
RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic

Arrays using Evolutionary Algorithm

NIANSONG ZHANG, Sun Yat-sen University, China

XIANG CHEN, Sun Yat-sen University, China

NACHIKET KAPRE, University of Waterloo, Canada

Evolutionary algorithms can outperform conventional placement algorithms such as simulated annealing, analytical placement,
and manual placement on runtime, wirelength, pipelining cost, and clock frequency when mapping hard block intensive
designs such as systolic arrays on Xilinx UltraScale+ FPGAs. For certain hard-block intensive designs, the commercial-grade
Xilinx Vivado CAD tool cannot provide legal routing solutions without tedious manual placement constraints. Instead, we
formulate hard block placement as a multi-objective optimization problem that targets wirelength squared and bounding
box size. We build an end-to-end placement-and-routing low called RapidLayout using the Xilinx RapidWright framework.
RapidLayout runs 5ś6× faster than Vivado with manual constraints and eliminates the weeks-long efort to manually generate
placement constraints. RapidLayout enables transfer learning from similar devices and bootstrapping from much smaller
devices. Transfer learning in the UltraScale+ family achieves 11ś14× shorter runtime, and bootstrapping from a 97% smaller
device delivers 2.1ś3.2× faster optimizations. RapidLayout outperforms (1) a tuned simulated annealer by 2.7ś30.8× in
runtime while achieving similar quality of results, (2) VPR by 1.5× in runtime, 1.9ś2.4× in wirelength, and 3ś4× in bounding
box size, while also (3) beating the analytical placer UTPlaceF by 9.3× in runtime, 1.8ś2.2× in wirelength, and 2ś2.7× in
bounding box size.

CCS Concepts: · Hardware→ Partitioning and loorplanning; Placement.

Additional Key Words and Phrases: FPGA Placement, Systolic Array, Evolutionary Algorithm

1 INTRODUCTION

Modern high-end FPGAs provide high compute density with a heterogeneous mixture of millions of classic lookup
tables and programmable routing networks along with tens of thousands of DSP and RAM hard blocks. These
hard blocks ofer ASIC-like density and performance for signal processing functions and on-chip SRAM access.
For example, Xilinx UltraScale+ VU11P is equipped with 960 UltraRAM blocks, 4032 Block RAM slices, and 9216
DSP48 blocks capable of operating at 650ś891 MHz frequencies which are typically unheard of with LUT-only
designs. Furthermore, these hard blocks provide specialized nearest-neighbor interconnect for high-bandwidth,

This work is supported by the National Key Research and Development Program of China (No. 2019YFE0196400), Guangdong R&D
Project in Key Areas under Grant (2019B010158001,2019B010156004), Industry-University-Research Cooperation Project in Zhuhai (No.
ZH22017001200072PWC), and Industry-University Collaborative Education Program between SYSU and Digilent Technology: Edge AI
Oriented Open Source Software and Hardware Makerspace. This work is also supported in part by MITACS Globalink Research Internship.
Authors’ addresses: Niansong Zhang, ,~zhangns@mail2.sysu.edu.cn, Sun Yat-sen University, 132 Outer Ring East Road, Guangzhou, Guang-
dong, China, 510006; Xiang Chen, (*correspondingauthor),~chenxiang@mail.sysu.edu.cn, Sun Yat-sen University, 132 Outer Ring East Road,
Guangzhou, Guangdong, China, 510006; Nachiket Kapre, ,~nachiket@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo,
Ontario, Canada, N2L3G1.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1936-7406/2022/2-ART $15.00
https://doi.org/10.1145/3501803

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3501803

2 • Zhang, et al.

(a) Unroutable floorplan in Vivado

with heavy congestion

(b) Manual constraints in Vivado

routes in 5ś6 hours.

(c) RapidLayout automatic place-

ment routes in ≈1 hour.

Fig. 1. Floorplanning scenarios for a neural network accelerator with 480 convolution blocks mapped to Xilinx UltraScale+

VU11P. Vivado cannot provide a routable floorplan without manually generated placement constraints, while RapidLayout

automatically discovers a high-quality floorplan and runs 5ś6× faster.

low-latency cascade data movement. These features make it particularly attractive for building systolic neural
network accelerators such as CLP [42, 43], Cascades [40], and Xilinx SuperTile [49, 50].
Exploiting the full capacity of FPGA resources including hard blocks at high clock frequency is challenging.

The CLP designs presented in [42, 43] only operate at 100ś170MHz on Virtex-7 FPGAs but leave DSPs unused.
The Xilinx SuperTile [49, 50] designs run at 720MHz, but leave half of the DSPs unused, and also waste URAM
bandwidth by limiting access. The chip-spanning 650MHz 1920×9 systolic array design for the VU11P FPGA [40]
requires 95% or more of the hard block resources but fails to route in commercial-grade Xilinx Vivado run
with high efort due to congestion. Manual placement constraints are necessary to enable successful bitstream
generation, but this requires weeks of painful trial-and-error efort and visual cues in the Vivado loorplanner for
the correct setup. This efort is needed largely due to the irregularity and asymmetry of the columnar DSP and
RAM fabric and the complex cascade constraints that must be obeyed for the systolic data movement architecture.
Once the constraints are conigured, Vivado still needs 5ś6 hours of compilation time, making design iteration
long and ineicient. Furthermore, to ensure high-frequency operation, it becomes necessary to pipeline long
wires in the design. Since timing analysis must be done post-implementation, we end up either sufering the long
CAD iteration cycles or overprovisioning unnecessary pipelining registers to avoid the long design times.
Given this state of afairs with the existing tools, we develop RapidLayout: an alternative, automated, fast

placement approach for hard block designs. We compare the routing congestion maps produced by RapidLayout
with Vivado in Fig. 1 and note the ability to match low-congestion manual placement efort. It is important that
such a toollow addresses the shortcomings of the manual approach by (1) discovering correct placements quickly
without the manual trial-and-error loop through slow Vivado invocations, (2) encoding the complex placement
restrictions of the data movement within the systolic architecture in the automated algorithm, (3) providing fast
wirelength estimation to permit rapid objective function evaluation of candidate solutions, and (4) exploiting
design symmetry and overcoming irregularity of the columnar FPGA hard block architecture. Given this wish
list, we used the Xilinx RapidWright framework for our tool.

At its core, the toollow is organized around the design of a novel evolutionary algorithm formulation for hard
block placement on the FPGA through multi-objective optimization of wirelength squared and bounding box
metrics. Given the rapid progress in machine learning tools, there is an opportunity to revisit conventional CAD
algorithms [9], including those in this paper, and attack them with this new toolbox.

The key contributions of this work are listed as follows:

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 3

DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48DSP48

RAMB

18

RAMB

18

RAMB

18

URAM

288

URAM

288

+

DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48DSP48

RAMB

18

RAMB

18

RAMB

18

72

8

8 8 8

16

24RAMB

18

RAMB

18

88

8

8 8 8

8

16

24

Fig. 2. Convolutional Building Block for FPGA-Optimized Systolic Array in [40]. Cascade URAM, BRAM, and DSP links are

highlighted in bold.

• We formulate a novel FPGA placement problem for tens of thousands of hard blocks as a multi-objective
optimization using evolutionary techniques.
• We quantify quality of result (QoR) metrics including runtime, wirelength, bounding box size, clock frequency,
and pipelining cost for the evolutionary placement algorithms NSGA-II and CMA-ES. We compare these
metrics against conventional Simulated Annealing (SA), Genetic Algorithm (GA), Versatile-Place-and-Route
(VPR) [31], and the state-of-art analytical placer UTPlaceF [28].
• We build an end-to-end RapidLayout placement-and-routing toollow using the open-source Xilinx RapidWright
framework.
• We develop the transfer learning and bootstrap process to further accelerate placement optimization. Transfer
learning migrates existing hard block placement from base devices to similar devices in the UltraScale+
family (VU3PśVU13P). Placement bootstrap extrapolates placement from much smaller base devices to obtain
high-quality initialization on target devices.

2 BACKGROUND

We irst discuss the hard block intensive systolic array accelerator optimized for the Xilinx UltraScale+ FPGAs.
Next, we discuss the Xilinx RapidWright framework for programming FPGAs through a non-RTL design low.
Then, we describe previous research on FPGA placement algorithms. After that, we review the classic NSGA-II
algorithm and the state-of-art CMA-ES algorithm and compare them with previous evolutionary placement
eforts. Finally, we review the transfer learning applications in machine learning and EDA domains.

2.1 FPGA-optimized Systolic Array Accelerator

Systolic arrays [22, 25] are tailor-made for convolution and matrix operations needed for neural network
acceleration. They are constructed to support extensive data reuse through nearest-neighbor wiring between
a simple 2D array of multiply-accumulate blocks. They are particularly amenable to implementation on the
Xilinx UltraScale+ architecture with cascade nearest-neighbor connections between DSP, BRAM, and URAM
hard blocks. We utilize the systolic convolutional neural network accelerator presented in [40] and illustrated in
Fig. 2. The key repeating computational block is a convolution engine optimized for the commonly-used 3×3
convolution operation. This is implemented across a chain of 9 DSP48 blocks by cascading the accumulators.
Furthermore, row reuse is supported by cascading three BRAMs to supply data to a set of three DSP48s each.

ACM Trans. Reconig. Technol. Syst.

4 • Zhang, et al.

Finally, the URAMs are cascaded to exploit all-to-all reuse between the input and output channels in one neural
network layer. Overall, when replicated to span the entire FPGA, this architecture uses 95ś100% of the DSP,
BRAM, and URAM resources of the high-end UltraScale+ VU37P device. When mapped directly using Vivado
without any placement constraints, the router runs out of wiring capacity to it the connections between these
blocks. Since the convolution block is replicated multiple times to generate the complete accelerator, it may appear
that placement should be straightforward. However, due to irregular interleaving of the hard block columns, and
the non-uniform distribution of resources, the placement required to it the design is quite tedious and takes
weeks of efort.

2.2 RapidWright

In this paper, we develop our tool based on the Xilinx RapidWright [26] open-source FPGA framework. It
aims to improve FPGA designers’ productivity and design QoR by composing large FPGA designs through
a pre-implemented and modular methodology. RapidWright provides high-level Java API access to low-level
Xilinx device resources. It supports design generation, placement, routing, and allows design checkpoint (DCP)
integration for seamless inter-operability with the Xilinx Vivado CAD tool to support custom lows. It also
provides access to device geometry information that enables wirelength calculations crucial for tools that aim to
optimize timing.

2.3 FPGA Placement

FPGA placement maps a clustered logical circuit to an array of ixed physical components to optimize routing
area, critical path, power eiciency, and other metrics. FPGA placement algorithms can be broadly classiied into
four categories: (1) classic min-cut partitioning [32, 33, 46], (2) popular simulated-annealing-based methods [2, 3,
23, 31], (3) analytical placement currently used in FPGA CAD tools [1, 12, 15, 28], and (4) esoteric evolutionary
approaches [7, 20, 47]. Min-cut algorithm worked well on small FPGA capacities by iteratively partitioning the
circuit to spread the cells across the device. Simulated Annealing was the popular choice for placement until
recently. It operates by randomly swapping clusters in an iterative, temperature-controlled fashion resulting
in progressively higher quality results. Analytical placers are currently industry standard as they solve the
placement problem using a linear algebraic approach that delivers higher quality solutions with less time than
annealing. For example, Vivado uses an analytical placement to optimize timing, congestion, and wirelength [12].

2.4 Evolutionary Algorithms

There have been several attempts to deploy evolutionary algorithms for FPGA placement with limited success.
The earliest one by Venkatraman and Patnaik [47] encodes each two-dimensional block location in a gene and
evaluates the population with a itness function for critical path and area eiciency. More recently, P. Jamieson [18],
[19] points out that GAs for FPGA placement are inferior to annealing mainly due to the crossover operator’s
weakness and proposed a clustering technique called supergenes [20] to improve its performance.

In this paper, we design a novel combinational gene representation for FPGA hard block placement and explore
two evolutionary algorithms:
1. NSGA-II: Non-Dominated Sorting Genetic Algorithm (NSGA-II [10]) is a two-decade-old multi-objective

evolutionary algorithm that has grown in popularity today for Deep Reinforcement Learning [27] and Neural
Architecture Search [29] applications. NSGA-II addresses multi-objective selection with non-dominated iltering
and crowd distance sorting, which allow the algorithm to efectively explore the solution space and preserve
good candidates.

2. CMA-ES: Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a continuous domain optimization
algorithm for non-linear, ill-conditioned, black-box problems [16]. CMA-ES models candidate solutions as

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 5

samplings of an n-dimensional Gaussian variable with mean µ and covariance matrix Cσ . At each evolutionary
iteration, the population is generated by sampling from Rn with updated mean and covariance matrix. Here,
crossover and mutation become adding Gaussian noise to the samplings, which overcomes the weakness
of GA’s crossover operator. We use the high-dimensional variant proposed in [37] for fast operation in our
placement challenge.

2.5 Transfer Learning

Transfer learning is the practice of using existing models or knowledge as a starting point for new tasks or
domains [35]. Transfer learning is commonly used in many ields, such as Computer Vision [14, 24, 36, 57],
Natural Language Processing [5, 17, 38], Reinforcement Learning [8, 41, 45], and Multi-task Learning [21, 53, 56],
to adapt to new data, tasks, or domains, and to accelerate the learning process. With the recent efort to solve
EDA problems with machine learning methods, transfer learning is also used in the FPGA routing problem.
RouteNet [39] proposed using Graph Neural Networks (GNN) to predict routing delay and jitter, and its jitter
model was bootstrapped from the trained delay model. In Painting on Placement [55], transfer learning was used
to improve the robustness of its routing congestion prediction model. We propose a conceptually adjacent idea
for FPGA placement: transferring hard block placement from base devices with similar or much fewer amount of
resources to accelerate placement optimization and improve QoR. To the best of our knowledge, this is the irst
work to discuss transfer learning for FPGA placement.

3 RAPIDLAYOUT

The challenge for mapping FPGA-optimized systolic arrays to the Xilinx UltraScale+ device is the placement of
hard blocks to their non-uniform, irregular, columnar locations on the fabric while obeying the cascade data
movement constraints. We irst present our problem formulation and then discuss how to embed it into the
evolutionary algorithms.

3.1 Problem Formulation

To tackle the placement challenge, we formulate the coarse-grained placement of RAMs and DSP blocks as a
constrained multi-objective optimization problem. The placement for the rest of the logic i.e. lookup tables (LUTs)
and lip-lops (FFs) is left to Vivado’s placer. The multi-objective optimization goal is formalized as follows.

min
∑

i, j

((∆xi, j + ∆yi, j) ·wi, j)
2 (1)

min(max
k

BBoxSize (Ck)) (2)

subject to:

0 ≤ xi ,yi < XMAX ,YMAX (3)

xi ,yi , x j ,yj (4)

if i is cascaded after j in the same column: xi = x j

yi =




yj + 1 i, j ∈ {DSP ,URAM }

yj + 2 i, j ∈ {RAMB}
(5)

In the equations above:

ACM Trans. Reconig. Technol. Syst.

6 • Zhang, et al.

Hard Block Placement Genotype

Distribution Location Mapping

!"#$% &'() *'()

$+, -+. /+0 1+- $+. 23 2323 23

/+. -+, 1+/ $+0 1+- 2 232 23

$+. -+/ .+1 -+0 /+- 2 232 23

(a) distribution

DSP48 BRAM URAM

!"# "$% "%& &"% '"# ((((

!"! !"# !"% !"& !") ((((

!"* "%% !"' "#$!"+ ((((

(b) location

3

0

1

0

1

2

3

2

0

1

5

4

6

8

7

DSP48 BRAM URAM

! " # $ % %% %

! $ # " % %% %

! % % % %%%

(c) mapping

Fig. 3. Our three-tier genotype design for hard block placement. (a) Distribution defines the number of hard blocks to be

placed in each column. (b) Location encodes the relative position of the corresponding hard blocks in its column. (c) Mapping

defines the connectivity of hard blocks, i.e., which hard blocks are mapped to one convolution unit. The selected physical

hard-block groups are numbered, which corresponds to the mapping genotype.

• i ∈ {DSP ,RAM,URAM } denotes a physical hard block to which a logic block is mapped.
• Ck denotes a convolution unit k that contains 2 URAMs, 18 DSPs, and 8 BRAMs.
• ∆xi, j + ∆yi, j is the Manhattan distance between two physical hard blocks i and j.
• wi, j is the weight for wirelength estimation. Here we use the number of connections between hard blocks i
and j.
• BBoxSize () is the bounding box rectangle size (width + height) containing the hard blocks of a convolution
unit Ck .
• xi and yi denote the RPM absolute grid co-ordinates of hard block i that are needed to compute wirelength
and bounding box sizes [52].
Understanding the Objective Function: We approximate routing congestion performance with squared

wirelength (Equation 1) and critical path length with the maximum bounding box size (Equation 2). These twin
objectives try to reduce pipelining requirements while maximizing clock frequency of operation. While these
optimization targets may seem odd, we have observed cases where chasing wirelength2 alone has misled the
optimizer into generating wide bounding boxes for a few stray convolution blocks. In contrast, optimizing for
maximum bounding box alone was observed to be extremely unstable and causing convergence problems. Hence,
we choose these two objective functions to restrict the spread of programmable fabric routing resources and
reduce the length of the critical path between hard blocks and associated control logic fanout.

Understanding Constraints The optimizer only needs to obey three constraints. The region constraint in
Equation 3 restricts the set of legal locations for the hard blocks to a particular repeatable rectangular region
of size XMAX×YMAX on the FPGA. The exclusivity constraint in Equation 4 forces the optimizer to prevent
multiple hard blocks from being assigned to the same physical location. The cascade constraint in Equation 5 is
the łuphillž connectivity restriction imposed due to the nature of the Xilinx UltraScale+ DSP, BRAM, and URAM
cascades. For DSPs and URAMs, it is suicient to place connected blocks next to each other. For BRAMs, the
adjacent block of the same type resides one block away from the current location. This is because RAMB180 and
RAMB181, which are both RAMB18 blocks, are interleaved in the same column.

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 7

3.1.1 Genotype Design for Evolutionary Algorithms. We decompose placement into three sub-problems and
encode the candidate solutions with a novel composite genotype design.
1. Distribution Since the systolic array accelerator does not match the hard block resource capacity perfectly,

we allocate hard blocks across resource columns according to the distribution genotype.
2. Location Once we choose the exact number of blocks to place on a given resource column, we assign each

block in the column a location according to a value between 0→ 1.
3. Mapping Finally, we label selected blocks and allocate them to each convolution unit according to the mapping

genotype. It is a permutation genotype that optimizes the order of elements without changing their values.
In Fig. 3, we visualize the genotype design which consists of the three parts just discussed earlier. During

evolution, each part of the genotype is updated and decoded independently, but evaluated together.

3.1.2 The Generality of the Evolutionary Formulation. The problem formulation and genotype design are mo-
tivated by a convolutional systolic array. However, the placement formulation is not limited to any particular
hard block design. For example, the computing unit Ck (Equation 2) can be any hard block design, as long as the
number of hard blocks, their connections, and cascade information are provided.

3.1.3 Comparison with Prior Evolutionary Placements. Our genotype design difers from prior works in three
aspects: (1) We provide placement support for heterogeneous hard block types. (2) We encode cascade constraints
into the genotype, which eschews extra legalization steps and reduces search space. (3) The three-tier genotype
design enables placement transfer learning across devices (Section 4.5).

3.2 RapidLayout Design Flow

We now describe the end-to-end RapidLayout design low: In Fig. 4, we illustrate the diferent stages of the low,
the approximate runtime of each stage, its interaction with RapidWright and Vivado. We use the convolutional
systolic array design described in Section 2.1 as an example, and the target device is Xilinx UltraScale+ VU11P.
The diferent stages of the tool are described below:
• Netlist Replication (<1 s) RapidLayout starts with a synthesized netlist of the convolution unit with direct
instantiations of the FPGA hard blocks. The unit design is replicated into the entire logical netlist that maps to
the whole Super Logic Region (SLR).
• Evolutionary Hard Block Placement (30 s-5min) RapidLayout uses NSGA-II or CMA-ES to generate hard
block placement for the minimum repeating rectangular region. Then the rectangular layout is replicated
(copy-paste) to produce the placement solution for the entire SLR.
• Placement and Site Routing (≈3min) The placement information is embedded in the DCP netlist by placing
the hard blocks on the physical blocks called łsitesž, followed by łsite-routingž to connect intra-site pins.
• Post-Placement Pipelining (≈10 s) After inalizing placement, we can compute the wirelength for each net
in the design and determine the amount of pipelining required for high-frequency operation. This is done
post-placement [11, 44, 48] to ensure the correct nets are pipelined and to the right extent. The objective of
this step is to aim for the 650MHz URAM-limited operation as dictated by the architectural constraints of the
systolic array [40].
• SLR Placement and Routing (≈55min) Once the hard blocks are placed and pipelined, we call Vivado to
complete LUT/FF placement and routing for the SLR.
• SLRReplication (1-5min) The routed design on the SLR is copied across the entire device using RapidWright
APIs to complete the overall implementation.
For a VU11P device, RapidLayout accelerates the end-to-end implementation by ≈5ś6× when measuring CAD

runtime alone (≈one hour vs. Vivado’s 5ś6 hours). This does not include the weeks of manual tuning efort that
is avoided by automatically discovering the best placement for the design.

ACM Trans. Reconig. Technol. Syst.

8 • Zhang, et al.

Convolution Block DCP

Netlist Replication [<1s]
A

Evolutionary
Hard Block
Placement

[30 sś5min]

B

Placement and
Site Routing [≈3min]

C

Post-Placement
Pipelining [≈10 s]

D

SLR Placement
and Routing [≈55min]

E

SLR Replication [≈2min]
F

Compute objective

Generate candidates

Update

RapidWright

Vivado

Bitstream

evolve

Fig. 4. RapidLayout Design Flow with runtime details for the Xilinx VU11P FPGA along with tool usage information. A bulk

of the intelligent exploration is done in RapidWright, and Vivado is only invoked at the end for final placement and routing.

3.3 Full-chip Layout Example Walkthrough

To illustrate how the diferent steps help produce the full-chip layout, we walk you through the intermediate
stages of the low. We will inspect three stages of placement, going from a single block layout to a repeating
rectangle layout, and then onto a full-chip layout.

Single Block layout: The loorplan of a single convolution block in isolation is shown in Fig. 5, where the
hard block columns and chosen resources are highlighted. We also highlight the extent of routing requirements
between the hard blocks in gray. The locations of the URAM, BRAM, and DSP columns are irregular, which forces
a particular arrangement and selection of resources to minimize wirelength and bounding box size. It is clear that
a simple copy-paste of a single block is not workable due to this irregularity.

Single Repeating Rectangle Layout: RapidLayout iteratively partitions one SLR and calculates utilization
until the divided section does not it any unit. Then, the partition scheme with the highest utilization rate is
selected to determine the repeating rectangular region. In Fig. 6, we show the loorplan for such a region. The
resource utilization within the rectangle is 100% URAMs, 93.7% DSP48s, and 95.2% BRAMs, which holds for the
entire chip after replication. Our optimizer minimizes overlapping and thus reducing routing congestions to
permit high-frequency operation.

Full-Chip Layout: In Fig. 7, we show the full-chip layout for the systolic array accelerator. The entire chip
layout is generated in three steps: (1) First, the rectangular region’s placement is replicated to ill up one SLR (SLR0).
The SLR is then pipelined and fully routed. (2) Second, the placement and routing from SLR0’s implementation

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 9

0 100 200 300 400 500 600
0

50

100

150

200

250

300 DSP48
BRAM
URAM

Fig. 5. Floorplan layout visualization of a single convolution block implementation supporting dual 3×3 kernels to match

URAM bandwidth. This is the design shown in Fig. 2 earlier. The bounding polygon that encloses all hard blocks and the

routing connections is shown in gray.

0 500 1000 1500 2000 25000

250

500

750

1000

Fig. 6. Floorplan layout visualization of a single repeating rectangular region layout with 80 convolution blocks. The bounding

polygon from Fig. 5 is also shown here for scale.

are replicated across the two other SLRs to ill up the FPGA. (3) Finally, RapidLayout generates SLR bridges for
cross-SLR connections.

3.4 SLR Crossing

The connections between systolic array building blocks create cross-SLR routes during replication. SLR crossing
faces two challenges: (1) the variability between silicon dies may cause high clock skew for transmitting and
receiving registers, causing hold or setup time violations. (2) Cross-SLR datapaths have additional inter-SLR
compensation latency [12]. The increased path delay makes cross-SLR paths more critical to overall design timing
performance.

Xilinx UltraScale+ Devices [51] provide dedicated Laguna Sites for cross-SLR routing. We reuse RapidWright’s
SLRCrosserGenerator [26] to create Laguna TX/RX Flip-lop pairs and perform custom clock routing. Rapid-
Layout generates SLR bridges in three steps:
• Select Laguna Sites: identify hard block pairs with cross-SLR connections, and select the nearest Laguna Site
pairs to create SLR bridges.
• Create Super-Long Lines (SLL): create, place, and route Laguna Flip-lops, then custom route clock signals
with SLRCrosserGenerator utilities.
• Route SLR Bridges: route hard block pairs with Laguna lip-lops with a depth-irst search for routing channel
between source and sink nodes.

ACM Trans. Reconig. Technol. Syst.

10 • Zhang, et al.

SLR0SLR0
Repeating Rect. (Fig 6)

C
opy

P
lacem

en
ts
+

V
ivado

P
+
R

C
op

y
P
la
ce
m
en
t
+
R
ou

ti
n
g

in
R
ap
id
W
ri
gh

t

F

C

D

E

Fig. 7. Full-chip layout for the systolic array accelerator generated from a repeating rectangle of size two clock regions high

and full-chip wide. Ater one replication we span one SLR region. We place and route this with Vivado, export DCP, reimport

into RapidWright to clone across SLRs and generate cross-SLR connections. Step C: hard block placement and site routing.

Step D: post-placement pipelining. Step E: SLR Placement and routing in Vivado. Step F: SLR Replication.

To overcome high clock skew, we drive Laguna TX/RX Flip-lop’s clock signal from leaf clock bufers on both
sides of the SLR bridge. Speciically, we create a global BUFGCE clock bufer and route output clock signals to
NODE_GLOBAL_LEAF nodes in boundary clock regions.

3.4.1 Optimize for Cross-SLR Clock Frequency. Cross-SLR connections are critical for the inal achievable clock
frequency. When creating SLR bridges, RapidLayout chooses the nearest Laguna sites to minimize routing path
delay. Additionally, we can add an objective to minimize cross-SLR wirelength during placement optimization:

min
∑

i ∈H

(|xi − LAGUNA_Xi | + |yi − LAGUNA_Yi |) (6)

In the objective expression above:
• H ⊂ {DSP ,BRAM,URAM } denotes hard blocks with cross-SLR connections.
• LAGUNA_Xi and LAGUNA_Yi denote the RPM coordinates of the nearest Laguna site to hard block i .
Similar to Equation 1, we minimize the Manhattan distance between hard blocks and the nearest Laguna sites.
The diference is that the nearest Laguna site is chosen based on hard block i’s location, instead of decoded from
the genotype.

3.5 Placement Transfer Learning

RapidLayout is capable of delivering high-quality placement results on devices with diferent sizes, resource
ratios, or column arrangements with transfer learning ability. Transfer learning uses the genotype of an existing
placement as a starting seed for placement search on a new device. For devices with signiicant resources
diference, we also explore the opportunity of transfer learning with placement bootstrap.

3.5.1 Placement Transfer Learning from Similar Devices. Transfer learning applies to devices with similar amounts
of hard block resources. Speciically, source and target devices should have enough hard blocks to it the same
number of computation units. Transfer learning between devices with similar capacities is straightforward: (1)
encode source placement into genotype, (2) decode genotype according to the target device. Since RapidLayout’s

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 11

evolutionary genotype encodes placement with distribution and relative location of blocks in their column,
solutions can easily transfer to new devices with similar hardware resources but diferent column arrangements.

Algorithm 1:Mapping genotype extrapolation

Input : Source Mapping Genotype: input_mapping
Input : Target length: target_len
Output : Target Mapping Genotype: output_mapping

1 source_len = len(input_mapping);
2 n = Floor(target_len / source_len) + 1;
3 for i ← 0 to n do

4 ofset = i × source_len;
5 foreach Integer in input_mapping do

6 if ofset + Integer < target_len - 1 then
7 output_mapping.add(ofset + Integer);

3.5.2 Placement Bootstrap from Smaller Devices. Placement bootstrap is to obtain high-quality initialization on
a large target device from searched solutions on smaller source devices. We propose a genotype extrapolation
method for placement bootstrap. From the discussion in Section 4.2.2, we show that optimizing mapping genotype
alone can still achieve good performance. When we only optimize mapping, the hard-block column distribution
is generated as uniform, and hard blocks are selected from bottom to top within each column. Similarly, to obtain
genotype encoding from smaller placement, we can extrapolate the mapping genotype alone, and set distribution
and location genotype as uniform and stacking-from-bottom. The mapping genotype extrapolation method is
detailed in Algorithm 1.

Understanding mapping genotype extrapolation: The mapping genotype is composed of three integer
lists whose orders are optimized, each corresponds to DSP, BRAM, and URAM blocks. The order of the three
lists determines the connectivity of the chosen physical blocks. A placement solution with small wirelength and
bounding box sizes would limit the hard block connections to as local as possible, forming meaningful patterns
in the three lists. Therefore, the extrapolation algorithm repeats the sequence of the source mapping genotype to
preserve the local order patterns.

3.6 Transfer Learning Example Walkthrough

We provide examples of transfer learning to demonstrate how existing placement is transferred from devices with
similar or smaller capacities. We walk you through two scenarios: (1) source and target devices have a similar
number of hard blocks but diferent column arrangements, (2) both devices are of diferent sizes and also have
diferent column arrangements.

3.6.1 Transfer learning from devices with similar capacities. Fig. 8 (a) and (c) show the source and target placement
of two computation units, each consists of 5 DSPs, 4 BRAMs, and 2 URAMs. The source and target devices have
the same number of hard block columns but diferent arrangements.

Placement encoding: We construct distribution and location genotypes from the number and relative position
of blocks in their columns. Next, we concatenate the numeric label of hard blocks used by each computation unit
and obtain the mapping genotype.

Placement decoding: After that, we encode the source placement into genotypes, we decode the genotypes
with respect to the target device. First, we quantize distribution and location genotypes to select hard blocks in

ACM Trans. Reconig. Technol. Syst.

12 • Zhang, et al.

1

0

3

2

5

4

7

6

7

6

9

8

0

1

2

3

2

1

0

5

4

3

(a) Source placement

Distribution

Location

Mapping

Encode Decode

(b) Genotype

1

0

3

2

5

4

7

6

7

6

9

8

0

1

2

3

2

1

0

5

4

3

(c) Target placement

Fig. 8. Transfer learning example: source and target devices have a similar amount of resources. (a) Source placement is

encoded to (b) genotype, then decoded on (c) target device.

each column. Then, we number the selected blocks and connect them according to the mapping genotype. We
can easily transfer to devices with diferent resource arrangements because of our genotype formulation.

1

0

3

2

1

0

4

3

2
0

1

3 1 4 0 2

0 3 2 1

1 0

DSP Mapping

BRAM Mapping

URAM Mapping

(a) Source placement (1 computation unit)

3 1 4 0 2 8 6 9 5 7

0 3 2 1 4 7 6 5

1 0 3 2

1

0

3

2

5

4

7

6

7

6

9

8

0

1

2

3

2

1

0

5

4

3

(b) Target placement (2 computation units)

Fig. 9. Placement bootstrap from a smaller device with diferent resource distribution. Placement bootstrap allows source

and target devices to have drastically diferent capacity and resource distribution. (a) Small placement on source device with

5 DSPs, 4 BRAMs, and 2 URAMs. Shadow shows one unit’s placement and enclosing routing resources. (b) Extrapolated

placement initialization on the target device with two such computation units. Extrapolated placement serves as a high-quality

initialization on the target device to reduce runtime and obtain beter results.

3.6.2 Bootstrapping from smaller devices. We show an example of transferring placement from one computation
unit to a larger device that its two units in Fig. 9. The target device is about 2× larger than the source device,
with diferent column arrangements.

Genotype extrapolation: The extra step for placement bootstrap is to extrapolate the genotype to represent
a larger placement. During genotype extrapolation, distribution and location genotypes are generated according
to target device size, thus omitted from Fig. 9. For mapping genotypes, we replicate the source mapping genotypes,
add an ofset of its length, and concatenate the result with the source mapping genotype. For a target placement
N times larger than source placement, we perform this operation for N − 1 times.

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 13

DSP48 DSP48DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48

DSP48 DSP48DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48

DSP48 DSP48DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48

URAM

288

DSP48 RAMB

18

URAM

288

RAMB

18

URAM

288

RAMB

18

URAM

288

RAMB

18

72b

/

8b /

72b

/

72b

/

72b

/

16b

/

/72b

RAMB

18

RAMB

18

RAMB

18

RAMB

18

RAMB

18

RAMB

18

RAMB

18

RAMB

18

RAMB

18

DSP48DSP48 DSP48 DSP48 DSP48 DSP48 DSP48 DSP48

Fig. 10. The matrix-vector multiplication tile proposed in [40] as a case study for RapidLayout’s generality. Each tile is a

computation unit during placement. The multiplication tile consists of one URAM chain for matrix streaming, one BRAM

chain for vector streaming, four DSP chains for MAC, and four free BRAMs for result collection.

3.7 Generality of RapidLayout

RapidLayout’s evolutionary placement method is not targeting a particular design, but a range of tiled hard-block
modular designs. As discussed in Section 3.1.2, RapidLayout’s evolutionary genotype encoding applies to general
hard block designs. For tiled designs with a large number of computing units, RapidLayout can exploit the
regularity to reduce problem size and accelerate placement optimization. If the FPGA device has multiple SLRs,
RapidLayout could further accelerate implementation through reusing routing in a single SLR.

3.7.1 Case Study: Matrix-Vector Multiplication Systolic Array. We take the matrix-vector multiplication systolic
array from [40] as an example to show RapidLayout’s capability to handle general hard block designs. As shown
in Fig. 10, the computing unit has 4 cascaded URAMs, 9 cascaded BRAMs, another 4 BRAMs that are not cascaded,
and 4 matrix-vector blocks each with 9 cascaded DSPs. RapidLayout is able to deliver high-quality placement for
such tiled design with both cascaded and free hard blocks.
For any modular hard block design unit Ck , the following inputs are necessary to calculate the objective

functions deined as Equation 1 and Equation 2: (1) The hard block instances in the cascade chain, and the length
of the cascade chain. Hard blocks that are not cascaded are treated as a length-1 cascade chain. (2) The connections
between hard blocks, including source and sink block names and the connection width. (3) The target device.
With these inputs, we run RapidLayout worklow for the matrix-vector multiplication systolic array. As shown in
Fig. 11, RapidLayout identiies a repeating rectangle that its 40 blocks to search for a placement. The placement
optimization with NSGA-II algorithm costs 594 seconds, and obtains a solution withwirelenдth = 3288.3 and
maxBBoxSize = 1899. The inal routed design’s clock frequency is 668 MHz on Xilinx VU11P device, and the
entire worklow costs 68 minutes. Compared with the convolutional systolic array design presented in Section 2.1,
the matrix multiplication tile in this case study uses 2× more URAM and DSP, 1.625× more BRAM with diferent
cascade conigurations. RapidLayout still delivers a routed design with above 650 MHz clock frequency in ≈1
hour.

ACM Trans. Reconig. Technol. Syst.

14 • Zhang, et al.

0 500 1000 1500 2000 25000

200

400

600

800

1000

Fig. 11. Searched placement for 40 matrix multiplication blocks with NSGA-II on Xilinx UltraScale+ VU11P. The final routed

design achieves 668 MHz clock frequency with a complete workflow runtime of 63 minutes.

3.8 Target Scope of RapidLayout

With the case study presented in Section 3.7.1, we show that RapidLayout is capable of producing high-quality
placement for designs with diferent hard block ratios, cascade conigurations, and connectivity. In this section, we
discuss the target FPGA architectures and circuit designs to deine the tool’s scope, and we discuss RapidLayout’s
scalability to other FPGA architectures and designs.

3.8.1 Target FPGA Architectures. The implementations in this work target the Xilinx UltraScale+ FPGA architec-
ture. However, RapidLayout’s problem formulation and evolutionary placement algorithm can be applied to other
FPGA architectures from diferent vendors as well. We take Intel’s traditional Agilex architecture [6] and the
latest AI-optimized Stratix 10 NX architecture [4] as examples, and we also discuss RapidLayout’s applicability
on Xilinx’s Versal architecture [13].

FPGA architectures with four traits could beneit from RapidLayout:

(1) Hard blocks are arranged in columns. RapidLayout’s genotype encoding assumes vertically arranged hard
blocks, as discussed in Section 3.1.

(2) Diferent types of hard block columns are spread unevenly across the device. This situation constraints us
from horizontally copy-pasting a unit placement. Therefore, RapidLayout interleaves units to get a good
placement across irregular hard block columns.

(3) Hard blocks in the same column can be cascaded for fast data movement. This characteristic of architecture
is optional. But if an architecture supports cascades, RapidLayout can handle the cascade constraints and
exploit this feature for higher clock frequencies.

(4) Vertical regularity. This means the columnar arrangement of hard blocks repeats vertically. This is also an
optional feature, but it allows RapidLayout to identify a minimal repeating region to reduce the problem
size, and to reuse placement and routing results.

For example, Intel’s Agelix FPGAs [6] have DSPs and RAMs arranged in columns and its DSPs support cascades
in INT9 mode. Their conigurable fabrics are divided into sectors, which provides regularity to reduce placement
problem size and reuse results. Intel’s Stratix 10 NX [4] with AI tensor blocks can also beneit from RapidLayout.
The AI tensor blocks on the device are also arranged in columns and support cascades in INT8 mode. The Xilinx
Versal architecture [13] ofers a higher level of regularity by repeating the clock regions horizontally at regular
intervals. With this feature, RapidLayout could further minimize the repeating rectangular region and gain more
implementation speedups. However, the specialized AI Engines for neural network workloads are separated from

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 15

the conigurable fabric in the loorplan. Since the hardened AI Engines are not mixed with other hard blocks,
the loorplanning for them is beyond the scope of RapidLayout. In general, RapidLayout is suitable for devices
with heterogeneous hard blocks, where the uneven distribution and density of the hard blocks pose diiculty to
high-utilization design placements.

3.8.2 Target Circuit Designs. RapidLayout is applicable for circuits with many identical computation units, or
Processing Elements (PE), where each PE uses a set of diferent hard blocks and has its own control logic. As
discussed in Section 3.7.1, RapidLayout takes the design’s logic netlist as input, along with the information of
hard block connections and cascade conigurations. The other assumption is that the target design does not
contain complex global control logic. Systolic arrays are such examples, where PEs are identical and have local
control circuits. RapidLayout leaves soft logic placement to Vivado and only optimizes the placement of hard
blocks in the computation units. If the design contains large and complex global control logic, the critical path is
likely to appear in the control logic where RapidLayout cannot help.

4 RESULTS

RapidLayout is implemented in Java to enable seamless integration with RapidWright Java APIs. We use the
Java library Opt4J [30] as the optimization framework for NSGA-II, SA, and GA. CMA-ES is implemented with
Apache Commons Math Optimization Library [34] 3.4 API. We use VPR 7.0 oicial release [31] and UTPlaceF
TCAD version [28] binary for QoR comparison. All placed designs are routed and timed with Vivado Design
Suite 2018.3. We run our experiments on an Ubuntu 16.04 LTS machine with Intel Xeon Gold 5115 CPU (10 cores,
20 threads) and 128GB DDR4 RAM.

4.1 Performance and QoR Comparison

We compare the performance and QoR of evolutionary algorithms against (1) conventional simulated annealing
(SA), (2) academic placement tool VPR 7.0, (3) state-of-art analytical placer UTPlaceF, (4) single-objective genetic
algorithm (GA) [54], and (5) manual placement design. We exclude RapidWright’s default annealing-based block
placer since it does not give feasible placement solutions. We run each placement algorithm 50 times with seeded
random initialization. Then, we select the top-10 results for each method to route and report clock frequency.
While we include VPR and UTPlaceF in comparison, they do not support cascade constraints (Equation 5). This
limits our comparison to an approximate check on solution quality and runtime, and we are unable to translate
the resulting placement to the FPGA directly.
In Fig. 12a, we plot total runtime and inal optimized wirelength2 × maximum bounding box size for the

diferent placement algorithms along with Vivado-reported frequency results. We see some clear trends: (1)
NSGA-II is ≈2.7× faster than SA and delivers 1.2× bounding box improvement, but has ≈12.9% longer wirelength.
The average clock frequency of top-10 results is evidently higher than SA as NSGA-II’s performance is more
stable. (2) CMA-ES is ≈30× faster than SA. Although the average bounding box size (≈16% larger) and wirelength
(≈42% larger) are worse than SA’s results, CMA-ES achieves a slightly higher average clock frequency at 711
MHz. (4) An alternate NSGA-II method discussed later in Section 4.2.2 with a reduced search space delivers
roughly 5 times shorter runtime than SA, with only 2.8% clock frequency degradation, which is still above the
URAM-limited 650MHz maximum operating frequency.
In Fig. 12b, we see the convergence rate of the diferent algorithms when observing bounding box sizes and

the combined objective. NSGA-II clearly delivers better QoR after 10 k iterations, while CMA-ES delivers smaller
bounding box sizes within a thousand iterations. Across multiple runs, bounding box optimization shows a much
more noisy behavior with the exception of CMA-ES. This makes it (1) tricky to rely solely on bounding box
minimization, and (2) suggests a preference for CMA-ES for containing critical paths within bounding boxes.

ACM Trans. Reconig. Technol. Syst.

16 • Zhang, et al.

0 1 2 3 4
wirelength2×BboxSize 1e11

0

500

1000

1500

2000

2500

ru
nt

im
e

(s
ec

)

500 550 600 650 700 750
clock frequency (MHz)

Annealing
NSGA-II

NSGA-II(Reduced)
CMA-ES

GA
VPR

UTPlaceF

(a) Wirelength, Bounding Box vs. Runtime Comparison

0 10 k 20 k 30 k
iterations

2 × 103

3 × 103

4 × 103

B
B

ox
 S

iz
e

0 10 k 20 k 30 k
iterations

1011

1012
B

bo
xS

iz
e×

 W
ir

el
en

gt
h2

SA NSGA-II NSGA-II(Reduced) CMA-ES GA

(b) Efect of Convergence on Wirelength, Bounding Box

Fig. 12. Performance, Wirelength, and Bounding Box Comparison: Tuned Simulated Annealing (SA, Annealing), NSGA-II,

NSGA-II (Reduced), CMA-ES, Genetic Algorithm (GA), VPR, and UTPlaceF. NSGA-II (Reduced) is further discussed in

Section 4.2.2.

Table 1

Runtime(avg), Wirelength(avg), Max BBox(avg), Pipelining Registers(min), and Frequency(avg) for all methods. NSGA-II

shows reduced genotype as well. Speedups and QoR improvements wins by Evolutionary algorithms are also reported

in red→NSGA-II and green→CMA-ES for each competitor algorithm (SA, GA, UTPlaceF, VPR, Manual).

Method NSGA-II CMA-ES SA GA VPR UTPlaceF Manual

Runtime (secs) 586 (323) 51 1577 (2.7×, 30.8×) 850 (1.5×, 16.7×) 76 (0.13×, 1.5×) 473 (0.8×, 9.3×) 1ś2 wks
Wirelength 3.5K (3.5K) 4.4K 3.1K (0.9×, 0.7×) 9.2K (2.6×, 2.1×) 8.5K (2.4×, 1.9×) 7.8K (2.2×, 1.8×) 8.1K (2.3×, 1.8×)

BBox 1183 (1543) 1606 1387 (1.2×, 0.9×) 1908 (1.6×, 1.2×) 4941 (4.1×, 3.1×) 3218 (2.7×, 2.0×) 1785 (1.5×, 1.1×)
Pipeline Reg. 256K (273K) 273K 273K (1.1×, 1×) 323K (1.3×, 1.2×) - - 306K (1.2×, 1.1×)

Frequency (MHz) 733 (688) 708 711 (1.03×, 0.99×) 585 (1.3×, 1.2×) - - 693 (1.1×, 1.02×)

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 17

Finally, in Table 1, we compare average metric values across the 50 runs of all methods. NSGA-II and CMA-ES
deliver superior QoR and runtime against UTPlaceF and VPR, and speed up runtime by 3ś30× against annealing
with a minor loss in QoR. Table 1 also reports the number of registers needed for the 650MHz operations. NSGA-II
delivers this with 17k (≈6%) fewer registers against annealing and 50k (≈16%) fewer registers against manual
placement. NSGA-II results in Table 1 are run in 20 threads. Although CMA-ES runs in serial, the runtime is
≈10× faster than NSGA-II with a QoR gap.

4.2 Parameter Tuning for Annealing and NSGA-II

In this section, we discuss cooling schedule selection for annealing and optimizations to NSGA-II to explore
quality, runtime trade-ofs.

4.2.1 Parameter Tuning for SA. The cooling schedule determines the inal placement quality, but it is highly
problem-speciic. We plot the cooling schedule tuning process in Fig. 13 and choose the hyperbolic cooling
schedule for placement experiments presented in Table 1 to achieve the best result quality.

0 200 k 400 k 600 k
steps

1018

1019

1020

Bb
ox

Si
ze

×
wi
re
le
ng

th
2 exponential

hyperbolic
linear

Fig. 13. SA Parameter Tuning. Each cooling schedule is run with 10 sets of parameters. Annealing placement experiments

presented in Table 1 use a hyperbolic cooling schedule for the best QoR performance.

4.2.2 NSGA-II Reduced Genotype. As per the genotype design, distribution and location genotypes take up a
large portion of the composite genotype, and they demand quantization and legalization steps. However, for
high-utilization designs, distribution and location are less inluential since resources are nearly fully utilized.
Therefore, we reduce the genotype to mapping only for NSGA-II, and uniformly distribute and stack the hard
blocks from bottom to top. As a consequence of this trade-of, we observe a ≈1.8× runtime improvement but a
1.3× larger bounding box size against the original NSGA-II. In the convergence plot of Fig. 12b, we discover that
reduced genotype does not save iteration needed, and the bulk of the runtime improvements comes from reduced
genotype decoding and legalization work.

4.3 Pipelining

Finally, we explore the efect of pipelining stages on diferent placement algorithms. At each pipelining depth,
multiple placements from each algorithm are routed by Vivado to obtain a frequency performance range.
In Fig. 14, we show the improvement in frequency as a function of the number of pipeline stages inserted

along the long wires by RapidLayout. We note that NSGA-II delivers 650MHz frequency with no pipelining,
while others require at least one stage. Therefore, NSGA-II saves ≈6%ś16% registers at pipelining as shown in
Table 1. NSGA-II wins over manual design at every depth, and CMA-ES exhibits the most stable performance.

ACM Trans. Reconig. Technol. Syst.

18 • Zhang, et al.

0 1 2 3 4
pipelining depth

550

600

650

700

750

cl
oc

k
fr

eq
ue

nc
y

(M
H

z)

CMA-ES
NSGA-II

Annealing
GA

Manual
NSGA-II Reduced

Fig. 14. Efect of post-placement pipelining on the clock frequency of the design. NSGA-II delivers 650MHz without extra

pipelining, while CMA-ES, Annealing, and Manual placement require at least one stage. NSGA-II and CMA-ES achieve

750+MHz with two stages, while SA requires four stages.

Systolic array operation at 750+MHz should be possible with planned future design reinements. CMA-ES and
NSGA-II can deliver 750+MHz frequency with only two pipeline stages, while SA requires four stages.

4.4 SLR Bridge

Table 2

SLR Crosser Performance: max clock frequency, clock skew, and Inter-SLR Compensation (ISC).

Device Size
Clk Freq. Clk Skew ISC
(MHz) (ns) (ns)

xcvu9p 181-bit×10 909.1 -0.192 0.138
xcvu11p 181-bit×10 911.6 -0.193 0.135
xcvu13p 181-bit×15 911.6 -0.193 0.135

We generate SLR bridges for cross-SLR URAM cascade signals. In Table 2, we evaluate the generated SLR
bridges in terms of maximum clock frequency, clock skew, and Inter-SLR Compensation (ISC) across multi-die
UltraScale+ devices. We observe that the TX/RX Laguna FF pairs support beyond 900 MHz clock frequencies.
Driving Laguna FF’s clock signals with NODE_GLOBAL_LEAF leaf clock bufers enables low clock skew and low
ISC penalty within ±0.2ns.

4.5 Transfer Learning

We partition Xilinx UltraScale+ family into two groups with a similar number of hard block columns. We choose
VU3P and VU11P as łseedž devices on which RapidLayout generates placement from scratch with NSGA-II.
Thereafter, placement results on seed devices are migrated to destination devices in the same group. In Table 3 and
Fig. 15, we compare placement runtimes with and without transfer learning across a range of FPGA device sizes.
We observe that transfer learning accelerates the optimization process by 11ś14× with a frequency variation
from -2% to +7%. If we observe the total implementation runtime column, we note that SLR replication ensures
that the increase in overall runtime (46 mins.→69 mins., 1.5×) with device sizes much smaller than the FPGA
capacity increase (123→640, 5.2×).

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 19

Table 3

Transfer Learning Performance: VU3P, VU11P as Seed Devices

Device
Design Size Impl.Runtime Frequency (MHz) Placement Runtime (s)
(conv units) (mins.) Scratch Transfer Scratch Transfer

xcvu3p 123 46.4 718.9 - 428.3 -
xcvu5p 246 56.9 677.9 660.5 577.9 42.2 (13.7×)
xcvu7p 246 55.1 670.2 690.1 578.8 41.9 (13.8×)
xcvu9p 369 58.4 684.9 662.3 570.8 42.0 (13.6×)

xcvu11p 480 65.2 655.3 - 522.4 -
xcvu13p 640 69.4 653.2 701.3 443.7 38.4 (11.6×)

VU5P VU7P VU9PVU13P
0

200

400

600

R
un

tim
e

(s
)

VU5P VU7P VU9P VU13P

1200

1400

1600

B
B

ox
 S

iz
e

VU5P VU7P VU9PVU13P
1

2

3

W
ir

el
en

gt
h2

1e7From Scratch Transfer Learning

Fig. 15. Runtime and QoR comparison between running from scratch and transfer learning. Transfer learning delivers ≈11ś14×

faster runtime, 0.95ś1.3× bbox size improvement, and 1.05ś1.17× wirelength improvement

4.6 Placement Bootstrap

We use a device with 5 × 24 DSP48E2, 3 × 24 RAMB18, and 1 × 16 URAM288 blocks as a žseedž device to generate
source placement. Then, we extrapolate the source placement to VU3P-VU13P as bootstrap initialization. In
Table 4 and Fig. 16, we compare the QoR and runtime of placement bootstrap and random initialization across a
range of target devices. We observe that bootstrap shortens placement optimization runtime by 2.1ś3.2×, and
improves bounding box size by 1.2ś1.6×, and wirelength by 0.95ś1.6×. The improvement in QoR leads to higher
clock frequency for routed designs (0.98ś1.12×).

Table 4

Placement Boostrap Performance: bootstrap from 5-block placement vs random initialization

Device
Target Pl. Size Impl.Runtime Frequency (MHz) Placement Runtime (s)
(conv units) (mins.) Random Init. Bootstrap Random Init. Bootstrap

xcvu3p 123 46.9 718.9 726.2 (1.01×) 428.3 158.1 (2.7×)
xcvu5p 123 56.8 677.9 670.2 (0.98×) 577.9 245.7 (2.4×)
xcvu7p 123 57.2 670.2 745.2 (1.11×) 578.8 265.3 (2.2×)
xcvu9p 123 58.5 684.9 745.2 (1.09×) 570.8 273.8 (2.1×)
xcvu11p 160 65.9 655.3 735.8 (1.12×) 522.4 166.2 (3.1×)
xcvu13p 160 68.6 653.2 719.9 (1.10×) 443.7 138.2 (3.2×)

ACM Trans. Reconig. Technol. Syst.

20 • Zhang, et al.

VU3P VU5P VU7P VU9P VU11PVU13P
0

200

400

600

R
un

tim
e

(s
)

VU3P VU5P VU7P VU9P VU11P VU13P

1200

1400

1600

1800

B
B

ox
 S

iz
e

VU3P VU5P VU7P VU9P VU11PVU13P

1.0

1.5

2.0

2.5

3.0

W
ir

el
en

gt
h2

1e7

Random Initialization Placement Bootstrap

Fig. 16. Runtime and QoR comparison between placement bootstrap and random initialization. Placement bootstrap delivers

2.1-3.2× faster runtime, 1.2-1.6× bounding box size improvement, and 0.95-1.6×wirelength improvement. Placement bootstrap

also improved clock frequency by 0.98-1.12×.

0 10 k 20 k 30 k
iterations

103

2 × 103

3 × 103

4 × 103

B
B

ox
 S

iz
e

0 10 k 20 k 30 k
iterations

1011

1012

B
bo

xS
iz

e×
 W

ir
el

en
gt

h2

Bootstrap Random

Fig. 17. Wirelength and bounding box size comparision between placement bootstrap and random initialization.

0 200 400
0

100

200

300

400

500

(a) Source

0 500 1000 1500 2000 25000

200

400

600

800

1000

(b) Placement bootstrap

0 500 1000 1500 2000 25000

200

400

600

800

1000

(c) Random initialization

Fig. 18. Placement bootstrap as initialization versus random initialization. (a) The source placement that only fits 5 convolution

blocks. (b) Placement bootstrap from a small source device to UltraScale+ VU11P (80 convolution blocks). (c) Random

initialization on the target device (80 convolution blocks).

We visualize the placement bootstrap initialization in Fig. 18 to understand its advantage against random
initialization. We show that repeating the local pattern of a smaller placement is an efective method to generate
high-quality initial placement on larger devices. Compared with random initialization (Fig. 18(c)), bootstrapping
from small placement (Fig. 18(b)) ofers much lower congestion and smaller bounding box sizes. We compare the
wirelength and bounding box size over search iterations for optimizing from bootstrap and random initializations
in Fig. 17. We observe that searching from bootstrap ofers a ≈3× smaller initial bounding box size, which
contributes to shorter optimization runtime and better QoR.

ACM Trans. Reconig. Technol. Syst.

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 21

5 CONCLUSIONS

We present an end-to-end hard block placement worklow for resource-intensive systolic array designs on modern
heterogeneous FPGAs. RapidLayout delivers an automatic placement-and-routing worklow ≈5ś6× faster than
Vivado that eschews manual placement efort. Evolutionary algorithms outperform Simulated Annealing, VPR’s
annealer, UTPlaceF analytical placer, and Manual Placement by 1.5ś30.8× in runtime, 1.8ś2.4× in wirelength and
1.1ś4.1× in bounding box sizes. RapidLayout also enables transfer learning from devices with similar capacity
and placement bootstrap from much smaller devices. Transfer learning achieves 11ś14× faster optimization,
and bootstrapping from small devices delivers 2.1ś3.2× shorter runtime. RapidLayout code is available at
https://git.uwaterloo.ca/watcag/rapidlayout.

REFERENCES

[1] Ziad Abuowaimer, Dani Maarouf, Timothy Martin, Jeremy Foxcroft, Gary Gréwal, Shawki Areibi, and Anthony Vannelli. 2018. GPlace3.
0: Routability-driven analytic placer for UltraScale FPGA architectures. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 23, 5 (2018), 1ś33.

[2] Vaughn Betz and Jonathan Rose. 1997. VPR: A new packing, placement and routing tool for FPGA research. In International Workshop
on Field Programmable Logic and Applications. Springer, 213ś222.

[3] V Betz, J Rose, and A Marquardt. 1999. Architecture and CAD for Deep-Submicron FPGAs, chapter Appendix B.
[4] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao, James C Hoe, Vaughn Betz, and Martin Langhammer. 2020.

Beyond peak performance: Comparing the real performance of AI-optimized FPGAs and GPUs. In 2020 International Conference on
Field-Programmable Technology (ICFPT). IEEE, 10ś19.

[5] Xilun Chen, Ahmed Hassan Awadallah, Hany Hassan, Wei Wang, and Claire Cardie. 2018. Multi-source cross-lingual model transfer:
Learning what to share. arXiv preprint arXiv:1810.03552 (2018).

[6] Jefrey Chromczak, Mark Wheeler, Charles Chiasson, Dana How, Martin Langhammer, Tim Vanderhoek, Grace Zgheib, and Ilya Ganusov.
2020. Architectural enhancements in intel® agilexâĎć fpgas. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 140ś149.

[7] Robert Collier, Christian Fobel, Laura Richards, and Gary Grewal. 2012. A formal and empirical analysis of recombination for genetic
algorithm-based approaches to the FPGA placement problem. In 2012 25th IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE). IEEE, 1ś6.

[8] Felipe Leno Da Silva and Anna Helena Reali Costa. 2019. A survey on transfer learning for multiagent reinforcement learning systems.
Journal of Artiicial Intelligence Research 64 (2019), 645ś703.

[9] Jefrey Dean. 2019. The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design. arXiv preprint
arXiv:1911.05289 (2019).

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE transactions on evolutionary computation 6, 2 (2002), 182ś197.

[11] K. Eguro and S. Hauck. 2008. Simultaneous Retiming and Placement for Pipelined Netlists. In 2008 16th International Symposium on
Field-Programmable Custom Computing Machines. 139ś148. https://doi.org/10.1109/FCCM.2008.21

[12] Tom Feist. [n. d.]. Xilinx White Paper: Vivado Design Suite (WP416). Xilinx.
[13] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx adaptive compute acceleration platform: VersalTM

architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 84ś93.
[14] Kasthurirangan Gopalakrishnan, Siddhartha K Khaitan, Alok Choudhary, and Ankit Agrawal. 2017. Deep convolutional neural networks

with transfer learning for computer vision-based data-driven pavement distress detection. Construction and building materials 157
(2017), 322ś330.

[15] Marcel Gort and Jason H Anderson. 2012. Analytical placement for heterogeneous FPGAs. In 22nd international conference on ield
programmable logic and applications (FPL). IEEE, 143ś150.

[16] Nikolaus Hansen and Andreas Ostermeier. 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance
matrix adaptation. In Proceedings of IEEE international conference on evolutionary computation. IEEE, 312ś317.

[17] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and
Sylvain Gelly. 2019. Parameter-eicient transfer learning for NLP. In International Conference on Machine Learning. PMLR, 2790ś2799.

[18] Peter Jamieson. 2010. Revisiting Genetic Algorithms for the FPGA Placement Problem.. In GEM. 16ś22.
[19] Peter Jamieson. 2011. Exploring inevitable convergence for a genetic algorithm persistent fpga placer. In Proceedings of the Interna-

tional Conference on Genetic and Evolutionary Methods (GEM). The Steering Committee of The World Congress in Computer Science,
Computer âĂę, 1.

ACM Trans. Reconig. Technol. Syst.

https://git.uwaterloo.ca/watcag/rapidlayout
https://doi.org/10.1109/FCCM.2008.21

22 • Zhang, et al.

[20] Peter Jamieson, Farnaz Gharibian, and Lesley Shannon. 2013. Supergenes in a genetic algorithm for heterogeneous FPGA placement. In
2013 IEEE Congress on Evolutionary Computation. IEEE, 253ś260.

[21] Jing Jiang. 2009. Multi-task transfer learning for weakly-supervised relation extraction. ACL.
[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin,

C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jafey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S.
Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R.
Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G.
Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W.
Wang, E. Wilcox, and D. H. Yoon. 2017. In-datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). 1ś12. https://doi.org/10.1145/3079856.3080246

[23] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by simulated annealing. science 220, 4598 (1983), 671ś680.
[24] Simon Kornblith, Jonathon Shlens, and Quoc V Le. 2019. Do better imagenet models transfer better?. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2661ś2671.
[25] Kung. 1982. Why systolic architectures? Computer 15, 1 (Jan 1982), 37ś46. https://doi.org/10.1109/MC.1982.1653825
[26] Chris Lavin and Alireza Kaviani. 2018. Rapidwright: Enabling custom crafted implementations for fpgas. In 2018 IEEE 26th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 133ś140.
[27] Kaiwen Li, Tao Zhang, and Rui Wang. 2019. Deep Reinforcement Learning for Multi-objective Optimization. arXiv preprint

arXiv:1906.02386 (2019).
[28] Wuxi Li, Shounak Dhar, and David Z Pan. 2017. UTPlaceF: A routability-driven FPGA placer with physical and congestion aware packing.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 4 (2017), 869ś882. http://wuxili.net/project/utplacef/
[29] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. 2019. Nsga-net:

neural architecture search using multi-objective genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 419ś427.

[30] Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. 2011. Opt4J - AModular Framework forMeta-heuristic Optimization.
In Proceedings of the Genetic and Evolutionary Computing Conference (GECCO 2011) (July 12ś16). Dublin, Ireland, 1723ś1730.

[31] Jason Luu, Jef Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu,
Norrudin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. 2014. VTR 7.0: Next Generation Architecture and
CAD System for FPGAs. ACM Trans. Reconigurable Technol. Syst. 7, 2 (June 2014), 6:1ś6:30. https://verilogtorouting.org/download/

[32] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. 2003. Fast timing-driven partitioning-based placement for island style FPGAs. In
Proceedings of the 40th annual design automation conference. 598ś603.

[33] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. 2005. Timing-driven partitioning-based placement for island style FPGAs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 24, 3 (2005), 395ś406.

[34] Apache Commons Math. 2013. Commons Math: The Apache Commons Mathematics Library.
[35] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22, 10

(2010), 1345ś1359. https://doi.org/10.1109/TKDE.2009.191
[36] Ariadna Quattoni, Michael Collins, and Trevor Darrell. 2008. Transfer learning for image classiication with sparse prototype represen-

tations. In 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1ś8.
[37] Raymond Ros and Nikolaus Hansen. 2008. A simple modiication in CMA-ES achieving linear time and space complexity. In International

Conference on Parallel Problem Solving from Nature. Springer, 296ś305.
[38] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. 2019. Transfer learning in natural language processing. In

Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15ś18.
[39] Krzysztof Rusek, JosÃľ SuÃąrez-Varela, Paul Almasan, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2020. RouteNet: Leveraging Graph

Neural Networks for Network Modeling and Optimization in SDN. IEEE Journal on Selected Areas in Communications 38, 10 (2020),
2260ś2270. https://doi.org/10.1109/JSAC.2020.3000405

[40] A. Samajdar, T. Garg, T. Krishna, and N. Kapre. 2019. Scaling the Cascades: Interconnect-aware FPGA implementation of Machine
Learning problems. In 2019 29th International Conference on Field Programmable Logic and Applications (FPL). 1ś8.

[41] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. 2018. Starcraft micromanagement with reinforcement learning and curriculum transfer
learning. IEEE Transactions on Emerging Topics in Computational Intelligence 3, 1 (2018), 73ś84.

[42] Y. Shen, M. Ferdman, and P. Milder. 2016. Overcoming resource underutilization in spatial CNN accelerators. In 2016 26th International
Conference on Field Programmable Logic and Applications (FPL). 1ś4. https://doi.org/10.1109/FPL.2016.7577315

[43] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN Accelerator Eiciency Through Resource Partitioning. In
Proceedings of the 44th Annual International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York,
NY, USA, 535ś547. https://doi.org/10.1145/3079856.3080221

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/MC.1982.1653825
http://wuxili.net/project/utplacef/
https://verilogtorouting.org/download/
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/JSAC.2020.3000405
https://doi.org/10.1109/FPL.2016.7577315
https://doi.org/10.1145/3079856.3080221

RapidLayout: Fast Hard Block Placement of FPGA-optimized Systolic Arrays using Evolutionary Algorithm • 23

[44] Deshanand P. Singh and Stephen D. Brown. 2002. Integrated Retiming and Placement for Field Programmable Gate Arrays. In Proceedings
of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA âĂŹ02).
Association for Computing Machinery, New York, NY, USA, 67âĂŞ76. https://doi.org/10.1145/503048.503059

[45] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning
Research 10, 7 (2009).

[46] Steven Trimberger and M-R Chene. 1992. Placement-based partitioning for lookup-table-based FPGAs. In Proceedings 1992 IEEE
International Conference on Computer Design: VLSI in Computers & Processors. IEEE, 91ś94.

[47] Rahman Venkatraman and Lalit M Patnaik. 2000. An evolutionary approach to timing driven fpga placement. In Proceedings of the 10th
Great Lakes symposium on VLSI. 81ś85.

[48] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. 2003. Post-Placement C-Slow Retiming for the Xilinx Virtex
FPGA. In Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays (Monterey, California,
USA) (FPGA âĂŹ03). Association for Computing Machinery, New York, NY, USA, 185âĂŞ194. https://doi.org/10.1145/611817.611845

[49] E. Wu, X. Zhang, D. Berman, and I. Cho. 2017. A high-throughput reconigurable processing array for neural networks. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL). 1ś4. https://doi.org/10.23919/FPL.2017.8056794

[50] Ephrem Wu, Xiaoqian Zhang, David Berman, Inkeun Cho, and John Thendean. 2019. Compute-Eicient Neural-Network Acceleration.
In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 2019, Seaside, CA, USA,
February 24-26, 2019. 191ś200. https://doi.org/10.1145/3289602.3293925

[51] Xilinx. [n. d.]. Large FPGA Methodology Guide. https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/ug872_
largefpga.pdf

[52] Xilinx. [n. d.]. Vivado Design Suite User Guide, Using Constraints (UG903). Xilinx.
[53] Junjie Xing, Kenny Zhu, and Shaodian Zhang. 2018. Adaptive multi-task transfer learning for Chinese word segmentation in medical

text. In Proceedings of the 27th International Conference on Computational Linguistics. 3619ś3630.
[54] M Yang, AEA Almaini, L Wang, and PJ Wang. 2005. An evolutionary approach for symmetrical ield programmable gate array placement.

In Research in Microelectronics and Electronics, 2005 PhD, Vol. 1. IEEE, 169ś172.
[55] Cunxi Yu and Zhiru Zhang. 2019. Painting on placement: Forecasting routing congestion using conditional generative adversarial nets.

In Proceedings of the 56th Annual Design Automation Conference 2019. 1ś6.
[56] Xin Zheng, Luyue Lin, Bo Liu, Yanshan Xiao, and Xiaoming Xiong. 2020. A multi-task transfer learning method with dictionary learning.

Knowledge-Based Systems 191 (2020), 105233.
[57] Yin Zhu, Yuqiang Chen, Zhongqi Lu, Sinno Jialin Pan, Gui-Rong Xue, Yong Yu, and Qiang Yang. 2011. Heterogeneous transfer learning

for image classiication. In Twenty-Fifth AAAI Conference on Artiicial Intelligence.

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/503048.503059
https://doi.org/10.1145/611817.611845
https://doi.org/10.23919/FPL.2017.8056794
https://doi.org/10.1145/3289602.3293925
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/ug872_largefpga.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/ug872_largefpga.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 FPGA-optimized Systolic Array Accelerator
	2.2 RapidWright
	2.3 FPGA Placement
	2.4 Evolutionary Algorithms
	2.5 Transfer Learning

	3 RapidLayout
	3.1 Problem Formulation
	3.2 RapidLayout Design Flow
	3.3 Full-chip Layout Example Walkthrough
	3.4 SLR Crossing
	3.5 Placement Transfer Learning
	3.6 Transfer Learning Example Walkthrough
	3.7 Generality of RapidLayout
	3.8 Target Scope of RapidLayout

	4 Results
	4.1 Performance and QoR Comparison
	4.2 Parameter Tuning for Annealing and NSGA-II
	4.3 Pipelining
	4.4 SLR Bridge
	4.5 Transfer Learning
	4.6 Placement Bootstrap

	5 Conclusions
	References

