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Abstract. We extend the notion of a pseudoholomorphic vector of Iwaniec, Verchota, and

Vogel to mappings between Riemannian manifolds. Since this class of mappings contains both

quasiregular mappings and (pseudo)holomorphic curves, we call them quasiregular curves. Let

n ≤ m and let M be an oriented Riemannian n-manifold, N a Riemannian m-manifold, and

ω ∈ Ωn(N) a smooth closed non-vanishing n-form on N . A continuous Sobolev map f : M →

N in W
1,n

loc
(M,N) is a K-quasiregular ω-curve for K ≥ 1 if f satisfies the distortion inequality

(‖ω‖ ◦ f)‖Df‖n ≤ K(⋆f∗ω) almost everywhere in M . We prove that quasiregular curves satisfy

Gromov’s quasiminimality condition and a version of Liouville’s theorem stating that bounded

quasiregular curves R
n → R

m are constant. We also prove a limit theorem that a locally uniform

limit f : M → N of K-quasiregular ω-curves (fj : M → N) is also a K-quasiregular ω-curve. We

also show that a non-constant quasiregular ω-curve f : M → N is discrete and satisfies ⋆f∗ω > 0

almost everywhere, if one of the following additional conditions hold: the form ω is simple or the

map f is C1-smooth.

1. Introduction

Quasiconformal homeomorphisms admit three classical definitions: analytic def-

inition, based on weak differential, geometric definition, based on modulus of curve
families, and metric definition based on infinitesimal metric distortion. Out of these
three ways to define quasiconformality, the metric definition is the only one which
does not require the spaces to have the same dimension and, in particular, allows
us to consider quasiconformal embeddings into higher dimensional spaces. The geo-
metric definition, which is based on comparison of moduli of curve families and their
images, is ineffective in this case, since curve families contained in a lower dimen-
sional subspace typically have zero modulus. The analytic definition, which extends
to the definition of quasiregular mappings, is based on the Jacobian determinant of
the mapping and hence is a priori not at our disposal.

The higher dimensional quasiconformal theory has an extensive literature. We
refer to e.g. monographs of Väisälä [14] or Gehring, Martin and Palka [4] or articles
of Heinonen and Koskela [7, 8] and Väisälä [15] for discussion on quasiconformal and
related quasisymmetric theory.

In this article, we discuss an extension of the analytic definition for quasireg-
ular mappings, called quasiregular curves, similar to pseudoholomorphic vectors of
Iwaniec, Verchota, and Vogel [10]. The name stems from the observation that holo-
morphic and pseudoholomorphic curves are quasiregular curves.

Recall that a continuous mapping f : M → N between oriented Riemannian n-
manifolds is K-quasiregular for K ≥ 1 if f belongs to the Sobolev space W 1,n

loc (M,N)
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and satisfies the distortion inequality

‖Df‖n ≤ KJf

almost everywhere in M , where ‖Df‖ is the operator norm of the differential Df of f
and Jf the Jacobian determinant of f defined by f ∗volN = JfvolM . For homeomor-
phisms this is the analytic definition of quasiconformality and therefore a quasiregu-
lar homeomorphism is called quasiconformal. We refer to monographs of Reshetnyak
[11], Rickman [12], and Iwaniec–Martin [9] for the theory of quasiregular mappings.

For the definition of a quasiregular curve, we define first the auxiliary notion
of an n-volume form on an m-manifold for m ≥ n. Let M and N be an oriented
Riemannian n-manifold and an Riemannian m-manifold, respectively, for n ≤ m.
We say that a smooth differential n-form ω ∈ Ωn(N) is an n-volume form if ω is
non-vanishing and closed. Note that, since ω ∧ ⋆ω is a non-vanishing m-form, the
manifold N is orientable. Here, and in what follows, Ωn(N) is the space of smooth
differential n-forms on a smooth manifold N .

In the following definition, the spaces M and N are an oriented Riemannian n-
manifold and a Riemannian m-manifold, respectively, for n ≤ m, and ω ∈ Ωn(N) is
an n-volume form.

Definition. A continuous map f : M → N is a K-quasiregular ω-curve for K ≥
1 if f belongs to the Sobolev space W 1,n

loc (M,N) and

(QRC) (‖ω‖ ◦ f)‖Df‖n ≤ K (⋆f ∗ω)

almost everywhere on M .

Here ⋆f ∗ω is the Hodge star dual of the n-form f ∗ω, that is, the function satisfying
(⋆f ∗ω)volM = f ∗ω. The function ‖ω‖ : N → [0,∞) is the pointwise comass norm of

ω given by

‖ω‖(p) = max{|ωp(v1, . . . , vk)| : v1, . . . , vk ∈ TpN, |vi| ≤ 1}

for each p ∈ N ; see Federer [3, Section 1.8.1].

Remark 1.1. In [10], Iwaniec, Verchota and Vogel define that a map f =
(f1, . . . , fn) : Ω → C

n , is a pseudoholomorphic vector on a domain Ω ⊂ C if
f belongs to the Sobolev space W 1,2

loc (Ω,C
n) and satisfies the distortion inequality

|Df |2 ≤ 2K (Jf1 + · · ·Jfn) almost everywhere for K ≥ 1, where |Df | is the Hilbert–
Schmidt norm of Df . Since Jf1 + · · ·+ Jfn = f ∗ω for the standard symplectic form
ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn and norms ‖Df‖ and |Df | are equivalent, we have
that pseudoholomorphic vectors are quasiregular curves. We refer to [10, Section 7]
for more details.

Extending the introduced terminology, we also say that f : M → N is a quasireg-

ular ω-curve if f is a K-quasiregular ω-curve for some K ≥ 1, and that f : M → N is
a quasiregular curve if f is a quasiregular ω-curve for some n-volume form ω ∈ Ωn(N)
on N . In these cases, we tacitly assume without further notice that the manifold M
is an oriented Riemannian n-manifold and N is a Riemannian m-manifold for n ≤ m.

Example 1.2. For oriented Riemannian manifolds M and N of same dimension
and for ω = volN , we recover the definition of a K-quasiregular map M → N .
Thus quasiregular maps are quasiregular curves. In the same vein, if π : P → N
is a Riemannian bundle over N and F : M → N is a K-quasiregular ω-curve for
ω = π∗volN , then the composition f = π ◦F : M → N is a K-quasiregular mapping.
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Indeed, since π is a Riemannian isometry, the map f is in W 1,n
loc (M,N) and we have

the estimate

‖Df‖n = (‖π∗volN‖ ◦ π ◦ F )‖D(π ◦ F )‖n ≤ (‖ω‖ ◦ F )‖DF‖n

≤ K(⋆F ∗ω) = K(⋆F ∗π∗volN) = K(⋆f ∗volN) = KJf .

Example 1.3. For j = 1, 2, let Nj be a Riemannian n-manifold, let ωj ∈ Ωn(Nj)
be an n-volume form, fj : M → Nj a K-quasiregular map, and πj : N1 ×N2 → Nj a
projection. Let ω = π∗

1ω1 + π∗
2ω2 ∈ Ωn(N1 ×N2). Then f = (f1, f2) : M → N1 ×N2

is a K-quasiregular ω-curve. Indeed, since ‖Df‖ ≤ ‖Df1‖ + ‖Df2‖ and ⋆f ∗ω =
⋆f ∗

1ω1 + ⋆f ∗
2ω2 almost everywhere in M , and ‖ω‖ = 1, we have that

(‖ω‖ ◦ f)‖Df‖n ≤ 2n (‖Df1‖
n + ‖Df2‖

n) ≤ 2nK(⋆f ∗ω).

By the same argument, holomorphic curves f = (f1, . . . , fn) : Ω → C
n, where Ω ⊂ C

is a domain, are 1-quasiregular curves. Indeed, since ‖Df‖2 ≤ ‖Df1‖
2+· · ·+‖Dfn‖

2,
we have that f is a 1-quasiregular ω-curve for the symplectic form ω = dx1 ∧ dy1 +
· · ·+ dxn ∧ dyn.

Example 1.4. Let (N, ω, J) be a Kähler manifold and suppose that the almost
complex structure J is calibrated by the symplectic form ω. Suppose further that
ω is bounded and ℓ(ω) = infz∈N ℓ(ω)p > 0, where ℓ(ω)p = min|v|=1 ω(v, iv) for each
p ∈ N . Then a J-holomorphic curve f : C → N is a K-quasiregular ω-curve for
K = ‖ω‖∞/ℓ(ω). Indeed, since J is an isometry and J ◦Df = Df ◦ i, we have, for
each z ∈ C and each unit vector v ∈ TzC, that ‖Df‖2 = |Df(v)|2. Thus, for an
orthonormal basis {e1, e2} of TzC at z ∈ C, we have that

⋆f ∗ω = f ∗ω(e1, e2) = f ∗ω(e1, ie1) = ω(Df(e1), Df(ie1))

= ω(Df(e1), JDf(e1)) ≥ ℓ(ω)|Df(e1)|
2.

For more discussion, we refer to Gromov’s article [5] on pseudoholomorphic curves
in symplectic geometry or e.g. Audin and Lafontaine [1] for details.

Remark 1.5. Examples of n-volume forms onm-manifolds for n ≤ m are e.g. ex-
terior powers of symplectic forms and coclosed contact forms. More precisely, ifN has
even dimension 2n and ω ∈ Ω2(N) is a symplectic 2-form, then ω∧k is a 2k-volume
form on N . In this case, ω∧n is a standard volume form on N and quasiregular
ω∧n-curves into N are quasiregular mappings.

If N has odd dimension 2n + 1 and θ ∈ Ω1(N) is a contact form satisfying
d(⋆θ) = 0, then ω = ⋆θ is an 2n-volume form. For example, the Heisenberg form
θH = dt − 1

2
(xdy − ydx) in R

3 is a coclosed contact form. Clearly, there exists an
abundance of quasiregular (⋆θH)-curves B2 → R

3. However, we do not know if there
exist non-constant entire quasiregular (⋆θH)-curves R

2 → R
3. Note that here the

2-form ⋆θH is simple.

We note in passing that, similarly as quasiconformal or quasiregular maps, the
distortion of quasiregular curves is conformally invariant in the following sense: Let
f : M → N be a K-quasiregular curve between Riemannian manifolds (M, gM) and
(N, gN). Then f is K-quasiregular with respect to Riemannian manifolds (M, g̃M)
and (N, g̃N) for Riemannian metrics g̃m and g̃N conformally equivalent to gM and
gN , respectively. Therefore, for example, the space

QRK(M,N ;ω) = {f : M → N : f is a K-quasiregular ω-curve}
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of all K-quasiregular ω-curves between Riemannian manifolds M and N for a fixed
n-volume form ω ∈ Ωn(N), is a conformal invariant of manifolds M and N .

In this article, we prove three results on quasiregular curves for general n-volume
forms and one in the special case of simple n-volume forms.

1.1. Quasiminimality of quasiregular curves. The first of the three theo-
rems we prove on general quasiregular curves is that a quasiregular ω-curve is quasi-
minimal in the sense of Gromov’s definition [6, Definition 6.37] if the form ω has
bounded ratio

R(ω) =
sup‖ω‖

inf‖ω‖
<∞.

For the definition of quasiminimality, we give first an auxiliary definition of a
competitor. Let f : M → N be a continuous map in W 1,n

loc (M,N) and let W ⋐M be
a compact n-submanifold with boundary. We say that a continuous map h : M → N
is an competitor for f on W (or (f,W )-competitor for short) if h is a Sobolev map
in W 1,n

loc (M,N), f |∂W = h|∂W , and fW is homologous to hW in N modulo f(∂W ).

Definition. A continuous W 1,n
loc (M,N)-mapping f : M → N from an n-manifold

M to an m-manifold N for m ≥ n is C-quasiminimal if, for each compact n-
submanifold W ⋐ M with boundary, each (f,W )-competitor h : M → N satisfies

ˆ

W

‖∧nDf‖volM ≤ C

ˆ

W

‖∧nDh‖volM .

Quasiregular ω-curves are quasiminimal, quantitatively, if ω has bounded ratio.
More precisely, we have the following result.

Theorem 1.6. Let ω ∈ Ωn(N) be an n-volume form of bounded ratio. Then a
K-quasiregular ω-curve M → N is KR(ω)-quasiminimal.

1.2. Liouville’s theorem for quasiregular curves. Liouville’s classical the-
orem in complex analysis states that bounded entire functions C → C are constant.
It was known from very early on that the same result holds also for quasiregular
mappings R

n → R
n; see e.g. [12, Corollary III.1.14] and the related discussion. A

version of Liouville’s theorem holds also for quasiregular curves.

Theorem 1.7. Let N be a complete Riemannian m-manifold and ω ∈ Ωn(N) an
exact n-volume form for n ≤ m. Then each bounded quasiregular ω-curve R

n → N
is constant.

As for quasiregular mappings, the proof reduces to a simple application of the n-
parabolicity of the Euclidean n-space and a Caccioppoli inequality (Proposition 3.1)
for quasiregular curves.

Remark 1.8. Another version of Liouville’s theorem states that a quasiregular
ω-curve f : M → N is constant if M is a closed manifold and ω is an exact form.
Indeed, since f ∗ω is a weakly exact n-form on M , we have

ˆ

M

(‖ω‖ ◦ f)‖Df‖n ≤ K

ˆ

M

f ∗ω = 0.

Since ‖ω‖ ◦ f is a non-negative function, we obtain that Df = 0 almost everywhere
and that f is constant. In particular, quasiregular curves from closed manifolds into
Euclidean spaces are constant.
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1.3. Limit theorem. Our second theorem is a limit theorem for quasireg-
ular curves. For quasiregular mappings the statement reads as follows [12, Theo-
rem VI.8.6]: a locally uniform limit of K-quasiregular mappings is K-quasiregular.
For quasiregular curves, an analogous statement holds.

Theorem 1.9. For n ≤ m, let M and N be an oriented Riemannian n-manifold
and a Riemannian m-manifold, respectively, let ω ∈ Ωn(N) be an n-volume form on
N , and let (fj) be a sequence of K-quasiregular ω-curves fj : M → N converging
locally uniformly to a mapping f : M → N . Then f is a K-quasiregular ω-curve.

A short comment on the proof is in order. We may mostly follow the (classical)
proof for quasiregular mappings in [12]. However, since we do not have local index
theory at our disposal, we obtain the sharp distortion constant for the limit map by
modifying the argument in [9, Theorem 8.7,1].

1.4. Quasiregular curves for simple volume forms and Reshetnyak’s

theorem. An n-form ω ∈ Ωn(N) is simple (or decomposable) if there exist 1-forms
ω1, . . . , ωn ∈ Ω1(N) for which ω = ω1 ∧ · · · ∧ ωn.

Quasiregular curves for simple volume forms have particularly simple structure:
locally they are graphs over quasiregular mappings. For simplicity, we state this result
for quasiregular curves between in Euclidean spaces.

Theorem 1.10. Let f : Ω → R
m be a K-quasiregular ω-curve, where Ω is a

domain in R
n, n ≤ m, ε > 0, and K ′ > K. Then, for each x ∈ Ω, there exists

a neighborhood D ⋐ M of x, an isometry L : Rm → R
m, a K ′-quasiregular map

f̂ : D → R
n, and a continuous Sobolev map h : D → R

m−n in W 1,n(D,Rm−n) for

which F = L ◦ f |D = (f̂ , h) : D → R
n ×R

m−n and

(⋆f ∗ω)/((1 + ε)K ′) ≤ ‖ωf(x)‖Jf̂ ≤ (1 + ε)K(⋆f ∗ω)

almost everywhere in D.

Having this local description at our disposal, we obtain a version of Reshetnyak’s
theorem in the case of a simple n-volume form. Recall that Reshetnyak’s theorem for
quasiregular mappings states that a non-constant quasiregular mappings is discrete
and open. A mapping f : M → N is discrete if, for each y ∈ N , the fiber f−1(y) is a
discrete set in M , and open if the image fU of an open set U ⊂M is open in N .

Remark 1.11. Before discussing the positive result, we emphasize that Reshet-
nyak’s theorem fails for quasiregular curves in general. Indeed, in [10] Iwaniec,
Verchota, and Vogel construct a Lipschitz regular pseudoholomorpic vector F =
(f1, f2) : C → C

2, which is constant on the lower half-plane but satisfies Jf1+Jf2 ≡ 1
almost everywhere on the upper half-plane; see [10, Lemma 5]. As a quasiregular
curve, the map F constructed in [10] has distortion K > 2. Iwaniec, Verchota, and
Vogel show that such pseudoholomorphic vectors Ω → C

n, where Ω ⊂ C is a domain,
do not exist if the distortion K—in the sense of quasiregular curves—is close to 1.
We refer to [10, p. 150] for a detailed discussion.

Regarding the openness in Reshetnyak’s theorem, we note that it is immediate
from the definition that, due to increase of dimension, quasiregular curves are not
open mappings. Simple examples also show that quasiregular curves are not even
interior mappings. Recall that a mapping f : M → N is interior if the image fΩ of
an open set Ω ⊂M is open in the induced topology of the image fM ⊂ N .
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Example. Let p ∈ Z+ and let h : C → R be a smooth function satisfying
|h(z)| ≤ |z|p and |h′(z)| ≤ p|z|p−1 for all z ∈ C. Then the map f : C → R

3,
z 7→ (zp, h(z)), where R

3 = C × R, is a quasiregular ω-curve for ω = dx ∧ dy.
However, for a generic choice of h, the curve f is not interior.

After these disclaimers, we are now ready to state a positive result. For the
statement, we say that a map f : M → N is locally quasi-interior at x ∈ M if x has
a neighborhood D ⋐ M for which f(x) is in the interior of fU , with respect to fD,
for each neighborhood U ⊂ D of x.

Corollary 1.12. Let f : M → N be a non-constant quasiregular ω-curve, where
ω is a simple n-volume form. Then f is discrete and locally quasi-interior at each
point.

As a consequence of Theorem 1.10, we also obtain that quasiregular curves for
simple n-volume forms have analytic properties similar to quasiregular mappings.

Corollary 1.13. Let f : M → N be a non-constant quasiregular ω for a simple
n-volume form ω in N . Then

(1) (positivity of the Jacobian) ⋆f ∗ω > 0 almost everywhere in M ,
(2) (higher integrability) there exists p = p(n,K) > 0 for which f ∈ W 1,p

loc (M,N),
and

(3) (differentiability) f is differentiable almost everywhere.

Remark 1.14. Since n-volume forms of codimension 1 are simple, we have that
these results hold in particular for all codimension 1 quasiregular curves M → N ,
that is, when dimN = 1 + dimM . In particular, quasiregular curves R

2 → R
3 have

the properties in Corollaries 1.12 and 1.13. This is contrast to mappings associated
to more general null Lagrangians; see Iwaniec, Verchota and Vogel [10, Lemma 6].

C
1-smooth quasiregular curves. We end this introduction with a discussion

on Reshetnyak’s theorem for C1-smooth quasiregular curves. It is an elementary
observation that a C1-smooth quasiregular curve f : M → N is locally a quasiregular
curve with respect to a simple n-volume form. Indeed, since the question is local it
suffices to consider a K-quasiregular curve f : Ω → R

m defined on a domain Ω ⊂ R
n.

Let x ∈ Ω. Then, by continuity of Df and ω, we may fix a neighborhood U of x and
a multi-index J = (j1, . . . , jn) for which we have the estimate

⋆f ∗ω =
∑

I

(uI ◦ f)(⋆f
∗(dxI)) ≤ 2

(

m

n

)

(uJ ◦ f)(⋆f ∗(dxJ))

in U , where we denote dxI = dxi1 ∧ · · · ∧ dxin for each multi-index I = (i1, . . . , in).
Since ‖uJdxJ‖ ≤ ‖ω‖, we conclude that f |U : U → N is a 2

(

m
n

)

K-quasiregular
(uJdxJ)-curve.

Theorem 1.10 now yields that, locally, C1-smooth quasiregular curves are graphs
over quasiregular maps and, in particular, discrete maps by Corollary 1.12. We
summarize this observation as follows.

Corollary 1.15. A non-constant C1-smooth quasiregular ω-curve f : M → N is
a discrete map satisfying ⋆f ∗ω > 0 almost everywhere in M .

This article is organized as follows. In Sections 2, 3, and 4, we prove Theorems 1.6,
1.7 and 1.9, respectively. Finally, in Section 5, we prove Theorem 1.10 and its
corollaries.
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2. Quasiregular curves are quasiminimal

In this section we show that quasiregular curves satisfy Gromov’s (homological)
quasiminimality criterion [6, Definition 6.36] if the n-volume form has bounded ratio.

Theorem 1.6. Let ω ∈ Ωn(N) be an n-volume form of bounded ratio. Then a
K-quasiregular ω-curve f : M → N is KR(ω)-quasiminimal.

Proof. Let W ⋐ M be an n-manifold with boundary and let h : M → N be an
(f,W )-competitor. Since fW and hW are homologous modulo f(∂W ), there exists
an (n + 1)-chain Σ for which ∂Σ = fW − hW , as chains. By de Rham’s theorem,
we may identify the duality pairing of the n-form ω with the n-chains hW and fW
as integration. Thus we have that

ˆ

W

f ∗ω −

ˆ

W

h∗ω =

ˆ

fW

ω −

ˆ

hW

ω =

ˆ

∂Σ

ω =

ˆ

Σ

dω = 0.

Since ‖∧nDf‖ ≤ ‖Df‖n and ⋆h∗ω ≤ (‖ω‖ ◦ h)‖∧nDh‖ almost everywhere, we
have that
ˆ

W

‖∧nDf‖volM ≤

ˆ

W

‖Df‖nvolM ≤

ˆ

W

(‖ω‖ ◦ f)

minN‖ω‖
‖Df‖nvolM

≤
K

minN‖ω‖

ˆ

W

f ∗ω =
K

minN‖ω‖

ˆ

W

h∗ω

≤
K

minN‖ω‖

ˆ

W

(‖ω‖ ◦ h)‖∧nDh‖volM ≤ KR(ω)

ˆ

W

‖∧nDh‖volM .

We conclude that
ˆ

W

‖∧nDf‖nvolM ≤ KR(ω)

ˆ

W

‖∧nDh‖volM . �

Remark 2.1. The proof of Theorem 1.6 is essentially the same as Gromov’s
argument in [6, Example 6.3.7] for quasiminimality of the graph Gf : M → M ×N ,
x 7→ (x, f(x)), of a quasiregular mapping f : M → N . The form ω in Gromov’s
argument is ω = π∗

MvolM + π∗
NvolN , where πM : M ×N →M and πN : M ×N → N

are the natural projections.

3. Liouville’s theorem for entire quasiregular curves

In this section, we prove a version of the Liouville’s theorem.

Theorem 1.7. Let N be a complete Riemannian m-manifold and ω ∈ Ωn(N) an
exact n-volume form for n ≤ m. Then each bounded quasiregular ω-curve R

n → N
is constant.

As for quasiregular mappings, the proof of Liouville’s theorem is an application
of Caccioppoli’s inequality, which we formulate here as follows.

Proposition 3.1. Let f : M → N be a K-quasiregular ω-curve for an exact
n-volume form ω ∈ Ωn(N) and let τ ∈ Ωn−1(N) be a potential of ω, that is, ω = dτ .
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Then there exists a constant C = C(n) > 0 having the property that, for every
non-negative function ψ ∈ C∞

0 (M),
ˆ

M

ψnf ∗ω ≤ CKn−1

ˆ

M

|∇ψ|n
(

‖τ‖n

‖ω‖n−1

)

◦ f.

Proof. Let ζ = ψn. Then, by Stokes’ theorem,
ˆ

M

ζf ∗ω =

ˆ

M

ζ df ∗τ =

ˆ

M

d(ζf ∗τ)−

ˆ

M

dζ ∧ f ∗τ = −

ˆ

M

dζ ∧ f ∗τ.

Hence, by pointwise norm estimates,
ˆ

M

ζf ∗ω ≤ C

ˆ

M

|∇ζ |(‖τ‖ ◦ f)|Df |n−1 ≤ Cn

ˆ

M

ψn−1|∇ψ|(‖τ‖ ◦ f)|Df |n−1,

where C = C(n) > 0. By Hölder’s inequality,

ˆ

M

ζf ∗ω ≤ Cn

(
ˆ

M

|∇ψ|n
(‖τ‖ ◦ f)n

(‖ω‖ ◦ f)n−1

)
1

n
(
ˆ

M

ψn(‖ω‖ ◦ f)|Df |n
)

n−1

n

≤ CnK
n−1

n

(
ˆ

M

|∇ψ|n
(‖τ‖ ◦ f)n

(‖ω‖ ◦ f)n−1

)
1

n
(
ˆ

M

ζf ∗ω

)
n−1

n

.

Thus
ˆ

M

ζf ∗ω ≤ CnnKn−1

ˆ

M

|∇ψ|n
(‖τ‖ ◦ f)n

(‖ω‖ ◦ f)n−1
. �

Liouville’s theorem is now an almost immediate consequence.

Proof of Theorem 1.7. Suppose that f is bounded. It suffices to show that, for
every r > 0, we have

ˆ

Bn(r)

f ∗ω = 0.

Then ‖Df‖ = 0 almost everywhere and f is constant in Bn(r) by the Poincaré
inequality.

Let r > 0 and ε > 0. Since capn(B̄
n(r),Rn) = 0, there exists ψ ∈ C∞

0 (Rn) for
which ψ|Bn(r) ≡ 1 and

ˆ

Rn

|∇ψ|n ≤ ε.

Since ω is exact, we may fix a potential τ ∈ Ωn−1(Rm) of ω. Since N is complete
and f is bounded, we have that fRn ⋐ N . Since τ is smooth and ω is smooth and
non-vanishing, we further have that the function ‖τ‖n/‖ω‖n−1 is bounded on fRn.
Thus, by Caccioppoli’s inequality, there exists a constant C > 0 for which

ˆ

Bn(r)

f ∗ω ≤

ˆ

Rn

ψnf ∗ω ≤ C

ˆ

Ω

|∇ψ|n ≤ Cε.

The claim follows. �

Remark 3.2. The previous Liouville’s theorem admits a following variation: Let
N be a Riemannian m-manifold and ω ∈ Ωn(N) an n-volume form with a potential
τ ∈ Ωn−1(N) for which the function ‖τ‖n/‖ω‖n−1 is bounded. Then each quasiregular
ω-curve R

n → N is constant.
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Remark 3.3. The version of Liouville’s theorem in Remark 3.2 shows that for
each non-zero (n−1)-covector ζ ∈ ∧n−1

R
m−1 and n-volume form ω0 = x−n

m ζ ∧dxm ∈
Ωn(Hm), a quasiregular ω-curve R

n → H
m is constant. For simplicity, suppose that

ζ = dx1 ∧ · · · ∧ dxn−1. Then, in the upper half-space model Hm = R
m−1 × (0,∞) of

the hyperbolic m-space, we have that the (n−1)-form τ0 = (−1)n(n−1)−1x1−n
m dx1∧

· · · ∧ dxn−1 is one of the potentials of ω0. Since ‖dx1 ∧ · · · ∧ dxn−1‖ = xn−1
m and

‖dx1 ∧ · · · ∧ dxn−1 ∧ dxm‖ = xnm, we have that ‖τ0‖ = (m + 1)−1 and ‖ω0‖ = 1. In
particular, ‖τ0‖

n/‖ω0‖
n−1 is bounded. The case for general n-covector ζ is similar.

Note that there are easy examples of n-volume forms on H
n, which admit non-

constant quasiregular curves from R
n. For example, let f : Rn → R

n be a K-
quasiregular map and fix t > 0. Then the map F = (f, 0, t) : Rn → R

n ×R
m−n−1 ×

(0,∞) is a K-quasiregular ω-curve for ω = dx1 ∧ · · · ∧ dxn. Clearly, the map F is
not a quasiregular ω0-curve. In fact, F ∗ω0 = 0 almost everywhere.

4. Limit theorem

In this section, we prove Theorem 1.9 which states that a locally uniform limit of
K-quasiregular ω-curves is also a K-quasiregular ω-curve. Since the result is local,
it suffices to prove the following local result.

Theorem 4.1. Let Ω ⊂ R
n be a domain and let (fj) be a sequence of K-

quasiregular ω-curves fj : Ω → R
m converging locally uniformly to a mapping f : Ω →

R
m. Then f is a K-quasiregular ω-curve.

Proof of Theorem 1.9 assuming Theorem 4.1. To show that the limiting map has
the same distortion as the maps in the sequence, let a ∈ N be an auxiliary parameter.
Let now {(Ωα, ϕα)}α and {(Vβ, ψβ)}β be atlases of M and N , respectively, consisting
of (1 + 1/a)-bilipschitz charts and having the property that, for each index α, there
exists an index β for which fΩα ⋐ Vβ. Existence of such atlases follow from the
exponential maps TM → M and TN → N of M and N , respectively, and continuity
of f .

By Theorem 4.1 and the chain rule in each Ωα, we obtain that f is inW 1,n
loc (Ωα, N)

for each α and that

(‖ω‖ ◦ f)‖Df‖n ≤ K(1 + 1/a)4nf ∗ω

almost everywhere in Ωα for each α, and hence almost everywhere in M .
Thus, almost everywhere in M , we have that

(‖ω‖ ◦ f)‖Df‖n ≤ Kf ∗ω

as claimed. �

The proof of Theorem 4.1 follows the idea of the same result for quasiregular
maps; see Rickman’s book [12, Section VI.8].

We separate the first part of the proof as a separate lemma and show that locally
uniform limits of quasiregular curves are in the right Sobolev class. As in the case
of quasiregular maps, this is essentially an application of the Caccioppoli inequality
(Proposition 3.1).

Lemma 4.2. Let f : Ω → R
m be a locally uniform limit of a sequence (fj)

of K-quasiregular ω-curves fj : Ω → R
m. Then f ∈ W 1,n

loc (Ω,R
m) and, for each

domain U ⋐ Ω, there exists a subsequence (fij ) of (fj) converging weakly to f in
W 1,n(U,Rm).
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Proof. Let U ⋐ Ω be a domain and ψ ∈ C∞
0 (Ω) a non-negative function satisfying

ψ|U ≡ 1. Let W ⋐ Ω be a domain containing the support of ψ. Since (fj) converges
locally uniformly, there exists a domain V ⋐ R

m containing all images fjW and fW .
Since ω is closed, it is exact. Let τ ∈ Ωn−1(Rm) be a potential of ω, that is,

dτ = ω. Since V has compact closure, we have that y 7→ ‖τ(y)‖n/‖ω(y)‖n−1 is a
bounded function on V . Thus, we have by the Caccioppoli estimate (Proposition 3.1)
that there exists a constant C = C(n, ω|V , K, ψ) > 0 for which

min
y∈V

‖ωy‖

ˆ

U

ψn‖Dfj‖
n ≤

ˆ

U

ψn(‖ω‖ ◦ fj)‖Dfj‖
n ≤

ˆ

Ω

ψnKf ∗
j ω ≤ C.

for all j ∈ N. Since miny∈V ‖ωy‖ > 0, we have that (fj) is a bounded sequence
in W 1,n(U,Rm). By weak compactness, there exists a subsequence (fji) converging

weakly in W 1,n(U,Rm) to a map f̂ : U → R
m. Since fj → f in Ln(U,Rm), we have

in addition that f = f̂ . Thus f ∈ W 1,n(U,Rm). We refer to [12, Proposition VI.7.9]
for details. �

Lemma 4.3. Let f : Ω → R
m be a locally uniform limit of a sequence (fj) of

K-quasiregular ω-curves fj : Ω → R
m. Then f ∗

j ω → f ∗
j ω weakly, that is, for each

non-negative ζ ∈ C∞
0 (Ω),

(1)

ˆ

Ω

ζf ∗
j ω →

ˆ

Ω

ζf ∗ω

as j → ∞.

Proof. Let ζ ∈ C∞
0 (Ω) be non-negative function and let U ⋐ Ω be a domain

containing the support of ζ . Since fj → f locally uniformly, we may also fix a
domain V ⋐ R

m which contains the union fU ∪
⋃

j fjU .

Since ω is closed, it is exact, that is, ω =
∑

J d(τJdxJ), where J = (j1, . . . , jn−1)
is a (n − 1)-multi-index and, for each J , τJ ∈ C∞(Rm). For each J , let also ωJ =
dτJ ∧ dxJ . Then ω =

∑

J ωJ and it suffices to prove (1) for each ωJ .
Let J be an (n − 1)-multi-index and set u1 = τJ and ui = xii−1

for each i ∈
{1, . . . , n−1}. Then ωJ = du1∧· · ·∧dun. For each i = 1, . . . , n, we denote hi = ui◦f
and further, for each j ∈ N, we set hi,j = ui ◦ fj . Then f ∗ω = dh1 ∧ · · · ∧ dhn and
f ∗
j ω = dhi,j ∧ · · · ∧ dhn,j.

For the standard telescoping argument based on integration by parts, we observe
first that

f ∗
j ωJ − f ∗ωJ = dh1,j ∧ · · · ∧ dhn,j − dh1 ∧ · · · ∧ dhn

=

n
∑

k=1

dh1,j ∧ dhk−1,j ∧ (dhk,j − dhk) ∧ dhk+1,j ∧ · · · ∧ dhn

=

n
∑

k=1

dh1,j ∧ dhk−1,j ∧ d(hk,j − hk) ∧ dhk+1,j ∧ · · · ∧ dhn.
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Since the form dh1,j ∧ · · · ∧ dhk−1,j ∧ d(ζ(hk,j − hk))∧ dhk+1,j ∧ · · · ∧ dhn is exact
and compactly supported in Ω, we have the telescoping equality
ˆ

Ω

ζ
(

f ∗
j ωJ − f ∗ωJ

)

=

n
∑

k=1

ˆ

Ω

dh1,j ∧ dhk−1,j ∧ ζd(hk,j − hk) ∧ dhk+1,j ∧ · · · ∧ dhn

=

n
∑

k=1

ˆ

Ω

(hk − hk,j)dh1,j ∧ dhk−1,j ∧ dζ ∧ dhk+1,j ∧ · · · ∧ dhn.

As usual, we have now a pointwise inequality

|dh1,j ∧ dhk−1,j ∧ dζ ∧ dhk+1,j ∧ · · · ∧ dhn|

≤ |f ∗
j du1| · · · |f

∗
j duk−1| · |dζ | · |f

∗duk+1| · · · |f
∗dun|

≤ (max
k

|∇uk|L∞(V ))
n−1|∇ζ |‖Dfj‖

k−1‖Df‖n−k

almost everywhere in Ω. Thus, by Hölder’s inequality, we have the estimate
∣

∣

∣

∣

ˆ

Ω

ζ
(

f ∗
j ωJ − f ∗ωJ

)

∣

∣

∣

∣

≤ C

(
ˆ

U

‖Dfj‖
k−1‖Df‖n−k

)

‖h− hj‖L∞(U)

≤ C

(
ˆ

U

‖Dfj‖
n

)(k−1)/n (ˆ

U

‖Df‖n
n−k

n−k+1

)(n−k+1)/n

‖h− hj‖L∞(U)

≤ C

(
ˆ

U

‖Dfj‖
n

)(k−1)/n (ˆ

U

‖Df‖n
)(n−k)/n

‖h− hj‖L∞(U),

where constant C = C(u1, . . . , un, ζ, U) depends only on norms of u1, . . . , um and ∇ζ ,
and on the volume of U . By Caccioppoli’s inequality the sequence (fj |U) is bounded
in W 1,n(U,Rn). Since ‖h− hj‖L∞(U) → 0 as j → ∞, the claim follows. �

We are now ready to finish the proof of the limit theorem (Theorem 4.1). So far
we have followed the strategy in [12, Section VI.8]. To obtain the sharp constant,
we move now to follow the proof with the argument of Iwaniec and Martin [9, Theo-
rem 8.7.1] for the same theorem. We do not know if the method in the proof of [12,
Theorem VI.8.6] admits an adaptation in our current setting.

We separate the proof for the lower semicontinuity of the operator norm from
the argument of Iwaniec and Martin as a separate lemma.

Lemma 4.4. Let Ω ⊂ R
n be a domain and let (fj) be a sequence inW 1,n

loc (Ω,R
m),

which converges weakly to a map f ∈ W 1,n
loc (Ω,R

m). Then, for each domain U ⋐ Ω,
ˆ

U

‖Df‖n ≤ lim inf
j→∞

ˆ

U

‖Dfj‖
n.

Proof. Let ϕ ∈ C∞
0 (Ω) a non-negative function satisfying ϕ|U ≡ 1.

Following Iwaniec and Martin, we fix measurable unit vector fields ξ : Ω → R
n

and ζ : Ω → R
m satisfying

‖Df(x)‖ = max
|v|=1

|Df(x)v| = |Df(x)ξ(x)| = 〈Df(x)ξ(x), ζ(x)〉

almost everywhere. Then, by the convexity of the function t 7→ tn, we have that

‖Dfj‖
n − ‖Df‖n ≥ n‖Df‖n−1 (‖Dfj‖ − ‖Df‖)

≥ n‖Df‖n−1〈Dfjξ −Dfξ, ζ〉

= n〈Dfj −Df, ‖Df‖n−1ξ ⊗ ζ〉
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where ξ ⊗ ζ : Ω → R
m×n is the matrix field x 7→ ζ(x)ξ(x)⊤.

Since ‖Df‖n−1 ∈ L
n/(n−1)
loc (Ω) and ξ and ζ have pointwise unit length, we have

that ‖Df‖n−1ξ ⊗ ζ ∈ L
n/(n−1)
loc (Ω,Rm×n). Since Dfj → Df weakly in Ln(U,Rm×n)

and ‖Df‖n−1ξ ⊗ ζ ∈ Ln/(n−1)(U,Rm×n), we have that
ˆ

U

〈Dfj −Df, ‖Df‖n−1ξ ⊗ ζ〉 → 0

as j → ∞. Thus
ˆ

U

‖Df‖n ≤ lim inf
j→∞

ˆ

U

‖Dfj‖
n. �

Proof of Theorem 4.1. By Lemma 4.2, we have that f ∈ W 1,n
loc (Ω,R

m). Thus it
suffices to show that the distortion inequality

(‖ω‖ ◦ f)‖Df‖n ≤ Kf ∗ω

holds almost everywhere in Ω.
Let now x ∈ Ω and 0 < ε < ‖ω(x)‖. Since ω is continuous, we may fix a

Euclidean ball G = Bm(f(x), R) ⋐ R
m for which maxG‖ω‖ − minG‖ω‖ < ε. Since

fj → f locally uniformly, we may, by passing to a subsequence, fix a Euclidean ball
B = Bn(x, r) ⋐ Ω for which the set fB ∪

⋃

j fjB is compactly contained in G. Let

now ϕ ∈ C∞
0 (B) be a non-negative function satisfying ϕ|B ≡ 1.

By passing to a subsequence if necessary, we may assume, again by Lemma 4.2,
that Dfj → Df weakly in W 1,n

loc (Ω,R
m×n). Hence, by Lemmas 4.4 and 4.3, we have

that
ˆ

B

(‖ω‖ ◦ f)‖Df‖n ≤ ‖ω‖L∞(G)

ˆ

B

‖Df‖n

≤ ‖ω‖L∞(G) lim inf
j→∞

ˆ

B

‖Dfj‖
n

≤
‖ω‖L∞(G)

‖ω‖L∞(G) − ε
lim inf
j→∞

ˆ

B

(‖ω‖ ◦ fj)‖Dfj‖
n

≤
‖ω‖L∞(G)

‖ω‖L∞(G) − ε
lim inf
j→∞

ˆ

B

Kf ∗
j ω

≤ K
‖ω‖L∞(G)

‖ω‖L∞(G) − ε
lim inf
j→∞

ˆ

Ω

ϕf ∗
j ω

= K
‖ω‖L∞(G)

‖ω‖L∞(G) − ε

ˆ

Ω

ϕf ∗ω.

Since ε > 0 and ϕ are arbitrary, we obtain the inequality
ˆ

B

(‖ω‖ ◦ f)‖Df‖n ≤ K

ˆ

B

f ∗ω.

The claim now follows from Lebesgue’s differentiation theorem. �

5. Quasiregular curves and simple volume forms

In this section we consider quasiregular ω-curves M → N for simple n-volume
forms ω. Recall that an n-form ω simple if there exists 1-forms ω1, . . . , ωn for which
ω = ω1 ∧ · · · ∧ ωn. The main theorem is that such quasiregular curves are locally
graphs over quasiregular maps in the following sense.
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Theorem 1.10. Let f : Ω → R
m be a K-quasiregular ω-curve, where Ω is a

domain in R
n, n ≤ m, ε > 0, and K ′ > K. Then, for each x ∈ Ω, there exists

a neighborhood D ⋐ M of x, an isometry L : Rm → R
m, a K ′-quasiregular map

f̂ : D → R
n, and a continuous Sobolev map h ∈ W 1,n(D,Rm−n) for which F =

L ◦ f |D = (f̂ , h) : D → R
n ×R

m−n and

(⋆f ∗ω)/((1 + ε)K ′) ≤ ‖ωf(x)‖Jf̂ ≤ (1 + ε)K(⋆f ∗ω)

almost everywhere in D.

We begin by recalling a geometric observation. Since the proof is elementary
multilinear algebra, we omit the details.

Lemma 5.1. Let ω ∈ Ωn(Rm) be an simple n-volume form and p ∈ N . Then
there exists an affine isometry L : Rm → R

m for which L(p) = 0 and (L−1)∗ω =
‖ω‖pdx1 ∧ · · · ∧ dxn at 0.

As another preparatory step, we also record a simple lemma that each quasireg-
ular curve is locally a quasiregular curve with respect to an n-volume form with
constant coefficients.

Lemma 5.2. Let f : Ω → R
m be aK-quasiregular ω-curve, x0 ∈ Ω, andK ′ > K.

Then there exists a neighborhood Ω′ ⊂ Ω of x0 for which the restriction f |Ω′ : Ω′ →
R

m is a K ′-quasiregular ω0-curve, where ω0 is a constant coefficient n-volume form
satisfying ω0(f(x0)) = ω(f(x0)).

Proof. Since K ′ > K, we may fix c ≥ 2K for which

c

c− 1−K
≤
K ′

K
.

Also, since ω is smooth and non-vanishing, we may fix a radius ρ > 0 for which
‖ω(y)− ω0‖ ≤ ‖ω0‖/c for all y ∈ Bm(ρ).

Let now Ω′ be the x0 component of f−1Bm(ρ). Then, almost everywhere in Ω′,
we have

‖ω0‖‖Df‖
n ≤

c

c− 1
(‖ω‖ ◦ f)‖Df‖n ≤

c

c− 1
K(⋆f ∗ω)

=
c

c− 1
K(⋆f ∗ω0) +

c

c− 1
K(⋆f ∗(ω − ω0))

≤
c

c− 1
K(⋆f ∗ω0) +

c

c− 1
K(‖ω − ω0‖ ◦ f)‖Df‖

n

≤
c

c− 1
K(⋆f ∗ω0) +

K

c− 1
‖ω0‖‖Df‖

n

Thus

‖ω0‖‖Df‖
n ≤

c

c− 1−K
K(f ∗ω0) ≤ K ′(f ∗ω0)

almost everywhere in Ω′. The claim follows. �

Proof of Theorem 1.10. Let x ∈ Ω. We may assume that f(x) = 0 and that
‖ω‖f(x) = 1. By Lemma 5.1, there exists an isometry L : Rm → R

m for which
(L−1)∗ω = dx1 ∧ · · · ∧ dxn at 0. Then F = (L ◦ f) : Ω → R

m is a K-quasiregular
σ-curve for τ = (L−1)∗ω. Indeed, since L is an isometry, we have that

(‖σ‖ ◦ F )‖DF‖n = (‖ω‖ ◦ f)‖Df‖n ≤ K(⋆f ∗ω) = K(⋆F ∗σ).

By Lemma 5.2, we may now fix a neighborhood D ⋐ Ω of x for which F |D : D →
R

m is a K ′-quasiregular σ0-curve, where σ0 is the constant coefficient n-volume form
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satisfying σ0(F (x)) = σ(F (x)). Since ‖σ0‖ = 1, we may further assume that 1/(1 +
ε) ≤ ‖σ‖ ≤ 1 + ε on D.

Let π : Rm → R
n be the projection (y1, . . . , ym) → (y1, . . . , yn). Since f̂ = π ◦F ,

we have that

‖Df̂‖n = ‖D(π ◦ F )‖n ≤ ‖DF‖n ≤ K ′ (⋆F ∗σ0) = K ′
(

⋆f̂ ∗volRn

)

almost everywhere in D. Thus f̂ is K ′-quasiregular.
Since h = π′ ◦ F : D → R

m−n, where π′ : Rm → R
m−n is the projection (x1, . . . ,

xm) 7→ (xn+1, . . . , xm), we readily observe that h ∈ W 1,n(D,Rm−n) as required.
It remains to prove that the Jacobian estimates. On one hand, we have

Jf̂ = ⋆f̂ ∗volRn = ⋆F ∗π∗volRn = ⋆F ∗σ0

≤ ‖σ0‖‖DF‖
n ≤ (1 + ε)(‖ω‖ ◦ f)‖Df‖n ≤ (1 + ε)K(⋆f ∗ω).

on D. On the other hand, we have

⋆f ∗ω = ⋆F ∗σ ≤ (‖σ‖ ◦ F )‖DF‖n ≤ (1 + ε)‖σ0‖‖DF‖
n

≤ (1 + ε)K ′(⋆F ∗σ0) = (1 + ε)K ′Jf̂ .

This completes the proof. �

The corollaries stated in the introduction are now almost immediate.

Corollary 1.12. Let f : M → N be a non-constant quasiregular ω-curve, where
ω is a simple n-volume form. Then f is discrete and locally quasi-interior at each
point.

Proof. Since the properties are local, it suffices to consider the case f : Ω → R
m,

where Ω ⊂ R
n is a domain. Let x ∈ Ω.

By Theorem 1.10, there exists an isometry L : Rm → R
m and a neighborhood

D ⋐ Ω of x for which the map F = L ◦ f |D = (f̂ , h) : D → R
n × R

m−n has

the property that f̂ is a non-constant quasiregular mapping and h is a continuous
Sobolev map in W 1,n(D,Rm−n).

Let now y ∈ R
m. Then f−1(y)∩D ⊂ f̂−1(L(y)). Since f̂ is discrete, we conclude

that f−1(y) ∩ D is a discrete set in D. Thus x has a neighborhood which contains
only finitely many pre-images f−1(y) of y. Thus f−1(y) is a discrete set in Ω.

To show that f is locally quasi-interior, let x ∈ Ω. Since f̂ is discrete and open,
we may fix a normal neighborhood G ⋐ D for f̂ at x, that is, a domain satisfying
f̂(∂G) = ∂f̂G and f̂−1f̂(x) = {x}; see e.g. [12, Lemma I.4.8]. Let now U ⊂ G be a
neighborhood of x contained in G. Then there exists another normal neighborhood
G′ ⊂ U for f̂ at x. Since components of (f̂−1f̂G′) ∩ G map surjectively onto f̂G′

under f̂ , we conclude that f̂−1f̂G′ ∩G = G′.
Let now π : Rm → R

n be the projection (x1, . . . , xm) 7→ (x1, . . . , xn). Since f̂G′

is open in R
n, we conclude that FG∩π−1f̂G′ is open in FG. Since FG∩ (π−1f̂G′) =

FG′, we obtain that FG′ is open in FG. Thus f(x) is in the interior of FU in FG.
The claim follows. �

Remark 5.3. In a similar vein, it is a direct consequence of Theorem 1.10 that
the singular set

Σf = {x ∈ M : f is not locally injective at x}
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of the quasiregular ω-curve f : M → N has codimension at least 2 if ω is simple.
Indeed, since

Σf |D = {x ∈ D : f |D is not locally injective at x}

⊂ {x ∈ D : f̂ is not a local homeomorphism at x} = Bf̂ ,

we have by the Chernavskii–Väisälä theorem for discrete and open maps (see [13])
that dimΣf |D ≤ dimBf̂ ≤ dimM − 2.

Corollary 1.13. Let f : M → N be a non-constant quasiregular ω-curve for a
simple volume form ω in N . Then

(1) (positivity of the Jacobian) ⋆f ∗ω > 0 almost everywhere in M ,
(2) (higher integrability) there exists p = p(n,K) > 0 for which f ∈ W 1,p

loc (M,N),
and

(3) (differentiability) f is differentiable almost everywhere.

Proof. Again, by passing to smooth (1 + ε)-bilipschitz charts, we may assume
that f : Ω → N is a K ′-quasiregular ω-curve, where Ω ⊂ R

n is a domain and K ′ =
K(1 + ε)4n. Let again L : Rm → R

m be an isometry and D ⋐ Ω be a domain for

which F = L◦f = (f̂ , h) : D → R
n, where f̂ : D → R

m is a K ′-quasiregular map and
h : D → R

m a continuous Sobolev map in W 1,n(D,Rm−n). We may further assume
that ⋆F ∗σ ≤ 2K ′Jf̂ in D, where σ = (L−1)∗ω.

Since Jf̂ > 0 almost everywhere in D by [12, Theorem II.7.4], we have that
⋆f ∗ω > 0 almost everywhere in D. The first claim follows.

For the second claim, it suffices to observe that higher integrability holds for
quasiregular mappings, that is, by Bojarski–Iwaniec [2, Theorem 5.1], there exists

p′ = p′(n,K ′) > 0 for which f̂ ∈ W 1,p′(D,Rn). It remains to show that h ∈
W 1,p′(D,Rm−n).

Since D ⋐ Ω, we have that infD(‖σ‖ ◦ F ) > 0. Thus the estimate

(‖σ‖ ◦ F )‖Dh‖n ≤ (‖σ‖ ◦ F )‖DF‖n ≤ K(⋆F ∗σ)

≤ 2KK ′‖ωf(x)‖Jf̂ ≤ 2KK ′‖ωf(x)‖‖Df̂‖
n

yields a bound ‖Dh‖ ≤ C‖Df̂‖ in D, where C depends only on n and K. Hence
‖Dh‖ ∈ Lp′(D) and f ∈ W 1,p′(D,Rm−n). The second claim follows.

Since Sobolev functions in W 1,p′(D) for p′ > n are differentiable almost every-
where by the Cesari–Calderón lemma (see e.g. [12, Lemma VI.4.1]), the third claim
follows. This completes the proof. �

We finish with Reshetnyak’s theorem for C1-smooth quasiregular curves.

Corollary 1.15. A non-constant C1-smooth quasiregular ω-curve f : M → N is
a discrete map satisfying ⋆f ∗ω > 0 almost everywhere in M .

Proof. It suffices to consider the case of a C1-smooth quasiregular ω-curve
f : Ω → R

m. Then, by the discussion in the introduction, f is locally a quasiregular
curve with respect to a simple n-volume form. Thus, by Corollary 1.12, f is discrete.

For the second claim, consider a domain D ⋐ Ω having the property that
f |D : D → R

m is a quasiregular curve with respect to a simple n-volume form ωD

satisfying ‖ωD‖ ≤ ‖ω‖ in D; the discussion in the introduction shows that such
domains D exist. Then, by (1) in Corollary 1.13,

K(⋆f ∗ω) ≥ (‖ω‖ ◦ f)‖Df‖n ≥ (‖ωD‖ ◦ f)‖Df‖
n ≥ ⋆f ∗ωD > 0
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in D. The second claim follows. �
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