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Closed form solutions of two nonlinear equation via 
the enhanced (G′/G)-expansion method
A.K.M. Kazi Sazzad Hossain1* and M. Ali Akbar2

Abstract: The enhanced (G′/G)-expansion method is highly effective and competent 
mathematical tool to examine exact traveling wave solutions of nonlinear evolution 
equations (NLEEs) arising in mathematical physics, applied mathematics, and engi-
neering. Exact solutions of NLEEs play an important role to comprehend the obscu-
rity of intricate physical phenomena. In this article, the enhanced (G′/G)-expansion 
method is suggested and executed to construct exact solutions of the first extended 
fifth order non-linear equation and the medium equal width equation. The solutions 
are presented in terms of the hyperbolic and the trigonometric functions involving 
free parameters. It is shown that the proposed method is effective and can be used 
for many other NLEEs in mathematical physics.
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1. Introduction
At the present time nonlinear evolution equations (NLEEs) appear in a broad range of scientific re-
search in various fields. Since (NLEEs) and their exact solutions are frequently used to depict the 
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inner mechanism and obscurity of complex phenomena in various fields of science and engineering 
such as fluid dynamics, fluid mechanics, gas dynamics, elasticity, biochemistry, protein chemistry, 
chemically reactive materials, in ecology most population model, high energy physics, plasma phys-
ics, nuclear physics, optical fibers, meteorology, etc. Therefore, it is very crucial to search for further 
exact traveling solutions to NLEEs and gradually becomes one of the most important and significant 
tasks. As a result diverse groups of mathematicians, physicist, and engineers have been working in 
order to develop effective methods for obtaining exact solutions to NLEEs. For this reason, in the 
recent years several methods have been established to search exact solution, such as the homoge-
neous balance method (Wang, 1995; Zayed, Zedan, & Gepreel, 2004), the Jacobi-elliptic function 
expansion method (Chen & Wang, 2005; Liu, Fu, Liu, & Zhao, 2001), the functional variable method 
(Çevikel, Bekir, Akar, & San, 2012), the nonlinear transform method (Yang, Liu, & Yang, 2001), the 
Hirota’s bilinear transformation method (Hirota, 1973; Hirota & Satsuma, 1981), the tanh-function 
method (Nassar, Abdel-Razek, & Seddeek, 2011), the extended tanh-method (Abdou, 2007; Fan, 
2000), the complex hyperbolic function method (Chow, 1995; Wang & Zhou, 2003), the first integra-
tion method (Taghizadeh & Mirzazadeh, 2011), the Painleve expansion method (Weiss, Tabor, & 
Carnevale, 1982), the F-expansion method (Sirendaoreji, 2004), the Exp-function method (Akbar & Ali, 
2011; Bekir & Boz, 2008; Naher, Abdullah, & Akbar, 2011, 2012), the modified Exp-function method 
(He, Li, & Long, 2012), the sine-cosine method (Wazwaz, 2004), the Adomian decomposition method 
(Adomian, 1994), the modified simple equation method (Akter & Akbar, 2015; Hossain & Akbar, 
2017; Hossain, Akbar, & Wazwaz, 2017; Khan & Akbar, 2013a; Khan, Akbar, & Ali, 2013), the pertur-
bation method (Biswas, Zony, & Zerrad, 2008), the exp(−Φ(η))-expansion method (Islam, Alam, 
Sazzad Hossain, Roshid, & Akbar, 2013; Khan & Akbar, 2013b), the variational method (Helal & 
Seadawy, 2009; Seadawy, 2011), the extended direct algebraic method (Seadawy, 2014, 2016), the 
(G′/G)-expansion method (Akbar, Ali, & Mohyud-Din, 2012; Akbar, Ali, & Zayed, 2012; Alam, Akbar, & 
Roshid, 2013; Naher & Abdullah, 2014a; Zayed & Shorog, 2013), the improve (G′/G)-expansion meth-
od (Naher & Abdullah, 2014b), etc. The recently developed enhanced (G′/G)-expansion method is 
getting popularity in use because of its straightforward calculation procedure and there is possible 
to obtain large number of solution.

The objective of this article is to introduce and make use of the enhanced (G′/G)-expansion method 
to extract fresh and further general exact traveling wave solutions to the first extended fifth order non-
linear equation and medium equal (MEW) width equation. The rest of the article is arranged as follows: 
In Section 2, enhanced (G′/G)-expansion method is discussed. In Section 3, the enhanced (G′/G)-
expansion method is applied to examine the NLEEs indicated above. In Section 4, we give the physical 
explanation and graphical illustrations of obtained results. In Section 5 conclusions are provided.

2. Interpretation of the enhanced(G′/G)-expansion method
In this section, we analyze the enhanced (G′/G)-expansion method for finding traveling wave solu-
tions to NLEEs. Consider the nonlinear equation, say in two independent variables x and t in the form:

where P is a polynomial of u(x, t) and its partial derivatives and u = u(x, t) is an unknown function of 
x and t, which involves the highest degree nonlinear terms and the maximum number of derivatives. 
The important steps concerning this method are presented in the following:

Step 1: We introduce a compound variable � with respect to the real variables x and t,

where ω indicates the speed of the traveling wave.

The traveling wave transformation (2.2) allows us in reducing Equation (2.1) to an ordinary differ-
ential equation (ODE) for u = u(�) in the form:

(2.1)P
(
u,ut,ux,utt,uxx,uxt,…

)
= 0,

(2.2)u(x, t) = u(�), � = x ± � t,
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where Q is a polynomial in u(�) and its derivatives, and the primes specify the derivative with respect 
to ξ.

Step 2: Assume that the solution of Equation (2.3) can be expressed in the following form:

in which ai , bi(−n ≤ i ≤ n;n ∈ N) are constants to be determined later, σ = ± 1,  μ ≠ 0 and G = G(�) 
satisfies the equation

Step 3: The limiting value n can be evaluated by balancing the highest order derivative terms with 
the nonlinear terms of the highest degree present in Equation (2.3).

Step 4: Substituting (2.4) into (2.3) together with (2.5) and then collecting all terms of same pow-

ers of (G′/G)i and (G
�

∕G)j
√

�

(
1 +

(G
�

∕G)2

�

)
 and setting each coefficient to zero yields a system of al-

gebraic equations for ai , bi
(
−n ≤ i ≤ n;n ∈ N

)
, � and �. Solving this system of equations provide 

the values of the unknown parameters.

Step 5: From the general solution of equation (2.5), we obtain

when μ < 0,

and

Again when μ > 0,

and

where ξ0 is an arbitrary constant. Finally, substituting ai , bi
(
−n ≤ i ≤ n;n ∈ N

)
, � and � and solu-

tions (2.6)–(2.9) into (2.4), we obtain further general and some fresh traveling wave solutions of (2.1).

(2.3)Q
(
u, u

�

,u
��

, u
���

…
)
= 0,

(2.4)u(�) =

n�
i=−n

⎛
⎜⎜⎜⎝

ai(G
�

∕G)i

�
1 + �

�
G
�

G

��i + bi(G
�

∕G)i−1

�����

�
1 +

(G
�

∕G)2

�

�⎞
⎟⎟⎟⎠
,

(2.5)G
��

+ �G = 0.

(2.6)G
�

G
=

√
−� tanh

�
�
0
+

√
−� �

�
,

(2.7)G
�

G
=

√
−� coth

�
�
0
+

√
−��

�
.

(2.8)
G

�

G
=

√
� tan

�
�
0
−

√
� �

�
,

(2.9)G
�

G
=

√
� cot

�
�
0
+

√
� �

�
.
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3. Applications of the method
In this section, the enhanced (G′/G)-expansion method has been put to use to examine the closed 
form solutions leading to solitary wave solutions to the first extended fifth order non-linear equation 
and medium equal width equation.

3.1. Example 1
In this subsection, we will use the enhanced (G′/G)-expansion method to look for the exact solution 
and then the solitary wave solution to the following first extended fifth order non-linear equation of 
the form (Wazwaz, 2014)

The traveling wave transformation u(x, t) = u(�), � = kx − �t, converts (3.1) to the ODE in the form

Integrating (3.2) with respect to ξ twice and taking integration constant to zero, we obtain

Taking homogeneous balance between the highest order derivative term u’’’ and the highest order 
nonlinear termu

′2

 yields n = 1.

Therefore, the solution Equation (2.4) becomes

where G = G(�) satisfies Equation (2.5).

Substituting (3.4) with the Equation (2.5) into Equation (3.3), we attain a polynomial of (G′/G)i and 

(G
�

∕G)j
√

�

(
1 +

(G
�

∕G)2

�

)
. From this polynomial we get the coefficients of (G′/G)i and 

(G
�

∕G)j
√

�

(
1 +

(G
�

∕G)2

�

)
. Equating them to zero, we achieve an over-determined system that con-

tains thirty algebraic equations (for simplicity we skip to display them). Solving this system of alge-
braic equation, we get

Set 1: � = k

√
(1 − 4�k2), � = �,a

−1
= 0,a

0
= a

0
,a

1
= k

(
1 + ��

2
)
, b

−1
= b

0
= b

1
= 0.

Set 2: � = k

�
(1 − �k2), � = 0,a

−1
= 0, a

0
= a

0
, a

1
=

k

2
, b

−1
= 0, b

0
= 0, b

1
=

k
√
�

2
√
�
.

Set 3: � = k

√
(1 − 4�k2), � = �,a

−1
= −k�, a

0
= a

0
, a

1
= 0, b

−1
= 0, b

0
= 0, b

1
= 0.

Set 4: � = k

√
(1 − 16�k2), � = 0,a

−1
= −k�, a

0
= a

0
,a

1
= k, b

−1
= 0, b

0
= 0, b

1
= 0.

Set 5: � = k

�
(1 − �k2), � = �, a

−1
= −

k�

2
,a

0
= a

0
,a

1
= 0, b

−1
= 0, b

0
=

k�

2
√
�
, b

1
= 0.

(3.1)uttt − utxxxx − utxx − 4
(
uxut

)
xx
− 4

(
uxuxt

)
x
= 0

(3.2)−�3u
���

+ �k4u(v) + �k2u
���

+ 4�k3
(
u

�

u
�
)��

+ 4�k3
(
u

�

u
��
)�

= 0

(3.3)k4u
���

+ 6k3u
�2

+ (k2 − �
2)u

�

= 0

(3.4)

u(�) =a
0
+

a
1

�
G
�

G

�

1 + �

�
G
�

G

� +
a
−1

�
1 + �

�
G
�

G

��
�
G
�

G

� + b
0

�
G

�

G

�−1

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠

+ b
1

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠
+ b

−1

�
G

�

G

�−2

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠
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Now substituting solution set 1–5 with Equations (2.6)–(2.9) into Equation (3.4), we get sufficient 
traveling wave solution to Equation (3.1) as follows:

When μ < 0, we get the hyperbolic solution,

Type-1:

where � = x − k

√
(1 − 4�k2)t,

Type-2:

where � = x − k

√
(1 − �k2)t

Type-3:

where � = x − k

√
(1 − 4�k2)t

Type-4:

where � = x − k

√
(1 − 16�k2)t

Type-5:

where � = x − k

√
(1 − �k2)t

Again, for μ > 0, we get the following trigonometric solution:

(3.5)u
1
(�) = a

0
+ k

�
1 + ��

2
� √

−� tanh
�
�
0
+

√
−��

�
�
1 + �

√
−� tanh

�
�
0
+

√
−��

��

(3.6)u
2
(�) = a

0
+ k

�
1 + ��

2
� √

−� coth
�
�
0
+

√
−��

�
�
1 + �

√
−� coth

�
�
0
+

√
−��

��

(3.7)u
3
(�) = a

0
+
k

2

√
−� tanh

�
�
0
+

√
−��

�
+
k

2

�
�

�
1 −

�
tanh

�
�
0
+

√
−��

��2�

(3.8)u
4
(�) = a

0
+
k

2

√
−� coth

�
�
0
+

√
−��

�
+
k

2

�
�

�
1 −

�
coth

�
�
0
+

√
−��

��2�

(3.9)u
5
(�) = a

0
− k

�
�� +

√
−� coth

�
�
0
+

√
−��

��

(3.10)u
6
(�) = a

0
− k

�
�� +

√
−� tanh

�
�
0
+

√
−��

��

(3.11)u
7
(�) = a

0
± k

√
−�

�
tanh

�
�
0
+

√
−��

�
− coth

�
�
0
+

√
−��

��

(3.12)

u
8
(�) = a

0
−
k
√
−�

2
coth

�
�
0
+

√
−��

���
1 + �

√
−� tanh

�
�
0
+

√
−��

��
−

�
−�

�
1 −

�
tanh

�
�
0
+

√
−��

��2�
�

(3.13)

u
9
(�) = a

0
−
k
√
−�

2
tanh

�
�
0
+

√
−��

���
1 + �

√
−� coth

�
�
0
+

√
−��

��
−

�
−�

�
1 −

�
coth

�
�
0
+

√
−��

��2�
�
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Type-6:

where � = x − k

√
(1 − �k2)t

Type-7:

where � = x − k

√
(1 − �k2)t

Type-8:

where � = x − k

√
(1 − 4�k2)t

Type-9:

where � = x − k

√
(1 − 16�k2)t

Type-10:

where � = x − k

√
(1 − �k2)t

3.2. Example 2
In this subsection, we will use the enhanced (G′/G)-expansion method to look for the exact solution 
and then the solitary wave solution to the following medium equal width (MEW) equation of the 
form

(3.14)u
10
(�) = a

0
+ k(1 + ��

2)

√
� tan

�
�
0
−

√
��

�
�
1 + �

√
� tan

�
�
0
−

√
��

��

(3.15)u
11
(�) = a

0
+ k(1 + ��

2)

√
�cot

�
�
0
+

√
��

�
�
1 + �

√
�cot

�
�
0
+

√
��

��

(3.16)u
12
(�) = a

0
+
k
√
�

2

�
tan(�

0
−

√
��) +

��
1 +

�
tan(�

0
−

√
��)

�2�
�

(3.17)
u
13
(�) = a

0
+
k
√
�

2

�
cot(�

0
+

√
��) +

��
1 +

�
cot(�

0
+

√
��)

�2�
�

(3.18)u
14
(�) = a

0
− k

�
�� +

√
�cot(�

0
−

√
��)

�

(3.19)u
15
(�) = a

0
− k

�
�� +

√
�tan(�

0
+

√
��)

�

(3.20)u
16
(�) = a

0
+ k

√
�
�
tan

�
�
0
−

√
��

�
− cot

�
�
0
−

√
��

��

(3.21)u
17
(�) = a

0
+ k

√
�
�
cot

�
�
0
+

√
��

�
− tan

�
�
0
+

√
��

��

(3.22)
u
18
(�) = a

0
−
k
√
�

2
cot

�
�
0
−

√
��

���
1 + �

√
�tan(�

0
−

√
��)

�
−

��
1 +

�
tan(�

0
−

√
��)

�2�
�

(3.23)u
19
(�) = a

0
−
k
√
�

2
tan

�
�
0
+

√
−��

���
1 + �

√
�cot(�

0
+

√
��)

�
−

��
1 +

�
cot(�

0
+

√
��)

�2�
�

(3.24)ut + 3u
2ux − duxxt = 0
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Which is related to the regularized long wave equation, has solitary waves with the same width of 
both positive and negative amplitudes. This is a nonlinear wave equation with cubic nonlinearity 
with pulselike solitary wave solution. This equation appears in many physical applications and is 
used as a model for nonlinear dispersive waves. The equation gives rise to equal width undular bore.

The traveling wave transformation u(x, t) = u(�), � = x − �t, converts (3.24) to the ODE in the 
form

Integrating (3.2) with respect to ξ, we obtain

where C is an integration constant.

Taking homogeneous balance between the highest order derivative term u’’ and the highest order 
nonlinear term u3 yields n = 1.

Therefore, the solution of Equation (3.26) becomes,

where G = G(�) satisfies Equation (2.5).

Substituting (3.27) with the Equation (2.5) into Equation (3.26), we attain a polynomial of (G′/G)i 

and (G
�

∕G)j
√

�

(
1 +

(G
�

∕G)2

�

)
. Equating the coefficient of these to zero, we achieve a system of alge-

braic equation which on solving, we get

� = −
a2
−1

2d�2
, � =

√
−6d(4d�+1)
6d�

,a
−1

= a
−1
, a

0
=

a
−1

√
−6d(4d�+1)
6d�

,a
1
=

a
−1(2d�−1)
6d�2

, b
−1

= 0, b
0
= b

1
= 0 

and C =
a3
−1(2d�−1)

√
−6d(4d�+1)

18d2�3

Now substituting these values and Equations (2.6)–(2.9) into Equation (3.27), we deduce traveling 
wave solutions of Equation (3.24) as follows:

For another set � = �, � = �, a
−1

= 0,a
0
= a

0
,a

1
= 0, b

−1
= 0, b

0
= 0, b

1
= 0 and 

C = −a
0
(a2
0
− �) Equation (3.27) gives trivial solutions. So this case is rejected.

When μ < 0, we get the hyperbolic solution,

Type-1:

(3.25)d�u
���

+ 3u2u
�

− �u
�

= 0.

(3.26)d�u
��

+ u3 − �u + C = 0

(3.27)

u(�) =a
0
+

a
1

�
G
�

G

�

1 + �

�
G
�

G

� +
a
−1

�
1 + �

�
G
�

G

��
�
G
�

G

� + b
0

�
G

�

G

�−1

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠
+ b

1

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠

+ b
−1

�
G

�

G

�−2

��������

⎛⎜⎜⎜⎝
1 +

�
G
�

G

�2

�

⎞⎟⎟⎟⎠

(3.28)

u
2
1

(�) =
a
−1√
−�

⎛⎜⎜⎜⎝

�
2d� − 1

�
tanh

�
�
0
+

√
−��

�

6d� ±

�
6d�

�
4d� + 1

�
tanh

�
�
0
+

√
−��

� + coth
�
�
0
+

√
−��

�⎞⎟⎟⎟⎠
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where � = x −
a2
−1

2d�2
t,

Again, for μ > 0, we get the following trigonometric solution:

Type-2:

where � = x −
a2
−1

2d�2
t,

4. Physical explanation and graphical illustrations
In this section, we have discussed about the obtained solution of first extended fifth order non-linear 
equation and medium equal width (MEW) equation. From the above solution, it has been detected 
that σ = ± 1 and μ ≠ 0. For negative values of μ, the hyperbolic solutions u

1
(�) − u

9
(�) of the new fifth 

order non-linear equation are obtained through type 1 to 5 and when μ > 0, trigonometric solutions 
u
10
(�) − u

19
(�) through type 6 to 10 are obtained. The solutions u

2
(�), u

6
(�), and u

8
(�) demonstrate 

the nature of kink wave. Solutions u
1
(�),u

5
(�) and u

7
(�) demonstrate the nature of singular kink 

wave. Moreover, solutions u
10
(�) − u

19
(�) demonstrate the nature of periodic traveling wave. The 

solution u
4
(�) express the nature of soliton solution where u

3
(�) and u

9
(�) represent the singular 

solution. The graphical illustrations of some obtained solutions are given below in the figures. Figure 
1 represents the kink shape solution of u

2
(�) in (3.6) for � = −2, � = 1, �

0
= 4,a

0
= 2, � = 1 and k = 1 

within the interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10. Soliton solution u
4
(�) in (3.9) for 

� = −1, � = −1, �
0
= 2, a

0
= 3, � = 0, k = 1 and Singular kink wave solution u

5
(�) in (3.8) for 

� = −2, � = 1, �
0
= 1,a

0
= 3, � = 1, k = 1 within the interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 has 

been shown in Figures 2 and 3, respectively. Figure 4 represents the Periodic solution u
19
(�) in (3.23) 

for � = 1∕8, � = 1, �
0
= 2,a

0
= 2, � = 1, k = 1 within the interval −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10. 

From the solutions of the medium equal width (MEW) equation, it is observed that the negative val-
ues of μ offer the hyperbolic solutions u

2
1

(�)– u
2
2

(�) and the positive values of μ,  recommend the 
trigonometric solutions u

2
3

(�) − u
2
4

(�). The solution (3.28) is represented in Figure 5 which shows 
the shape of singular kink type traveling wave solution with � = −2, � = 1, �

0
= 2,a

−1
= 2,d = 1 

within the interval −10 ≤ x ≤ 10 and −5 ≤ t ≤ 5. The solution in (3.29) also represents singular kink 
type traveling wave solution which is similar to Figure 5. The Periodic traveling wave solution in 
(3.30) is represented by Figure 6 for � =

1

2
, �
0
= 3, a

−1
= 2,d =

1

4
 within the interval −10 ≤ x ≤ 10 

and −5 ≤ t ≤ 5. The solution in (3.31) represents Periodic traveling wave solution which is also similar 
to Figure 6. So for simplicity we ignored these figures.

(3.29)u
2
2

(�) =
a
−1√
−�

⎛
⎜⎜⎜⎝

�
2d� − 1

�
+ coth

�
�
0
+

√
−��

�

6d� ±

�
6d�

�
4d� + 1

�
coth

�
�
0
+

√
−��

� + tanh
�
�
0
+

√
−��

�⎞⎟⎟⎟⎠

(3.30)u
2
3

(�) =
a
−1√
�

⎛
⎜⎜⎜⎝

�
2d� − 1

�
tan

�
�
0
−

√
��

�

6d� ±

�
−6d�

�
4d� + 1

�
tan

�
�
0
−

√
��

� + cot
�
�
0
−

√
−��

�⎞⎟⎟⎟⎠

(3.31)u
2
4

(�) =
a
−1√
�

⎛⎜⎜⎜⎝

�
2d� − 1

�
cot

�
�
0
+

√
��

�

6d� ±

�
−6d�

�
4d� + 1

�
cot

�
�
0
+

√
� �

� + tan
�
�
0
+

√
−��

�⎞⎟⎟⎟⎠
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Figure 1.  Kink solution 
u
2
(�) in (3.6) for 

� = −2, � = 1, �
0
= 4, a

0
= 2, (1)

� = 1 and k = 1.

Figure 2.  Soliton 
solution u

4
(�) in (3.9) for 

� = −1, � = −1, �
0
= 2,a

0
= 3, (1)

� = 0 and k = 1.

Figure 3.  Singular Kink 
solution u

5
(�) in (3.8) for 

� = −2, � = 1, �
0
= 3, a

0
= 1, (1)

� = 1 and k = 1
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5. Conclusion
In this article, enhanced (G′/G)-expansion method has been successfully used to find the exact 
traveling wave solutions of first extended fifth order non-linear equation and medium equal width 
equation. The solutions are verified to check the correctness of the solutions by putting them back 
into the original equation and found correct. The key advantage of the enhanced (G′/G)-expansion 
method against other methods is that the method provides more general and huge amount of new 
exact traveling wave solutions with several free parameters in a uniform way. The exact solutions 

Figure 4.  Periodic 
solution u

19
(�) in (3.23) for 

� = 1∕8, � = 1, �
0
= 2, a

0
= 2, (1)

� = 1 and k = 1.

Figure 5.  Singular Kink 
solution u

2
1
(�) in (3.28) for 

� = 2,d = 2, a
−1

= 2 and �
0
= 2.

Figure 6.  Periodic 
solution u

2
3
(�) in (3.30) for 

� =
1

2
,d =

1

4
,a

−1
= 2 and �

0
= 3.



Page 11 of 12

Hossain & Akbar, Cogent Mathematics (2017), 4: 1355958
https://doi.org/10.1080/23311835.2017.1355958

have its great importance to rendering the inner mechanism of the physical problems Therefore this 
method is very easy and straightforward to handling. Also it is quite capable and can be applied for 
finding exact solutions of other NLEEs in mathematical physics.
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