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Abstract

This paper studies a novel audio segmentation-by-classification approach based on factor analysis. The proposed
technique compensates the within-class variability by using class-dependent factor loading matrices and obtains the
scores by computing the log-likelihood ratio for the class model to a non-class model over fixed-length windows.
Afterwards, these scores are smoothed to yield longer contiguous segments of the same class by means of different
back-end systems. Unlike previous solutions, our proposal does not make use of specific acoustic features and does
not need a hierarchical structure. The proposed method is applied to segment and classify audios coming from TV
shows into five different acoustic classes: speech, music, speech with music, speech with noise, and others. The
technique is compared to a hierarchical system with specific acoustic features achieving a significant error reduction.
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Introduction
Due to the increase in audiovisual content, it becomes
necessary to use automatic tools for different tasks such
as analysis, indexation, search, and information retrieval.
Given an audio document, the first step is audio segmen-
tation to obtain the delineation of a continuous audio
stream into acoustically homogeneous regions. Secondly,
each homogeneous region can be classified into prede-
fined classes to provide labels that can be used as context
for searching metadata or as identifiers for speaker adap-
tation techniques in speech recognition systems.
Segmentation of broadcast news (BN) recordings into

audio events (like speech, music, speech with music) is
very challenging because such documents contain differ-
ent kinds of sequences with a very heterogeneous style.
Several international evaluation campaigns, like the TREC
NIST evaluations for Spoken Document Retrieval (SDR)
[1], the ESTER evaluations campaign for Rich Transcrip-
tion (RT) in French [2], and the COST278 evaluation
for segmentation and speaker clustering in multi-lingual
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domain [3], have already been proposed to face this task
in the past. Some examples of the audio sequences in
BN (not pretending to be general definitions) in different
conditions are as follows:

• News anchor speech : Traditional news anchor usually
reading text in clean (or low-noise) conditions.

• Interviews: Conversations between two people with
spontaneous speech or by following a script.

• Debates: Conversations between two or more people.
They may contain overlapped speech in some parts.

• Reporter in the field : The audio comes from a wide
range of noises generally overlapped with speech.

• Advertising: Speech with music in background and a
variety of acoustic noise effects (slams, explosions,
cars, screams, etc.).

• Jingles: Jingles are commonly used as a short tune to
introduce different topics during the news.

• Broadcasting of sports events: Speech with a strong
background noise and diegetic music and sounds.

• Telephone connections: Used when the reporters do
not have camera and microphone.

The studies that can be found in the literature focus
on either the feature extraction method or the segmenta-
tion/classification strategies. A good review of the features
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and the classification methods used in several solutions
can be found in [4].
The proper selection of a set of acoustic features may

help to describe the behavior of the acoustic classes
(speech, music, environmental sounds, etc.) both in the
time and frequency domains. Mel-frequency cepstrum
coefficients (MFCC) or perceptual linear prediction (PLP)
have been widely used throughout history in the context
of audio and speech technologies [5-9] and more recently
in [10]. More precisely, these features with other extended
sets of features have been proposed for segmenting and
classifying BN audio into broad classes. Among others,
two pitch-density-based features are proposed in [11],
short-time energy (STE) is used in [12-14], and harmonic
features are used in [15-17]. The previously mentioned
features are short-term characteristics because they are
extracted within short periods of time (between 10 and
30 ms), usually known in the literature as frame-based
features. These features are commonly used in speech-
related tasks where the signal can be considered stationary
over that short period. The frame-based features can be
used directly in the classifier. However, some classes are
better described by the statistics computed over consec-
utive frames (from 0.5 to 5 s long). These characteristics
are referred in the literature as segment-based features
[18,19]. For example, in [20], a content-based speech dis-
crimination algorithm is designed to exploit the long-term
information inherent in the modulation spectrum. In [21],
the authors propose two segment-based features: the vari-
ance of the spectrum flux (VSF) and the variance of the
zero crossing rate (VZCR).
Audio segmentation/classification systems can be

divided into two different groups depending on how
the segmentation is performed. The first group detects
the boundaries in a first step and then classifies each
delimited segment in a second step. We refer to them as
segmentation-and-classification approaches. For exam-
ple, in [22], an approach using a temporally weighted
fuzzy C-means algorithm was proposed. The Bayesian
information criterion (BIC) is widely employed in many
studies as [23] to generate a break-point for every speaker
change and environment/channel condition change in
the BN domain. Also, [24] and [25] utilize BIC to identify
mixed-language speech and speaker change, respectively.
However, BIC has several shortcomings to be consid-
ered. It can only set one break-point for each analysis
window, so a small window involves more precision but
the Gaussian estimation may be inaccurate due to the
scarcity of data. In [26], the authors propose a minimum
description length (MDL) approach that allows multiple
break-points for any generic data. The second group is
known as segmentation-by-classification and consists of
classifying consecutive fixed-length audio segments. The
segmentation is produced directly by the classifier as a

sequence of decisions. This sequence is usually smoothed
to improve the segmentation performance. An example
of this procedure can be found in [27] where the author
combines different features with a Gaussian mixture
model (GMM) and a maximum entropy classifier. The
final decisions were smoothed with a hidden Markov
model (HMM) to avoid sudden changes. In [28], an audio
stream is segmented by classifying each window into five
broad classes. The solution is a combination of different
support vector machines (SVM) and evaluates the classi-
fication over some new proposed features. Three different
smoothing rules were applied to avoid sudden changes in
the decisions. Aronowitz suggests a framework in which
the classification and the smoothing are unified [29]. The
author models the audio segments as supervectors, and
each class (speech, silence, music) is modeled by a distri-
bution over the supervector space. The supervectors are
classified with SVM or GMM.
Segment-based features are not suitable for training sta-

tistical models [21], and it is difficult to determine a priori
the appropriate statistics for each class. However, they
provide great discriminative power for audio classification
if the segment is well-delimited using any segmentation-
and-classification system [14]. On the other hand,
frame-based features allow statistical models to make
decisions over short-duration windows in segmentation-
by-classification strategies [30], but they are usually less
discriminative for audio classification since they were
mainly designed for speech-related tasks such as auto-
matic speech recognition (ASR) [21]. The most common
solution to avoid the shortcomings and enjoy the bene-
fits of each strategy is to create hierarchical systems with
multiple steps where each level is designed with class-
specific features and segmentation systems as in [31] and
[32]. Nevertheless, these systems become very specific for
the intended task and are quite difficult to adapt for other
databases.
Recently, an audio segmentation task in the BN domain

was proposed in [33] in the context of the Albayzin 2010
evaluation campaigns. The proposed evaluation task con-
sisted of segmenting a broadcast news audio document
into five acoustic classes: speech (SP), speech with noise
(SN), speech with music (SM), music (MU), and others
(OT). The main difficulty in this database is the classi-
fication between the classes with speech because these
classes have some segments very homogeneous (specially,
between SP and SN). In this context, we introduce a novel
and generic segmentation-by-classification system based
on factor analysis (FA) with two clear advantages: (1) the
system does not need class-dependent features with hier-
archical structure to classify different classes and (2) the
algorithm compensates the within-class variability with
high accuracy being able to classify well-defined classes
in generic tasks. The FA technique has been successfully
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applied in speaker ID (recognition/verification) [34-38]
and language recognition [39] with significant improve-
ments with respect to GMMor SVM.However, the system
proposed in this article has several differences from those
systems. In contrast to a segmentation task, the speaker
ID or language recognition has well-delimited segments
(usually in separate files) and, therefore, FA is applied over
the whole file. Unlike in the speaker ID, speaker diariza-
tion, or language recognition tasks, we can find here the
same speaker in two different acoustic classes, for exam-
ple, the situation where an anchor is in the studio with
clean conditions (SP) and outside of the studio with noise
in the background (SN). Due to all these factors, we pro-
pose an extension of a FA segmentation system proposed
in [40] and [41] with a new and more discriminative scor-
ing using class/non-class parameters and with a set of
back-end systems that perform a better segmentation than
the traditional FA systems for language recognition or
speaker ID.
The remainder of the paper is organized as follows:

the database and metric of the Albayzin 2010 evalua-
tion is presented in the ‘Albayzin audio segmentation
evaluations and database description’ section. The ‘Novel
factor analysis audio segmentation system’ section shows
the theoretical approach based on FA and a set of back-
end subsystems. The experiments are presented in the
‘Experimental results’ section. Finally, the summary and
the conclusions are presented in the ‘Conclusions’ section.

Albayzin audio segmentation evaluations and
database description
The Albayzin campaigns are internationally open evalua-
tions organized by the RTTHa every 2 years. A complete
description of the Albayzin 2010 audio segmentation and
classification evaluation can be found in [19] where the
participant’s approaches and the results are presented.
We describe the database and the metric used in the
evaluation in the next subsections.

Database
The database consists of BN audio in Catalan recorded
by the TALPb Research Center. It includes approximately
87 h of annotated audio divided into 24 files. Five audio
classes were defined for the evaluation. The classes are
distributed as follows: clean speech, 37%; music, 5%;
speech over music, 15%; speech over noise, 40%; others,
3%. The class ‘others’ is not evaluated in the final test. The
database for the evaluation was split into two parts: for
training (two thirds of the total amount of data divided
into 16 files) and testing (the remaining one third divided
into 8 files).
Each segment is labeled with one class previously

described. Most of the segments are between 10 and
20 s long. However, there is an important amount of

long segments (longer than 60 s). More details about the
database and the labeling process can be found in [19].

Metric
The metric that was proposed for the evaluation repre-
sents the relative error averaged over all acoustic classes
(ACs):

Error = averagei
dur(missi) + dur(fai)

dur(refi)
, (1)

where dur(missi) is the total duration of all deletion errors
(misses) for the ith acoustic classes (AC), dur(fai) is the
total duration of all insertion errors (false alarms) for the
ith AC, and dur(refi) is the total duration of all the ith AC
instances according to the reference file. The incorrectly
classified audio segment (a substitution) is computed both
as a deletion error for one AC and an insertion error for
another. A collar of 1 s is not scored around each refer-
ence boundary to avoid the uncertainty about when an AC
begins or ends.
Since the distribution of the classes in the database is not

uniform, the errors from different classes are weighed dif-
ferently (depending on the total duration of the class in the
database). Therefore, the system has to detect correctly
not only the best represented classes (‘speech’ and ‘speech
over noise,’ 77% of total duration) but also the minor
classes (like ‘music,’ 5%). This metric is different from the
conventional NIST metric [42] for speaker diarization,
where the score is defined as the ratio of the overall seg-
mentation error time to the sum of the durations of the
segments that are assigned to each class in the file. In this
work, we will present the final results with both metrics.

Novel factor analysis audio segmentation system
We propose a framework for automatic audio
segmentation-by-classification. The system deals with
the problem of assigning a class label to each fixed-
length window using factor analysis (FA) models. The FA
approach has been successfully used in speaker recog-
nition/verification [34-37], speaker diarization [38], and
language recognition [39]. In these tasks, the systems
have to face several sources of variability such as speaker,
channel, and environment. The variability of the same
class segments is known as within-class variability. The
goal of these systems is to model (in the case of [38])
or compensate the within-class variability to reduce the
mismatch between training and test. As we presented in
the first section, there are some differences between those
systems and the segmentation-by-classification system
proposed in this work. The main difference is that in this
task, the classes can have the same speaker. However, in
speaker ID, speaker diarization, or language recognition,
the speakers define an independent class. As a result, the
within-class variability is more difficult to compensate in
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our task. Therefore, we introduce a novel approach with
class/non-class parameters that compensate the within-
class variability more accurately. Figure 1 illustrates the
proposed framework where each block is described in the
next subsections.

Acoustic feature extraction
In this work, we extract 16 MFCCs (including the zeroth-
order cepstrum) computed in 25-ms frames with a 10-ms
frame step and their first and second derivatives. The
audio features are packed in windows of 3 s long with
0.1- or 0.5-s window steps depending on the desired
computational load and resolution.

Statistics computation
The fixed-length windows are mapped to sufficient statis-
tics by using a universal background model (UBM) [43]
which is a class-independent GMM with C Gaussians
estimated with the expectation-maximization (EM) algo-
rithm [44] on the training data set. The UBM parameters
are the mean vectors, μk , and the diagonal covariances
matrices, �k , where k is the Gaussian component index.
Let Pksi = P(k|φsi) represent the posterior probability of
the kth UBM component, given the feature vector φsi and
assuming frame independence [45]. For a window s, with
feature vectors indexed i = 1, 2, . . . ,Ns, we define the
zeroth- and first-order statistics, respectively, as

nsk =
Ns∑
i=1

Pksi, (2)

f sk =
Ns∑
i=1

Pksi�
−1/2
k

(
φsi − μk

)
, (3)

where these statistics are normalized to the UBM.

Theoretical background
Data from a particular class are modeled by a GMM
defined by a set of mean vectors m1,m2, . . . ,mC , weights
w1,w2, . . . ,wC , and covariance matrices �1,�2, . . . ,�C ,
where C is the number of Gaussians. We can concatenate
all GMM mean vectors to one mean supervector m of
dimension CF × 1 where F is the feature vector length:

m =
[
mT

1 ,mT
2 , . . . ,mT

C

]T
. (4)

The factor analysis model is the adaptation of the UBM
model where the supervector of means is not fixed and it
can vary from segment to segment due to several sources
that increase the within-class variability [36]. We assume
that these GMMs have segment- and class-dependent
means but fixed weights and covariances chosen to be
equal to the UBM weights and covariances. Specifically,
we use a factor analysis model for the mean vector of the
kth component of the GMM for segment s:

ms
k = tc(s)k + Ukxs, (5)

where c(s) denotes the class of segment s. The class loca-
tion vector tc(s)k is obtained by using a single iteration
of relevance MAP adaptation from the UBM [43]. This
adaptation is expressed, in terms of statistics, as

tc(s)k =
∑

s f sk
r + ∑

s nsk
, (6)

where r is the relevance factor. Uk is the factor loading
matrix and xs is a vector of L segment-dependent-within-
class-variability factors assumed to follow a normal distri-
bution (N(0, IL)).
We stack the component-dependent vectors into super-

vectors ms and tc(s) and the component-dependent Uk

Figure 1 Block diagram of factor analysis segmentation-by-classification system for broadcast news classes.
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matrices into a single tall matrix U , so Equation 5 can be
expressed as

ms = tc(s) + Uxs, (7)

where U is known as the within-class variability matrix
that we use to compensate that variability. The columns
of the U matrix are the basis spanning the subspace of
the within-class variability, and the within-class variabil-
ity factors are the coordinates defining the position of the
supervector in the subspace. The within-class variability
factor dimension (L) is smaller than CF, soU has low rank
(CF × L dimensions). Depending on the application, the
value of L is between 50 and 200 and CF can be 98,304 if
we have 2,048 Gaussians and 48-dim feature vector (with
the MFCC-UBM).

Estimation of the within-class variability matrices
U can be estimated using the EM algorithm, where the
x factors of each window are treated as hidden variables.
In the E step, the expected value of x (denoted by x̂) are
estimated for each window, using the current parameters
as

x̂s =
(
I +

∑
k

nskUT
k Uk

)−1

UT f s. (8)

In the M step, we obtain U that maximize an auxiliary
function involving the old and new parameters as

Uk =
[∑

c

∑
s

(
f sk − tc(s)k nsk

)
x̂Ts

]
A−1
k , (9)

where

Ak =
∑
s

[
x̂sx̂Ts

]T
nsk . (10)

This paper does not aim to deepen into the training pro-
cess of U ; more details and an exhaustive description can
be found in [36].

Class model vs alternative model Umatrices
The approach proposed in this paper has several differ-
ences with language recognition in the way within-class
variability is compensated. Most of the approaches based
on FA for language recognition are implemented with a
single U matrix because the segments are well-delimited
(typically in separated files) and the nature of the within-
class variability is similar for all the languages as it can be
seen in [36,46-48]. In [49], a segmentation systemwas pro-
posedwith five class location vectors (one vector per class)
and a single compensation matrix U for all the classes.
The paper compared the FA system with the winner of the
Albayzin 2010 evaluation, and the conclusion was that the
FA system is better as a classification system with oracle
segments. On the other hand, the compensation matrix

had a bad behavior in a segmentation-by-classification
system for the music class due to the different nature of
the rest of the classes. In [32], a hierarchical system was
proposed with different features and different techniques
in each level depending on the class. First, the system
decides among MU, SM, or the rest of the classes by using
HMM/GMM and a smoothed combination of MFCC and
Chroma as feature vectors. Next, the system classifies SP
and SN by using FA and MFCC as acoustic features to
improve the performance of the speech classes because
the confusion between these two classes is very high. The
error rate achieved was lower than the one obtained by
the best system presented in the Albayzin 2010 evaluation
showing a clear advantage when the classes are homo-
geneous (like SN and SP), since U models the variability
across speakers and phonemes. The background noise is,
then, the discriminative information for the classification
and segmentation. Nevertheless, hierarchical systems can
be very specific for an intended task and are difficult to
adapt to other databases with new classes.
Therefore, we propose here a non-hierarchical

segmentation-by-classification system with ten class-
specific vectors (one class vector and one non-class vector
for each class) and five matrices modeling the within-class
variability of each pair class/non-class. Let

T =
[
tMU, tMU, tOT, tOT,

tSM, tSM, tSN, tSN, tSP, tSP
]

(11)

and

� =
[
UMU−MU,UOT−OT,

USM−SM,USN−SN,USP−SP
]
, (12)

where T represents the locations of classes (tC) and non-
classes (tC) in the GMM space and � the within-class
variability matrices. This approach will be compared to
the classic formulation with a single U matrix in ‘Experi-
mental results’ section for the classification over the oracle
segments and the final segmentation system.

Scoring
We study here the two scoring approaches most
commonly used: the integration over the x factors distri-
butions and the linear scoring, both of which are summa-
rized in [50].
Score 1: The score based on the integration over the

x factors distributions is a marginalization using a point
estimate of the classms, integrated only over the x factors,
when the statistics are centered around the point estimate
ms as defined in [36].
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Score 2: The linear scoring, which is faster than the
previous one, is an approximation that makes use of the
first-order Taylor expansion [50].
In [50,51] and [36], the score employed to detect the

speaker is the log-likelihood ratio test (LLRT)

LLRTclass = log
P(χ/class)
P(χ/UBM)

, (13)

where the numerator is the likelihood for the class model
and the denominator the likelihood for the UBM. Note
that the UBM is used as a general model to describe the
alternative hypothesis which is appropriated for speaker
identification where the hypothesized speaker is not in
the UBM. However, our problem has a small number of
classes, and therefore, each class is highly represented by
the UBM and may corrupt the test statistics.
We propose here a compensated log-likelihood ratio test

(CLLRT) scoring:

CLLRTclass = log
P(χ/class)
P(χ/class)

, (14)

where the alternative hypothesis is the likelihood for the
non-class model which is compensated also with the with-
in class variability matrix. The CLLRT is expected to be
more discriminative than the LLRT for a segmentation
task because the hypothesized class is not present in the
denominator and, also, because the non-class model is
compensated in the same way as the class model.

Back-end systems
Wepropose here three different back-end systems to com-
bine, smooth, and improve the classification performance
of the FA:

1. Maximum a posteriori (MAP) : This well-known
method has been widely used in the literature
[40,41]. To increase the detection performance, we
optimize the prior probabilities in a Viterbi algorithm
over the training files. Later, these priors are
employed in the Viterbi over the test files.

2. Derivative HMM/GBE: There is an apparent
correlation among the likelihood ratios of different
classes. For example, if a segment is a jingle, the
likelihood ratio for the MU class (music) should be
the biggest, but it is very likely that the second one is
the SM (speech with music). Also, SN (speech and

noise) and SM (speech with music) are more
correlated between them than to the SP class
(speech) because both classes have background
audio. The classification and, therefore, the
segmentation can be improved by combining the
outputs of each class-dependent subsystem [52].
Figure 2 shows the combination and smoothing
back-end system proposed here. On a first step, a
calibration of scores is made by a multi-class logistic
regression [53] estimated using the training partition
of the database. In order to benefit from the use of
the dynamic behavior of the scores, we compute the
first- and second-order time derivatives of the scores.
To smooth the decisions after the calibration and the
dynamic description, one Gaussian/HMM back-end
is used for each class. A left-to-right topology was
selected with a full-covariance Gaussian per state
estimated with the scores from the training files. The
mean vectors and the covariance matrices are
estimated with the samples of the scores based on the
class labels with the ML criterion. The number of
states for the HMM depends on the desired level of
smoothing. The Viterbi algorithm was chosen to
determine the maximum likelihood transitions
between the classes.

3. Stacking HMM/GBE: This back-end system can be
considered as a modification of the previous back-
end system. The main idea is to provide contextual
information through longer term temporal scoring.
Instead of the derivation of the scores, this back-end
system proposes a stacking of past and future scores
with the present score to model the dynamic
behavior in a different way. Figure 3 shows this
combination process where several score frames from
the past and several score frames from the future are
stacked with the present frame. The experiments are
carried out with one, two, and three frames from the
past and future and different numbers of states.

In an HMM segmentation system, it is usual to opti-
mize the transition penalties on a development set since
this can have a significant impact on performance. How-
ever, we do not optimize any transition penalty because
our goal was to create a general approach to segment
audio that could be used in other databases with different
distributions or with other classes.

Figure 2 Back-end system 2 - derivative HMM/GBE block diagram.
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Figure 3 Back-end system 3 - stacking HMM/GBE block diagram.

Experimental results
The errors can be produced in two ways: first, a clas-
sification error due to a bad labeled frame, and a seg-
mentation error due to a temporal mismatch between the
reference boundaries and the hypothesis boundaries. This
section shows the experiments for the evaluation data
described in the ‘Albayzin audio segmentation evaluations
and database description’ section divided into two sets. In
the first set, the boundaries between segments are given
by the ground truth and the system decides the class of
each segment with no segmentation error to evaluate the
classification accuracy of the classical FA system versus
GMMs.
The second set of experiments shows the segmenta-

tion and the classification error when the boundaries are
not given. A final segmentation-by-classification system
based on FA with a class/non-class parameters is pro-
posed. The three back-end systems previously described
are tested over this system. The back-end systems show
that a combination and smoothing of the scores improve
the previous results. Also, the systems are compared to
the winner system of the 2010 Albayzin evaluation that
has a hierarchical structure with specific features for each
class.

Classification experiments with oracle segmentation
The classification is made over the segments extracted
with the ground truth boundaries to evaluate the classifi-
cation accuracy over the whole segment. Since the system
decides the class that the whole segment belongs to, the
smoothing is not needed.
We propose GMM systems as a baseline for classifica-

tion experiments using the acoustic features described in
the ‘Acoustic feature extraction’ section. Table 1 shows
the results for these systems. We have evaluated different

Table 1 Baseline for classification experiments

GMM MU SP SM SN Total

64G 10.68 45.74 36.68 45.44 34.63

128G 9.81 41.79 32.02 40.75 31.09

256G 10.4 37.6 31.8 37.6 29.3

512G 9.5 35.9 29.3 35.9 27.7

1,024G 9.3 34.9 27.0 34.3 26.4

2,048G 9.6 33.3 28.0 34.0 26.2

Classification error per class and total error for GMM systems with different
numbers of Gaussians over the test files with perfect segmentation. The
italicized number represents the best performance of the GMM system.

numbers of Gaussians (from 64 to 2,048). The classifi-
cation is based on the highest accumulated likelihood
over the whole segment. As it can be seen in Table 1,
increasing the number of Gaussians improves the final
result. The highest number of Gaussians evaluated was
2,048 because the error for MU and SM classes began
to increase although the total result improved slightly
compared to the 1024G model.
In the experiments with FA for classification with oracle

segmentation, we assess different configurations for the
number of x factors and the scoring methods described
previously. The UBM employed to compute the statis-
tics has a fixed number of 2,048 Gaussians to be able
to compare the results of the FA systems with the best
GMM baseline configuration. Because the boundaries are
known, the statistics are calculated over the whole seg-
ment without merging underlying partitions.We compute
the result using linear scoring and the integration trough
the x factors distributions scoring (called as IoChD in
this section). The linear scoring needs a final calibration
because the scoring is scaled by the module of the tar-
get model. A Gaussian back-end (GBE) ([54,55]) provides
benefits in two ways: calibration and score combination.
The calibration for the IoChD scoring does not provide
substantial benefits because the score is based on a like-
lihood ratio over a MAP adaptation using the same UBM
and the marginal improvement comes from the combi-
nation of scores. The experiments are carried out with a
single U matrix to compensate all the within-class vari-
ability and different numbers of x factors (50, 100, 150,
200, 250, and 300) providing the error for each class. Note
that the increment of x factors involves an exponential
increment of the computational cost.
Table 2 compares all the experiments with FA over a per-

fect segmentation. According to these results, the IoChD
scoring is more accurate than the linear scoring for all
the configurations and all the classes. Comparing Tables 1
and 2, a significant improvement can be seen using FA
versus GMM. Using the best GMM configuration (2,048
Gaussians) as reference, the worst FA system improves
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Table 2 FA systems for classification experiments

One U for all classes

Linear GBE IoChnf

Number of chnf MU SP SM SN Total MU SP SM SN Total

50 21.6 16.9 23.6 23.4 21.4 10.2 15.9 24.2 21.4 17.9

100 21.8 17.4 21.0 22.9 20.8 9.1 16.0 20.2 20.0 16.3

150 20.8 17.7 20.5 23.5 20.6 9.4 15.5 18.0 18.9 15.4

200 20.7 17.8 20.5 22.4 20.4 9.0 15.7 17.3 19.1 15.3

250 20.0 19.2 20.2 23.1 20.6 8.5 16.7 16.0 19.4 15.1

300 21.3 19.5 20.5 21.7 20.8 9.8 15.0 18.9 18.9 15.6

Classification error per class and total error for linear and IoChD scoring with perfect segmentation and a single U for all the classes. The italicized numbers represent
the best performance of the FA system for a given configuration.

the total result (18.3% relative error reduction with linear
scoring and 50 x factors) and also compared to the best FA
configuration (43.1% relative error reduction with IoChD
scoring and 150 x factors). Note that the music has been
better classified with GMMs than with linear GBE. How-
ever, the rest of the classes presents a high classification
error with GMMs (as we knew from the results presented
in the Albayzin evaluation).
An important fact about the distribution of the errors

is shown in Table 3. The table shows the percentages of
the segments that have been correctly classified for GMM
with 2,048 Gaussians, FA with linear GBE scoring and
FA with IoChD scoring both with 100 channel factors.
The table is divided into two columns: the first column
shows the percentage of the correctly classified segments
between 0 and 3 s long. It clearly shows that, while the
classification is better with FA systems as we have shown
in Table 2, segments shorter than 3 s are better classified
with GMMs. The second column shows the percentage of
the segments longer than 3 s. It can be seen that the best
classification system is based on FA with IoChD scoring.
As a conclusion, the FA is a better classifier if the segments
are longer than 3 s which is a common fact because most
of the segments are between 10 and 20 s long and a collar
of 1 s is not scored around each reference boundary.

Segmentation-by-classification experiments
In this subsection, no oracle segment boundaries are con-
sidered, so the audio stream is segmented by classifying
each window into one of the five classes.

Table 3 Percentage of correctly classified segments
shorter than 3 s and longer than 3 s

Segment <3 s Segment≥3 s

GMM - 2,048G 25.4 56.9

Linear GBE - 100 chnf 19.2 57.3

IoChnf - 100 chnf 23.4 60.8

The total number of segments is 7,754. The italicized numbers represent the
best performance for segments shorter than 3 s and longer than 3 s.

Table 4 shows the baseline results for this segmentation
task. To be able to compare the results with the best base-
line classification system of Table 1, the baseline segmen-
tation systems in Table 4 are based on GMM with 2,048
Gaussians. The first row in this table shows the results
of a basic GMM - 2,048G system. The segments in this
system are delimited by the transition of the frame-by-
frame classification and no smoothing is applied. Note the
degradation of the GMM - 2,048G (54.6% of total error)
compared to the GMM - 2,048G with perfect segmenta-
tion in Table 1 (26.2% of total error) where the decision
of each class was based on the accumulated likelihood of
the whole given segment. These results clearly show that
a smoothing stage to avoid sudden changes in the deci-
sion sequence is needed in a segmentation task. A widely
used technique to smooth the transitions between classes
is the left-to-right HMM topologies. Table 4 shows differ-
ent left-to-right HMM configurations where the 2,048G
are divided by the number of states to maintain the same
number of Gaussians in every configuration. The best
baseline system for the segmentation task (33.3% of total
error) has 32 states with 64G per state (keeping a total
of 2,048G). This result proves the dramatic improvement
when a temporal smoothing is applied to segmentation-
by-classification system.
Classification experiments in the last subsection indi-

cate that the IoChD scoring is more accurate than the

Table 4 Baseline for segmentation experiments

GMM/HMM LeftToRight MU SP SM SN Total

GMM - 2,048G 35.5 59.2 65.0 58.6 54.6

2 ST - 1,024G 29.9 59.2 54.7 56.8 50.2

4 ST - 512G 26.0 49.8 45.9 50.2 43.0

8 ST - 256G 24.3 49.3 41.6 50.1 41.3

16 ST - 128G 17.8 40.2 36.0 43.0 34.2

32 ST - 64G 17.3 39.5 33.9 41.5 33.3

The table shows an error per class and total error for GMM-HMM systems over
the test files with non-oracle segment boundaries. The italicized number
represents the best performance of the GMM/HMM system.
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Table 5 Error per class and total error for FA
segmentation-by-classification systems

IoChD scoring: step - 0.5 s, 100 chnf

MU SP SM SN Total

One single U 40.3 76.9 60.5 64.3 60.5

One U per class 33.3 45.6 36.2 47.4 40.6

The experiments are computed with one single U for all the classes and one U
matrix for each class/non-class using IoChD scoring. No score combination or
smoothing was carried out. The italicized numbers show the total error of each
system.

linear scoring as we asserted in the ‘Scoring’ section. For
the sake of clarity, results with the linear scoring are not
presented in this subsection.
Unlike the oracle segmentation where the x factors were

computed for each segment, in this subsection the x fac-
tors are computed for each window, so an increment in
the number of x factors or a reduction of the window
step increases the memory and the time needed to train
the models dramatically. As a preliminary experiment, the
FA segmentation-by-classification system computes the
statistics every 0.5 s and 100 x factors. Because the win-
dows (3 s long in our experiments) are smaller than the
oracle segments, the useful information which describes
the class of the window is scarcer. Therefore, a more dis-
criminative scoring is needed and it is provided by the
models with one U matrix for each class. Results with
a single U matrix for all the classes and one U matrix
for each class are presented in Table 5. There is a signifi-
cant improvement in the classes with more data using one
U matrix for each class because the CLLRT removes the
information of the target class in the denominator as we
pointed out in the ‘Scoring’ section. Figure 4 displays the
confusion matrices for the experiments of Table 5. The
percentages have been computed with the frames scored
(affected by the collar) divided by all the frames of each
class in the reference (dur(refi)). The table clearly shows

less confusion between classes using one U matrix for
each class. Specially, there is a significant reduction in the
confusion between SP and SN and a slight reduction in
the confusion between MU and SM. The more frequent
the class in the data, the more significant the error reduc-
tion compared to a single U matrix for all the classes.
Accordingly, the total error is reduced around 20%.
Once the benefits of the FA system with one U matrix

for each class with IoChD scoring are determined, the
window-step can be reduced to increase the resolution
(0.1-s window step) at the expense of increasing the com-
putational cost. The number of x factors is not increased
because the computation time and the memory grow
exponentially. Figure 5 shows the scores for each class
over a chunk of a test file. The ground truth is plotted
in the same figure, and it is represented with a square
wave of amplitude 1. The green bars represent the forgive-
ness collar around each boundary. The color of each score
class and the corresponding ground truth is the same.
The figure clearly shows that the ratio of the winner class
is bigger than zero and corresponds to the ground truth
class for most of the frames. The results in Table 5 can be
compared to the results in Table 6 showing a significant
error reduction achieved by decreasing the window step
because of the resolution increase.
To avoid sudden changes in the segmentation process,

three back-end subsystems are evaluated here. The first
back-end system is based on a MAP approach, and the
two following systems are very similar but they model the
temporal behavior in different ways: on a first step, the
scores of both systems are conditioned using a multi-class
logistic regression. The dynamic behavior of the scores
is extracted with the first- and second-order time deriva-
tives or by stacking the past and future frames of the
scores (we know these systems as derivative HMM/GBE
and stacking HMM/GBE, respectively). Finally, a left-to-
right HMM/GBE with full covariance matrices is used to
smooth the scores and improve the results with a scoring

Figure 4 Confusion matrices for the experiments of Table 5. One single U for all the classes and one U matrix for each class/non-class are
displayed. No score combination or smoothing was carried out.



Castán et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:34 Page 10 of 13
http://asmp.eurasipjournals.com/content/2014/1/34

Figure 5 Scores and ground truth of each class over a chunk of a test file.

combination for both systems. The number of states in the
HMM determines the minimum length of the segment.
We compare the error of the system proposed in this

work with the winner system of the Albayzin 2010 evalu-
ation [31] where 15 MFCCs, frame energy, and their cor-
responding first and second derivatives are extracted. In
addition, the spectral entropy and the Chroma coefficients
are calculated. The mean and variance of these features
are computed over 1-s intervals creating 122 dimension
feature vectors. The segmentation approach chosen is
HMM-based. The acoustic modeling is performed using
five HMMs with three emitting states and 256 Gaussians
per state. Each HMM corresponds to one acoustic class.
A hierarchical organization of binary HMM detectors
is used. First, audio is segmented into music/non-music

Table 6 Error per class and total error for FA
segmentation-by-classification systems

IoChD scoring: step - 0.1 s, 100 chnf

MU SP SM SN Total

One U per class 27.9 37.9 32.4 40.9 34.8

The experiments are computed with one Umatrix for each class/non-class using
IoChD scoring. No score combination or smoothing was carried out. The
italicized number shows the total error of the system.

portions. Second, the non-music portions are further seg-
mented into speech-over-music/non-speech-over-music
portions. Finally, the non-speech-over-music portions are
segmented into speech/speech over noise.
Figure 6 shows the results of the systems described in

the previous two paragraphs. First, two straight lines rep-
resent the results for the winner system of the Albayzin
2010 evaluation [31] (30.2% of total error rate) and the
FA system with MAP back-end [40] (28.8% of total error
rate). The behaviors of the derivative HMM/GBE and
the stacking HMM/GBE back-end systems are plotted
in the same figure with a different number of states.
The stacking HMM/GBE combines the present frame
with one, two, and three frames from the past and the
future to provide different levels of contextual informa-
tion. The figure shows a slight improvement in derivative
HMM/GBE for almost any number of states. However,
the result are quite similar for derivative HMM/GBE and
stacking HMM/GBE. Both systems for every configura-
tion improve the results of the winner hierarchical-HMM
[31] and the MAP-FA system [40]. Note that the final
number of states is not critical because the difference
among errors is less than 3%. The best result obtained was
an error of 23.8% using 13 states, and the worst result was
26.6% with 25 states.
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Figure 6 HMM/GBE-FA segmentation-by-classification systemwith different numbers of states.

Table 7 is divided into two parts: the first part shows
the error for each class and the average error for the win-
ner hierarchical-HMM system of the evaluation (HMM-
Winn). The last column shows the NIST metric used
in the NIST RT Diarization evaluations [42] to com-
pare the systems with a well-known metric. To be able
to compute the NIST error with the hierarchical-HMM
system, we replicated the winner system according to
[31] (HMM-Rep). The second part of the table shows
the FA segmentation-by-classification system (FA-Segm)
after the combination and the smoothing with the deriva-
tive HMM/GBE back-end subsystem because this subsys-
tem is slightly better than the other back-end subsystems.
We choose the best configuration (Best FA-Segm) and the
worst configuration (Worst FA-Segm). Note that the final
number of states is not very critical because the difference
between errors is less than 3%. The best result obtained
was an error of 23.8% using 13 states, and the worst result
was 26.6% with 25 states. The hierarchical-HMM systems
perform better than the worst FA system for the MU and
SM classes, but their behavior is worse for SN and SP. Also,
there is not a substantial benefit classifying the MU with
the best FA system compared to the hierarchical-HMM
system. This is due to the use of specific features to detect
the music like the Chroma features. The worst FA system
achieves a relative error reduction of 11.3% with respect to
the hierarchical-HMM system. Finally, the best FA config-
uration improves the performance for all the classes and
achieves a relative error reduction of 29.2% with respect
to the hierarchical-HMM system.

Conclusions
This paper presents a novel system to segment and clas-
sify audios coming from broadcast TV news into five
broad classes. The proposed system is based on a fac-
tor analysis (FA) approach to compensate the within-class
variability with one factor loading matrix per class. Unlike
other FA systems (like speaker ID and language recog-
nition), the system proposed in this work does not have
well-delimited segments, the same speaker can be found
in different classes, and the nature of the classes can be
very different (music, speech, or noise). The relevance of
this approach can be summarized in two major aspects:
it does not need specific features or hierarchical struc-
ture and it performs a very accurate segmentation and
classification for all the classes. Therefore, the system is
general enough to be used for different tasks and scenar-
ios. The classification experiments with oracle segmen-
tation (‘Classification experiments with oracle segmen-
tation’ section) show a clear improvement compared to
the baseline GMM system. A class/non-class FA system
is proposed for the segmentation-by-classification experi-
ments in the ‘Segmentation-by-classification experiments’
section. Different back-end systems have been evaluated
in order to exploit the correlation among classes and avoid
sudden changes in the decisions. This system is com-
pared to a hierarchical solution with specific features for
each level. The results show a significant improvement for
all classes, metrics, and configurations achieving a 29.2%
relative error reduction with respect to the hierarchical-
HMM system for the best configuration.

Table 7 Results for the Albayzin evaluation winner system and factor analysis segmentation system over the test files

Error for each class

MU SP SM SN Total NIST

HMM-Winn [31] 19.2 39.5 25.0 37.2 30.2 -

HMM-Rep 16.3 40.8 24.0 38.8 30.0 19.3

Worst FA-Segm 19.3 29.5 24.6 33.1 26.6 16.7

Best FA-Segm 18.8 23.7 23.6 29.1 23.8 14.7

The table shows the error per class and the total error with the metric of the evaluation and the NIST metric. The italicized numbers show the total error and the NIST
metric of the best FA system.
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