coupled and is suitable for large accelerators that do a lot of processing for one chunk of data. However, the
speed-up of these computations must be large enough to compensate for the communication overhead between
the processor and the accelerator.
In this work, we chose the tightly-coupled approach for accelerating the shake128/256 functions and the

loosely-coupled approach for acceleration of the NTT transformations and polynomial arithmetic as explained in
the following.

3.1 Keccak Accelerator

The functions shake128/256 are part of the SHA-3 [9] standard and use the Keccak primitive. Keccak computes on
a 1600 bit state that is permuted by a non-linear round function called Keccak-f1600. In contrast to implementing
the whole Keccak primitive with its 1600 bit state as a separate accelerator that is connected to the system bus,
we opt to take the approach presented in [12]. In this work, Fritzmann et al. propose to implement only the round
function Keccak-f1600 as a tightly-coupled accelerator that is connected to the processors register ile. A custom
RISC-V instruction is implemented that performs a single round of the permutation. For the inal shake128/256
functions, a designer can use the corresponding C implementation and simply replace the round function by the
corresponding assembly instruction.

For the state, 50 registers of 32 bit are required. Therefore, [12] proposes to use the 32 Floating Point Registers
(FPRs) as well as 18 additional General Purpose Registers (GPRs). In our system, however, we do not make use
of the FPU and thus we have to enable only the FPR and corresponding load/store instructions. Under these
circumstances, one can say that the accelerator comes with 32 additional FPR registers (1024 bit) overhead, but
still uses the 18 registers from the GPR (576 bit) without area overhead. In case the complete FPU is used in
the system anyway, saving the state does not impose additional resource cost at all. Therefore, we consider the
tightly-coupled accelerator for shake128/256 as an appropriate compromise between performance and resource
consumption. Table 2 states the resource overhead introduced by the Keccak accelerator.

1https://github.com/pulp-platform/pulpino
2https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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Table 2. Resource overhead of the Keccak accelerator measured for a Xilinx UltraScale+ FPGA

LUTs FFs BRAMs DSPs

Keccak 4, 782 1, 050 0 0

Using this tightly-coupled approach, the rejection sampling of the matrix � can be further optimized. As the
state is stored directly in the registers, the rejection sampling can be performed without irst storing the Keccak
squeeze to memory, and afterwards load it again to perform rejection sampling.

3.2 NTT Accelerator

In order to accelerate the NTT transformations for both signature schemes, a design with a certain amount of
lexibility is required. Table 1 shows that a uniied design must provide support for ring dimensions � = 256,
� = 512 and � = 1024 as well as support for the prime moduli � = 8, 380, 417 and � = 12, 289. One suitable
approach would be to integrate a generic butterly unit and modular multiplier tightly-coupled into the processor
pipeline and perform the control logic in pure software. Such an approach has been chosen for instance in [12, 25].
A second option is to integrate a generic accelerator for NTT transformation and polynomial arithmetic as a
loosely-coupled solution connected to the system bus. Such an approach was presented in [11], where a generic
NTT-based accelerator has been designed with multiple features. More concretely, it has runtime conigurable
support for the following:

• Dimension � up to 4096, modulus � up to 39 bit
• Positive and negative wrapped convolutions
• Early abort functionality for incomplete NTTs
• Pointwise multiplication, addition and subtraction

The authors of [11] state, that their design goal was to support a wide range of parameter sets, such that it can be
used for all the lattice-based candidates of the NIST competition.

For our purpose, we decided to opt for the second approach with the loosely-coupled, generic NTT accelerator.
The reason is, that a standalone accelerator comes with dedicated memory for storing twiddle factors and
polynomial coeicients. That means, that the twiddle factors can be written once into the accelerator’s memory
and reside there, even for multiple consecutive transformations. With a tightly-coupled solution, however, the
twiddle factors reside in the system memory and single elements must be loaded over again in consecutive
computations. For Dilithium’s signing procedure shown in Algorithm 2, there are several occasions where this
efect becomes visible. That is, in line 7, � is transformed into NTT domain for multiplication and afterwards,
the result � is transformed back into normal domain. The challenge � that is used for multiplication in line 11
and 12 is transformed to NTT domain and the results � and �0 of line 11 and 12 are transformed back. All these
transformations are computed inside the rejection loop until a valid signature is found. Therefore, we prefer
having a dedicated memory for the twiddle factors inside the accelerator and a hardware controller for reading
them from the dedicated memory. Furthermore, the standalone solution allows to keep Dilithium’s challenge
polynomial � , that is processed several times within one loop iteration, inside the accelerator.

Nevertheless, we do not require all the features that were integrated into the NTT accelerator of [11]. In order
to reduce the resource consumption, we modify the accelerator as follows:

(1) Reducing parameter support: The presented accelerator supports � up to 4094 and a modulus � up to 39 bit.
However, we only require support for � up to 1024 and a 23 bit modulus � as shown in Table 1. The reason
for the 39 bit prime support in [11] is, that non NTT-friendly moduli can be lifted to NTT-friendly primes
�′, such that �′ > ��2. In this context, [11] chose a 39 bit Solinas prime which allows easy reduction. As
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Dilithium and Falcon use NTT-friendly parameters, we do not require this feature. Therefore, the reduction
circuit for the Solinas prime can be removed.

(2) Removing support for positive wrapped convolution: Both algorithms in this work use the reduction polyno-
mial � (�) = �� + 1, i.e. negative wrapped convolutions.

(3) Removing support for incomplete NTTs: Dilithium and Falcon both use parameters where the �-th root as
well as the 2�-th root of unity exist. Therefore, complete NTT transformations can be performed.

(4) Reducing memory size: Due to its generic character, the accelerator features two memory blocks (one for
coeicients, one for twiddle factors) each of dimension 39 × 4096. For our use case, we resize the twiddle
memory to 32 × 2048, as we need only 2� twiddle factors, i.e. at most 2048 in the case of Falcon-1024 (1024
for forward and reverse NTT each). The coeicient memory is conigured to 32 × 3584. This allows to pack
two 14 bit coeicients (stored as 16 bit variables) of Falcon in one memory word. Dilithium’s matrix-vector
multiplication with � is an iterative multiplication of two vectors of size � . For eiciency reasons, we want
to have enough space in the accelerator memory to store both vectors. As Dilithium has a 23 bit modulus,
we require 2 × � × � coeicients in the accelerator. For Dilithium-5 it is � = 7 and thus, 2 × 7 × 256 = 3584
coeicients/words must be stored.

With these modiications, the overall size of the NTT accelerator in [11] can be reduced. Table 3 depicts the
savings in terms of FPGA resources. For the baseline version, we synthesized the accelerator as stated in [11] for
our platform. The savings are mainly caused by removing the support for the 39 bit Solinas prime, which requires
some extra reduction circuit. Furthermore, the memory consumption is reduced by a third, which represents a
saving of more than 12 kB.

Table 3. Resource consumption for baseline and modified NTT on a Xilinx UltraScale+ FPGA

Version LUTs FFs BRAMs DSPs

Baseline [11] 2, 475 1, 940 9 7
Modiied 1, 402 1, 192 6 7

3.3 System Overview

A system overview of the PULPino microcontroller is given in Fig. 1. The additional accelerators are colored
blue. It shows the tightly-coupled Keccak accelerator integrated into the pipeline and directly connected to
the processor’s GPR and FPR. The NTT accelerator is connected to the system bus and can be reached via its
corresponding address space. Furthermore, it is connected to the two additional memories for storing the twiddle
factors and the polynomial coeicients. The system’s instruction memory is conigured to 32 kbit and the data
memory is set to store 160 kbit. As discussed later in Section 4.3.1, this is suicient memory for both Dilithium
and Falcon and also compares to a widely used commercial microcontroller.

4 RESULTS

4.1 Performance Gain

Table 4 compares our baseline implementation with the accelerated version and the PQM4 benchmark [19]. The
functions have been measured over 100 iterations for a 59 B message, just as in PQM4. For the PQM4 numbers,
the clean version has been chosen as it has the same code base as our baseline implementation, i.e. the code
from PQClean3 and therefore allows for a fair comparison. Unfortunately, PQM4 does not state results of the

3https://github.com/PQClean/PQClean, as of 2021-12-17
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Fig. 1. System overview of the PULPino microcontroller and integrated accelerators in blue.

clean version for Dilithium-V, so we include the optimized version for the ARM Cortex-M4f. Comparing our
baseline and accelerated implementations, we obtain speed-up factors of up to 6.31 for Dilithium. For the Falcon
signature veriication, this factor is in the range of 2.6 to 2.7. This decreased speed-up is caused by the reduced
computational complexity of the veriication. As there is less to compute, the speed-up also decreases. Compared
to the PQM4 numbers, the presented design is also faster, although the PULPino platform itself is less performant
in general, as can be seen by comparing our baseline implementation with the PQM4 numbers.

4.2 Comparison to Previous Work

Several works implemented Dilithium with the irst- and second-round parameter sets of the NIST competition
targeting embedded systems. Pure software implementations for embedded systems were presented in [15, 16, 28],
hardware implementations in [3, 4, 29, 31, 32] as well as a HW/SW codesign in [36]. For Falcon, the veriication
procedure of irst- and second-round parameters has been implemented in [31].
With the start of third round of the NIST competition, there has been a change in the parameter sets for

Dilithium as well as for Falcon. Therefore, we want to compare our results with the most recent works that
implemented the parameter sets of the round three NIST competition. As our focus is on constrained devices
for embedded systems, we omit the comparison with high performance processors. Tables 5 and 6 provide a
cycle count comparison of our design and several previous round three implementations. Optimized versions
sometimes divide the signing procedures of Dilithium into oline and online stages, as the expansion of � can
be pre-computed if a static key is assumed. For a better comparison among all results, however, we took the
numbers that perform all operations online according to the oicial speciication document, assuming a new
key for every signing process. For every algorithm, Tables 5 and 6 are divided into three sections listing pure
SW implementations, HW/SW codesigns and pure HW implementations. For the sake of readability, we only
included works that presented results for all parameter sets of Dilithium.
For Dilithium, Table 5 shows that our accelerated design improves cycle counts by a factor of ≈ 2.4 for

keygen, ≈ 1.9 for signing and ≈ 2.2 for veriication compared to the fastest pure SW implementation running
on an ARM Cortex-M7, as presented in [18]. Note however, that we used the non-optimized reference C code
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Table 4. Average cycle count for 100 iterations and a 59 B message.

Keygen Sign Verify

Dilithium-II
[19] (clean) 1, 976, 311 (×3.33) 7, 465, 108 (×3.92) 2, 109, 292 (×3.24)
baseline 3, 566, 442 (×6.01) 11, 242, 911 (×5.90) 3, 854, 303 (×5.92)
accelerated 593, 403 (×1.00) 1, 905, 872 (×1.00) 651, 217 (×1.00)

Dilithium-III
[19] (clean) 3, 414, 513 (×3.20) 11, 722, 059 (×3.60) 3, 499, 388 (×3.11)
baseline 6, 432, 671 (×6.02) 20, 523, 503 (×6.31) 6, 458, 078 (×5.73)
accelerated 1, 067, 824 (×1.00) 3, 253, 378 (×1.00) 1, 126, 938 (×1.00)

Dilithium-V
[19] (m4f) 4, 826, 293 (×2.70) 8, 767, 067 (×2.01) 4, 705, 981 (×2.55)
baseline 10, 679, 856 (×5.98) 25, 912, 136 (×5.95) 11, 016, 121 (×5.96)
accelerated 1, 784, 767 (×1.00) 4, 357, 249 (×1.00) 1, 848, 324 (×1.00)

Falcon-512
[19] (clean) ś ś 765, 394 (×2.43)
baseline ś ś 830, 597 (×2.64)
accelerated ś ś 314, 639 (×1.00)

Falcon-1024
[19] (clean) ś ś 1, 526, 901 (×2.49)
baseline ś ś 1, 660, 838 (×2.71)
accelerated ś ś 613, 911 (×1.00)

for our evaluation whereas [18] used the C code from PQM4, that highly optimize the implementations for
the Cortex-M4. The implementation in [7] also used a platform independent C code, but optimized it with
respect to memory consumption. Pure hardware implementations are of course still much faster than our
accelerated design, but are also less lexible. In addition to that, comparing the pure cycle count of a hardware
implementation is not very meaningful without considering also the maximum frequency it can run at, as well as
the resource consumption of the design. Nevertheless, we stated the cycle counts for hardware implementation as
a reference and overview of current state-of-the-art. As our implementation runs software and only accelerates
computationally intensive operations like the Keccak round function and polynomial arithmetic, we combine
the advantages of both implementation strategies, i.e. the lexible character of SW implementations and the
performance gain by HW acceleration. In [25], Nannipieri et al. presented a HW/SW codesign with tightly
coupled accelerators for polynomial arithmetic on a 64 bit RISC-V platform. They obtained speed-up factors
of about 2.05 for NTT transformations and even less for the whole algorithm, whereas our NTT accelerator
measurements yield factors of 8.4 for NTT transformation, including the communication overhead to and from
the accelerator. Furthermore, they did not accelerate the shake128/256 operations, which are frequently used in
Dilithium. As a result, our design is more than 3 times faster for signature generation.
Another HW/SW codesign has been presented in [35]. It oloads more operations to HW and targets high-

performance applications, resulting in signiicantly less cycle counts but also more resource overhead as described
later in Section 4.4. Nevertheless, we included the design for completeness.
For Falcon, our veriication procedure is roughly 1.5 times faster than the best SW implementation listed in

the PQM4 benchmark [19], as can be seen in Table 6. This moderate increase is due to the fact that Falcon’s
veriication is inherently compact (only single hash and polynomial multiplication). The accelerators beneit
comes from the computational speed-up. In this case, the computational efort is inherently small and therefore
less operations can beneit from the accelerators. As expected, pure HW implementations again yield substantially
higher speed-ups. We want to note, however, that comparing clock cycles for HW implementations must be
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taken with care without also considering their resource consumption. For completeness and a general overview,
we nevertheless decided to provide their numbers in Tables 5 and 6.

Table 5. Cycle count comparison with previous work for third round parameters for Dilithium.

Platform Keygen Sign Verify

Dilithium-II

SW
[7] Cortex-M4F 2, 927, 000 (×4.93) 18, 470, 000 (×9.69) 4, 036, 000 (×6.20)
[1] Cortex-M4 1, 598, 000 (×2.69) 4, 083, 000 (×2.14) 1, 572, 000 (×2.41)
[18] Cortex-M7 1, 437, 000 (×2.42) 3, 658, 000 (×1.92) 1, 429, 000 (×2.19)

HW/SW
[25] CVA6 SoC 1, 592, 325 (×2.68) 5, 884, 266 (×3.09) 1, 700, 679 (×2.61)
This PULPino 593, 403 (×1.00) 1, 905, 872 (×1.00) 651, 217 (×1.00)
[35] RocketCore 45, 800 (×0.08) 175, 100 (×0.09) 89, 800 (×0.14)

HW

[21] Artix-7 18, 761 76, 613 19, 687
[2] UltraScale+ 14, 183 30, 358 15, 044
[5, 6] UltraScale+ 4, 875 29, 876 6, 582
[34] Artix-7 4, 172 31, 600 4, 422

Dilithium-III

SW
[7] Cortex-M4F 5, 112, 000 (×4.79) 36, 303, 000 (×11.16) 7, 249, 000 (×6.43)
[1] Cortex-M4 2, 830, 000 (×2.65) 6, 624, 000 (×2.04) 2, 692, 000 (×2.39)
[18] Cortex-M7 2, 566, 000 (×2.40) 6, 009, 000 (×1.85) 2, 453, 000 (×2.18)

HW/SW
[25] CVA6 SoC 2, 974, 897 (×2.79) 10, 211, 677 (×3.14) 2, 963, 936 (×2.63)
This PULPino 1, 067, 824 (×1.00) 3, 253, 378 (×1.00) 1, 126, 938 (×1.00)
[35] RocketCore 68, 400 (×0.06) 224, 600 (×0.07) 110, 300 (×0.10)

HW

[21] Artix-7 33, 102 123, 218 32, 050
[2] UltraScale+ 22, 957 47, 418 25, 535
[5, 6] UltraScale+ 8, 291 49, 437 9, 724
[34] Artix-7 5, 851 49, 496 6, 181

Dilithium-V

SW
[7] Cortex-M4F 8, 609, 000 (×4.82) 44, 332, 000 (×10.17) 12, 616, 000 (×6.83)
[1] Cortex-M4 4, 828, 000 (×2.71) 8, 726, 000 (×2.00) 4, 707, 000 (×2.55)
[18] Cortex-M7 4, 368, 000 (×2.45) 8, 157, 000 (×1.87) 4, 287, 000 (×2.32)

HW/SW
[25] CVA6 SoC 5, 001, 302 (×2.80) 13, 339, 255 (×3.06) 5, 132, 776 (×2.78)
This PULPino 1, 784, 767 (×1.00) 4, 357, 249 (×1.00) 1, 848, 324 (×1.00)
[35] RocketCore 94, 900 (×0.05) 313, 200 (×0.07) 160, 200 (×0.09)

HW

[17] Artix-7 63, 200 113, 900 67, 900
[21] Artix-7 50, 982 145, 912 52, 712
[2] UltraScale+ 38, 841 68, 460 45, 789
[5, 6] UltraScale+ 14, 037 55, 070 13, 642
[34] Artix-7 8, 765 55, 321 9, 039

4.3 Resource Consumption

4.3.1 Memory Requirements. In Table 7 the memory requirements of the baseline and accelerated versions of
the algorithms are listed. For Dilithium, the memory consumption refers to the peak value of all three operations,
i.e. key generation, signature generation and signature veriication. On the contrary for Falcon, the consumption
only indicates the requirements for the signature veriication. As one can see, the required instruction size (code
size) generally decreases as numerous operations implemented in software in the reference implementation
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Table 6. Cycle count comparison with previous work for third round parameters for Falcon.

Platform Keygen Sign Verify

Falcon-512

SW
[18] Cortex-M7 ś ś 559, 000 (×1.78)
[26] Cortex-M4F ś ś 530, 900 (×1.69)
[27] Cortex-M4 ś ś 504, 051 (×1.60)

[19] (m4-ct) Cortex-M4 ś ś 473, 061 (×1.50)

HW/SW This PULPino ś ś 314, 639 (×1.00)

HW [6] UltraScale+ ś ś 2, 399

Falcon-1024

SW
[18] Cortex-M7 ś ś 1, 136, 000 (×1.85)
[26] Cortex-M4F ś ś 1, 046, 700 (×1.70)
[27] Cortex-M4 ś ś 1, 032, 261 (×1.68)

[19] (opt-leak) Cortex-M4 ś ś 977, 058 (×1.59)

HW/SW This PULPino ś ś 613, 911 (×1.00)

HW [6] UltraScale+ ś ś 4, 687

are oloaded to the hardware accelerators and called by single custom instructions. This results in a code size
decrease of ≈ 25% for all three Dilithium security levels and ≈ 4% for the Falcon implementations. The reduction
in required data memory on the other hand is rather moderate for all three Dilithium parameter sets, as the total
amount of computational results does not change due to the used accelerators. The small decrease is mainly caused
by data representations in the NTT domain which are only stored in the NTT accelerator, thus not contributing
to the core’s data memory consumption. Concerning Falcon, the reduction in data memory requirement is more
signiicant (≈ 25%) as the signature veriication primarily consists of one calculation in NTT domain and the
corresponding transformations, as discussed in Section 2.3. As the data in NTT domain does not need to be
stored within the data memory when using the NTT accelerator, the resulting reduction in memory consumption
is more signiicant. These numbers, as shown in Table 7, deine the requirements for our implementation and
follows: The core has 32 KiB instruction memory and 160 KiB of data memory, while the NTT accelerator has
3584 B data and 2048 B twiddle factor memory. The total memory requirement of the core (excluding the NTT
accelerator) is equal to the memory required by the popular STM32F407VG microcontroller4.
Taking the entire PULPino microcontroller and not only RISC-V core into account, the reductions in data

memory are partially canceled out by the corresponding overhead in memory necessary for the loosely-coupled
NTT accelerator. This overhead can be summed up to 5632 B.

Concurrent to this work, a memory optimized implementation of Dilithium has been published [7]. Sacriicing
performance as shown in Table 5, they achieved signiicant memory reduction by analyzing the lifetime of
diferent variables. They targeted implementations with < 7 KiB (data) memory consumption and managed to
run almost all Dilithium parameter sets and functions under this restriction on their ARM Cortex-M4F platform.
Only the Dilithium-V signature generation required slightly more memory.

4.3.2 Resource Consumption on an FPGA. The resource consumption of our design synthesized for a Xilinx
UltraScale+ FPGA is shown in Table 8. The number of LUTs and FFs increase by a factor of ≈ 1.48 and ≈ 1.33. The
additional BRAM and DSP consumption is solely caused by the standalone NTT accelerator as stated in Table 3.
One may notice that the sum of the overheads stated in Tables 2 and 3 is signiicantly smaller than the overhead

4https://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
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Table 7. Memory consumption (in bytes) of the diferent algorithms for a 59 B message.

Instr. Mem. Data Mem. NTT Data NTT Twiddle

Dilithium-II
baseline 27, 500 62, 560 ś ś
accelerated 20, 624 61, 216 2, 048 512

Dilithium-III
baseline 26, 780 94, 064 ś ś
accelerated 20, 052 92, 720 2, 560 512

Dilithium-V
baseline 27, 204 141, 168 ś ś
accelerated 20, 324 139, 840 3, 584 512

Falcon-512
baseline 7, 864 10, 604 ś ś
accelerated 7, 556 6, 508 1, 024 1, 024

Falcon-1024
baseline 7, 864 16, 212 ś ś
accelerated 7, 560 12, 116 2, 048 2, 048

of the assembled design stated in Table 8. In fact, there is an additional overhead of roughly 1k LUTs and FFs each
when integrating the accelerators. This is mainly caused by the increased complexity of the AXI4-Interconnect
to which the NTT accelerator is connected. Nevertheless, we see this as a moderate overhead considering the
speed-up shown in Table 4.

Table 8 also compares our design with the tightly-coupled Dilithium design of [25]. It shows that their design
comes with a smaller absolute overhead caused by the acceleration in terms of LUTs and FFs. This is expected
as they 1) only implement small, tightly-coupled functions inside their ALU and 2) our design does not only
accelerate the NTT operations and polynomial arithmetic, but also the Keccak-based functions shake128/256,
which also require the whole FPR for storing the state. Furthermore, the additional overhead caused by the
interconnect as mentioned above does not apply to [25], as their design does not connect accelerators to the
system bus.

Table 8. Resource consumption for baseline and modified PULPino on a Xilinx UltraScale+ FPGA (xczu9eg-fvb1156-2e) and

comparison with CV6A-based SoC [25].

Version LUTs FFs BRAMs DSPs

PULPino base 15, 137 9, 943 48 6
PULPino accel. 22, 356 13, 181 54 13

Overhead 7, 219 3, 238 6 7

SoC base [25] 61, 349 60, 278 77 19
SoC accel. [25] 64, 855 60, 349 77.5 29

Overhead 3, 506 71 0.5 10

4.4 ASIC Design

Besides the evaluation on a FPGA platform, we also implemented the accelerated design as an ASIC. For that, we
used the Globalfoundries 22 nm FDSOI technology, which enables high performance designs with still reasonable
low energy consumption. As the main goal of this work was to implement a high performance design, we
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primarily used the fastest cells with the lowest threshold voltage available for this technology node. Nevertheless,
the actual choice whether to use a faster cell with higher leakage or a slower cell with less leakage was left to the
design tools as long as the constraints were met. The maximum frequency of the design is 800 MHz and mainly
constrained by the access latency of the implemented memory macros. This design leads to Dilithium-II signature
generations within an average of 2.38 ms and Falcon-512 signature veriications within 0.393 ms.

4.4.1 Area overhead. By including the loosely-coupled NTT as well as the tightly-coupled Keccak accelerator,
the number of cells increased by 38%, i.e. from 52, 788 to 85, 778, when comparing to the original PULPino design
without accelerators. Normalized with respect to the smallest NAND2 gate in our design, this results in an
increase from roughly 143 kGE up to 244 kGE. Numbers for logical synthesis as well as for the placed and routed
design are shown in Table 9. While this increase in gates is signiicant, its impact on the actual area of the design
is limited, as the total area consumption is dominated by the required instruction and data memories. All in
all, our hardware acceleration results in an area increase of 23, 715 µm2 for the logic gates, plus an additional
66, 362 µm2 for the memories of the NTT accelerator, summing up to an increase in area requirement of 21%. As
one can see in Table 9, this increase is mainly caused by the necessary memories for the NTT (i.e. column Cell
Area Memory), which contribute 74% of the total area overhead.

Table 9. Area and gate footprints of the design for Globalfoundries’ 22 nm FDSOI node

Cell Area Cell Area Cell Area

Cell Count Combinatorial Sequential Memory

[µm2 ] [µm2 ] [µm2 ]

Logical Synthesis

PULPino baseline 43, 984 - - -
PULPino accelerated 65, 968 - - -

Post Place & Route

PULPino baseline 52, 788 120, 393 22, 883 223, 451
PULPino accelerated 85, 778 133, 058 33, 933 289, 813

The inal layout of the design after place and route is depicted in Fig. 2. The top metal layers, which are
primarily used for power routing, are omitted from the image for clarity. The blocks marked with numbers are
the diferent memories used in the design. Number 1 and 2 are the data/system memories of the actual RISC-V
core. They are split into two blocks to it into a more compact design. Memory 3 is the instruction memory of
the RISC-V core storing the program code. Memory 4 is the NTT’s twiddle factor memory and 5 is the NTT’s
data/coeicient memory. The overall size of the design is 1, 144 µm x 1, 144 µm for the core and the IO-ring. For
a tapeout, the design including additional margins for manufacturing, yields a size of 1, 250 µm x 1, 250 µm. As
one can see, the total size of the ASIC as well as the shape is primarily deined by the size of the memories which
prohibit further shrinking, although some space for logic would still be available.

4.4.2 Power and energy consumption. We furthermore compare the power and energy consumption of the original
core with our accelerated design using toggle count analysis. The toggle counts for average runs were generated
in simulation with Cadence Xcelium and further analyzed with Cadence Joules. The operating frequency for
these simulated measurements is 800 MHz at an operating temperature of 25 ◦C and a core voltage of 0.8 V. The
power and energy consumption of the original as well as the accelerated core are shown in Table 10. As for the
aforementioned evaluation metrics, we calculated the power and energy consumption for the complete Dilithium
scheme, i.e. key generation, signing and signature veriication, while for Falcon, we only evaluated the signature
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Fig. 2. ASIC layout of the presented design ater place and route implemented using the Globalfoundries 22 nm FDSOI

technology.

veriication. As can be seen, the energy consumption for the complete scheme is reduced by more than a factor
of 10 for all three Dilithium sets, which corresponds to savings of ≈ 91% up to ≈ 92.9%. The energy reduction is
less signiicant for the Falcon parameters sets, i.e. 57% and 67.5% as we only evaluated the signature veriication.
In this case, there are only few operations beneiting from the acceleration and the static leakage dominates the
total power consumption.

The authors of [25] also measured the savings of energy consumption for their optimizations. When combining
all the savings for key generation, signing and veriication, they end up with total savings of ≈ 27.4%5 in total
for Dilithium-II, which is much less. However, a direct comparison is quite diicult, as they implemented their
design not on ASIC technology, but on a Xilinx ZCU106 FPGA board running at a clock frequency of 100 MHz.
With respect to gate optimization and routing capabilities, FPGAs are of course less lexible.

5Computed by dividing the sum of energy for the accelerated case by the sum of energy in the baseline case.
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Table 10. Power and Energy of the Design for Globalfoundries’ 22 nm FDSOI node for 800 MHz.

Leakage Internal Switching Tot. Power Cycles Energy

[µW ] [µW ] [µW ] [µW ] [×103] [µJ ]

Dilithium-II
base 994 7, 264 6, 536 14, 794 19, 036 352 (×13.2)
accel. 1, 116 5, 515 312 6, 943 3, 068 26.6 (×1.00)

Dilithium-III
base 1031 12, 055 3, 674 16, 759 33, 259 697 (×11.2)
accel. 1, 116 6, 580 382 8, 078 6, 144 62.0 (×1.00)

Dilithium-V
base 1, 031 14, 472 3, 988 19, 490 47, 713 1162 (×14.1)
accel. 1, 116 6, 698 289 8, 103 8, 150 82.5 (×1.00)

Falcon-512
base 992 591 683 2, 267 831 2.35 (×2.33)
accel. 1, 113 1, 403 53 2, 569 315 1.01 (×1.00)

Falcon-1024
base 992 1, 083 1, 221 3, 927 1, 661 8.15 (×3.08)
accel. 1, 137 2, 247 89 3, 450 614 2.65 (×1.00)

In [3], a lexible co-processor for a variety of lattice-based schemes, called Sapphire, was presented. The design
was also evaluated for Dilithium and implemented using a 40nm TSMC low-power technology. For their power
measurements, the design was running at a frequency of 72 MHz. A comparison of latency, power and energy
consumption for Dilithium running on our design as well as Sapphire is shown in Fig. 3 in green color. For
comparison, we used combined values for one key generation, signature generation and signature veriication.
That is, the energy values given in [3] for all three functions were summed-up. Similarly for the latency, the
added cycle counts and corresponding frequency of 72 MHz were taken to compute the time in ms. Both values
were then used to compute an average estimate for power consumption, which is roughly in the range of the
values given in [3]. Note, however, that Sapphire was evaluated for the second round parameter sets of the
NIST competition, which slightly difer from the third round parameter sets we evaluated. In Fig. 3b, the total
latency for the diferent parameter sets is compared. Sapphire requires less clock cycles but also runs much
slower (72 MHz compared to 800 MHz), such that our implementation is faster w.r.t. time when considering the
diferent security levels. Although our design has slightly higher power consumption as shown in Fig. 3c, we
again require less total energy as shown in Fig. 3d. That is mainly caused by the fact that our design is faster
while consuming roughly the same amount of power.

Another ASIC design accelerating Dilithium has been presented in [35]. It has been realized with a TSMC
28 nm technology but also runs at a lower frequency compared to our design (540 MHz vs 800 MHz). The authors
also provide latency and energy measurements which are included in Fig. 3 in red color. It clearly shows the
latency advantage of their design in Fig. 3b, but also the cost in terms of power consumption in Fig. 3c (note that
their power values must be scaled with ×103). This diference in power consumption is mainly caused by the
diferent area costs of the designs as depicted in Fig. 3a. Whereas our design takes a total cost of roughly 244
kGE, their design comes at roughly 697 kGE as they targeted high-performance applications. Nevertheless it
must be considered that a direct comparison of kGE is also not possible as there are usually multiple NAND2
gates with diferent driver strengths ś and thus diferent sizes ś in a technology library. Therefore, the number of
gate equivalences can difer signiicantly depending on the chosen NAND2 equivalent. Considering the energy
consumption of running Dilithium on both platforms, Fig. 3d shows that our design is slightly more energy
eicient.
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Fig. 3. Comparison of area, latency, power and energy comparison between this work, the TSMC 28nm design of [35] as well

as the TSMC 40nm design of [3].

4.5 Real World Applicability

There are real word scenarios in which signature generation and veriication is necessary for a generated key pair,
while only signature veriication is needed for another key pair. One such scenario is the TLS 1.3 protocol, which
is widely adopted to secure internet communication on all types of devices. One example is the communication
of lightweight devices (which is our target application) within the Internet-of-Things (IoT). In this domain a
TLS 1.3 handshake typically includes mutual authentication. Therefore, one can separate between the signature
generation/veriication during a handshake between two communication parties, as well as the veriication of
signatures generated for the certiicate chain (issued by a Certiicate Authority (CA)). While the former requires
both a signature generation and veriication for each communication party, the latter only requires the veriication
of all signatures in the certiicate chain issued by the CA. As the certiicates ś including the signer’s public key
as well as the signature ś need to be transmitted and veriied for every handshake, the size of the signature
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and the public key is a crucial factor for the performance of the handshake. As Falcon provides smaller key and
signature sizes compared to Dilithium (see Table 1) as well as faster veriication, it is a natural candidate for the
veriication of the certiicates in the TLS 1.3 handshake. In contrast to that, Dilithium is faster when considering
the combined time for signing plus veriication (see e.g. [19, 33]) that is required during the handshake and thus,
more suitable to sign the handshake messages on embedded devices.

To get an impression on the actual latencies in such a scenario, Table 11 compares the latency of Dilithium on
our implemented ASIC with the other two HW/SW codesigns presented in [25, 35], but also with the latencies
for RSA and ECDSA investigated in [33]. It clearly shows the advantage in latency compared with the FPGA
design in [25]. Although our design reaches a higher frequency as the ASIC presented in [35], it is slower in
total latency due to the higher cycle counts. Nevertheless, the higher performance of [35] comes at signiicantly
higher cost in terms of area and especially in power consumption as previously described in Section 4.4. Table 11
also compares the execution times of a 2048 bit RSA and secp256r1 ECDSA signature scheme running on an
ARM Cortex-M4 at 180 MHz. Both algorithms are examples for signature schemes that are used in today’s public
key infrastructure. It clearly shows, that our design as presented can provide post-quantum secure signature
operations faster than the conventional schemes (even with a frequency reduction to 180 MHz) and thus, it can be
considered applicable in e.g. a TLS 1.3 handshake as discussed previously, without performance degradation due
to the latency of post-quantum cryptography for authentication. Furthermore, assuming a maximum frequency
of 800 MHz, Falcon-512 signature veriication takes about 0.39 ms and 0.77 ms for Falcon-1024, respectively. If
the frequency is reduced to 180 MHz for comparison with [33], the veriication times increase to 1.72 ms and
3.41 ms, which is still much faster than the numbers for RSA and ECDSA on a common ARM Cortex-M4 platform.

Another relevant use case in which compactness of public key and signature as well as speed of the signature
veriication are more important than other performance parameters is secure boot. In a secure boot scenario, only
irmware which is signed by a trustworthy distributor can be executed on the device. That means a signature
needs to be veriied with every boot sequence and thus, a longer veriication results in a slower boot process.
Furthermore, having more compact Falcon signatures reduces the storage requirements.

Table 11. Latency comparison for Dilithium keygen/sign/verify in��

Design Platform Dilithium-II Dilithium-III Dilithium-V

[25] FPGA at 100 MHz 15.9 / 58.8 / 17.0 29.8 / 102 / 29.6 50.1 / 133 / 51.3
This ASIC at 180 MHz 3.30 / 10.6 / 3.62 5.93 / 18.1 / 6.26 9.92 / 24.2 / 10.3
This ASIC at 800 MHz 0.74 / 2.38 / 0.81 1.33 / 4.07 / 1.41 2.23 / 5.45 / 2.31
[35] ASIC at 540 MHz 0.08 / 0.32 / 0.17 0.13 / 0.42 / 0.20 0.18 / 0.58 / 0.30

2048 bit RSA secp2561r1 ECDSA

[33] Cortex-M4 at 180 MHz 450 / 448 / 12.5 8.43 / 12.3 / 25.2

5 CONCLUSION

Large-scale quantum computers pose a threat to cryptographic systems as they can eiciently solve fundamental
mathematical problems in cryptography. Therefore, devices must be prepared to provide means of secure
communication and switch to algorithms that are considered secure in these scenarios. As the migration towards
post-quantum secure systems will take time and the security of corresponding schemes must be further analyzed,
agile cryptosystems will play an important role during migration. In this work, we presented a lexible, hardware
accelerated RISC-V design for lattice-based digital signature algorithms. Our design accelerates the full Dilithium
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scheme as well as the veriication of Falcon signatures. This allows for secure irmware updates in case security
concerns for one of the schemes arise but also allows for more performance and bandwidth eiciency in TLS
1.3 or secure boot scenarios. Computational intensive operations in lattice-based cryptography are usually
the generation of uniformly distributed polynomials and polynomial arithmetic. Therefore, we have shown
how using accelerators, that were previously used for acceleration of PKEs and KEMs for these computational
intensive operations improve the performance of signature schemes. In fact, our design is faster than optimized
embedded software implementations or previous HW/SW codesigns with the same design targets. We have further
shown how the code size decreases for the signature schemes by using hardware accelerators. Using a 22nm
Globalfoundries technology, we presented an ASIC design of our accelerated system that can run at 800 MHz.
This leads to Dilithium signature generation in only a few microseconds and Falcon signature veriication in less
than half of a microsecond for the lowest security levels. Besides the performance beneits, hardware acceleration
also signiicantly reduces the overall power and energy consumption of the investigated signature schemes. This
is an important aspect especially for resource constrained devices in the IoT context.
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