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Abstract: In the paper, an optical fiber sensor based on a seven-core fiber composite structure is 
presented, which enables dual-parameter sensing of bending and temperature. The proposed structure 
is fabricated by combining the strongly-coupled seven-core fibers (SC-SCFs) and a weakly-coupled 
seven-core fiber (WC-SCF). The SC-SCF acts as a beam coupler and enhances the Mach-Zehnder 
interference, while the WC-SCF serves as the enhanced section of another Mach-Zehnder 
interference. Therefore, the spectrum response of the fiber structure mentioned above exhibits a 
superposition effect of two Mach-Zehnder interferometers (MZIs). Among them, two dips 
corresponding to different MZIs are used to measure bending and temperature. The experimental 
results show the bending sensitivity and temperature sensitivity of the two MZIs are −4.238 nm/m−1, 
−2.263 nm/m−1, 0.047 nm/℃, and 0.064 nm/ , respectively. It proves ℃ that our sensor is very 
sensitive to bending. Through the dual-wavelength matrix method, the bending and temperature can 
be measured simultaneously. With the benefit of the composite structure, low cost, and ease of 
fabrication, the proposed sensor can be used in harsh environments. 
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1. Introduction 

With the advantages of compact dimensions, 

high sensitivity, online measurement, and 

long-distance transmission, optical fiber sensors  

are applied successively to measure temperature, 

bending, force, gas pressure, surrounding refractive 

index, and so on. Among them, bending and 

temperature detection are closely related to our daily 

life. In human motion recognition [1–4], limb 

bending is the key to obtaining body movements. 

Meanwhile, the temperature instability always 
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interferes with the bending measurement. Hence, it 

is quite necessary to solve the problem of 

temperature cross-sensitivity [5, 6]. 

Diverse types of special optical fiber-based 

sensors have been proposed to realize bending and 

temperature measurement [7]. The special optical 

fiber bending sensor includes few-mode fibers 

(FMFs) [8], micro-structured fibers (MSFs) [9], 

eccentric core fibers [10], doubled-clad fiber (DCFs) 

[11], and multi-core fiber (MCFs) [12, 13]. Among 

them, MCFs are reported as a parallel type of single 

mode fibers (SMFs), which means an optical device 

to improve the data transfer capacity of SMFs. This 

special structure of multiple cores distributed 

parallelly in the cladding makes it a bright prospect 

to be applied in the space division multiplexing 

system [14]. Moreover, to suppress the inter-core 

crosstalk of the MCF, the weakly-coupled MCF 

(WC-MCF) with a large core-to-core distance is 

mostly utilized in information transmission [15]. 

Besides, the groove refractive index structure is 

applied to further reduce the inter-core crosstalk [16]. 

With the deepening of research, the applications of 

MCFs for the sensing field have been reported. The 

unique spatial structure makes it a good candidate 

for the measurement of bending, torsion, and other 

physical quantities [17, 18]. 

As a special MCF for sensing, the strongly 

coupled MCF (SC-MCF) has attracted much 

attention due to its high-quality output spectrum and 

unique super-mode characteristics [19]. For the 

SC-MCF, the smaller core-to-core distance results in 

severe crosstalk between different cores. It leads to 

periodic coupling among the modes in cores, which 

is very sensitive to the sensing parameters, such as 

temperature [20, 21], strain [22], force [23], 

refractive index [24, 25], and bending [13, 26, 27]. 

Especially in bending measurement, many 

measurement schemes have been proposed with 

various SC-SCF-based structures. 

The Mach-Zehnder interferometer based on the 

strongly coupled seven-core fiber (SC-SCF) has 

been investigated for bending sense [23]. The 

bending sensitivity of the MZI sensor based on a 

4.5 cm-SC-SCF is 2.65 nm/m−1 with an insertion 

loss of −2 dB. Compared with the MZI bending 

sensor based on the weakly coupled seven-core fiber 

(WC-SCF) with the bending sensitivity of 

−15.567 nm/m−1 [28], the sensitivity of the SC-SCF 

is noticeably slightly lower. Due to the size of the 

central core of the WC-SCF, which is quite close to 

that of the SMF, it is necessary to utilize a 

multi-mode fiber (MMF) to expand the beam. 

However, the MMF not only increases the size of 

the sensor but also brings an insertion loss of −15dB, 

which limits its application. As an optical 

thermometer, SC-MCFs can withstand the high 

temperature environment up to 1 000  and ℃ exhibit 

the temperature sensitivity of about 50 pm/℃    

[20, 28]. Therefore, it is necessary to achieve 

simultaneous detection, which limits its application. 

For this purpose, the super-mode Bragg grating 

inscribed in the SC-SCF has been used for 

temperature and bending simultaneous measurement 

[26]. In the design, the resonant peaks and dips of 

the interference spectrum for the SC-SCF-based    

MZI show different responses to bending and 

temperature. The maximum resolutions due to 

bending and temperature for the two wavelengths 

are −112.3 pm/m−1, 9.55 pm/ , 3.90℃ 9 nm/m−1, and 

11.8 pm/ , respectively.℃  

In this paper, to measure the bending and 

temperature simultaneously, a composed sensor is 

proposed, fabricated by the fusion splicing WC-SCF 

between two short pieces of SC-SCFs. The two 

SC-SCFs act as the beam couplers and 

MZI-enhanced sections. The WC-SCF is introduced 

to enhance another Mach-Zehnder interference.  

Due to two types of SCFs, their spectra are 

superimposed. Therefore, based on the dual 

wavelength matrix demodulation method, the 

simultaneous measurement of bending and 

temperature can be achieved. The advantages of our 

sensors are clear. Using low-cost materials, sensors 
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can be made to measure both bending and 

temperature. 

2. Structure and sensing principles 

The schematic diagram of the composite 

structure-based MZI is shown in Fig. 1(a). It 

consists of the lead-in/lead-out SMF, two sections of 

SC-SCFs, and a section of the WC-SCF. The 

structure is fabricated by successively splicing the 

three types of optical fibers through the fusion 

splicer (Fujikura, 80S, Japan). The lengths of the 

SC-SCF and WC-SCF are L1 and L2, respectively. 

When cutting optical fibers, the cutting position and 

the distance from the coating stripping point to the 

cutting point can be controlled by adjusting the 

position of the fiber relative to the scales. The 

WC-SCF, provided by Yangtze Optical Fiber 

Company, China, has the cross-section image as 

shown in Fig. 1(b). The diameters of the outer 

cladding and cores are 150 μm and 8 μm, 

respectively, with a distance between two 

neighboring cores of 41.5 μm. The refractive index 

difference between the core and cladding is 0.004 9. 

Figure 1(c) gives the micrograph of the SC-SCF, 

which is homemade by the stack-and-draw 

technique [27]. The diameters of the outer cladding 

and cores are 125 μm and 8.2 μm, respectively with 

a distance between adjacent cores of 11 μm. The 

refractive index difference between the core and 

cladding is 0.004 9. The SMF from Corning, USA 

has a core diameter of 8.5 μm and a cladding 

diameter of 125 μm. 

125 μm

150 μm

(a) 

(b) 

(c) 

L1 

L1 
L2 

Lead out-SMF 

SC-SCF

SC-SCF 
Lead out-SMF 

WC-SCF 

 
Fig. 1 Sensors for bending and temperature detection:     

(a) schematic diagram of the proposed MZI-based sensor, and 
the cross-section view of the (b) WC-SCF and (c) SC-SCF. 

The optical field distribution of the proposed 

MZI-based structure is shown in Fig. 2, which is 

numerically simulated by RSoft. The simulation 

results show that when the light injects from the core 

of the lead-in SMF into the core of the SC-SCF, the 

light splits into the central core and the other six 

cores. When the light reaches the first fusion point 

between the SC-SCF and the WC-SCF, some energy 

is split to the higher-order mode of the WC-SCF 

rather than the other six cores of the WC-SCF, 

because the six cores of the WC-SCF are too far 

from the central core. Residual energy is coupled to 

the center of the WC-SCF. Afterwards, the light 

injects from the WC-SCF into the second SC-SCF, 

which enhances the MZI and also acts as a beam 

coupler, coupling the energy of the higher order 

mode in the WC-SCF back into the lead-out SMF. 

The proposed structure contains three MZIs. One 

corresponds to the super modes of the SC-SCF, and 

the others occur between the fundamental mode and 

higher-order modes of the WC-SCF. 
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Fig. 2 Light field distribution of the SCFs composite 

structure (L1=10 mm and L2=10 mm). 

Figure 3 shows the experimental results of the 

transmission spectrum and the spatial spectrum for 

the proposed sensor. The maximum fringe visibility 

near 1 356 nm reaches 24 dB, while the insert loss is 

only about 2.9 dB. Compared with the measured 

transmission spectra of the SC-SCF-based MZI and 

the WC-SCF-based MZI as illustrated in Fig. 4, its 

insert loss is close to that of the SC-SCF, and it has a 

stronger interference effect than the WC-SCF. 

Moreover, the illustrated MZI spectra designed   

by us exhibit the effect of multi-interference 
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superposition, which can be observed in the inset of 

Fig. 3. The highest dominant peak appears at 

0.007 5 nm−1, corresponding to the free spectral 

range of 133.33 nm, which is caused by the 

interference between the two super modes of the 

SC-SCF at the wavelength of 1 359 nm (Dip 1). The 

second dominant peak appears at 0.025 nm−1 and is 

caused by the interference between the fundamental 

core mode and the higher mode of the WC-SCF at 

the wavelength of 1 390 nm (Dip 2). The effective 

refractive indexes of the fundamental core mode and 

the first-order core mode excited in the SC-SCF are 

1.442 5 and 1.441 8 at the wavelength of 1 390 nm.  

It can be determined that the highest peak at 

0.007 5 nm−1 is caused by the interference between 

the two super modes of the SC-SCF at the 

wavelength of 1 390 nm. Similarly, the effective 

refractive indexes of the fundamental core modes of 

the central core and outer six cores for the WC-SCF 

are 1.442 072 929 and 1.437 860 359, respectively.  

It can be determined that the highest peak at 

0.025 nm−1 is caused by the interference between the 

two super modes of the SC-SCF at the wavelength 

of 1 359 nm. The two SCFs play different roles in 

the composited sensor. The advantages of the 

SC-SCF are the low insertion because of the mode 

filed characteristics of super modes, and the 

WC-SCF in our sensor proves the ability of high 

response to curvature changes. 
(a) 
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Fig. 3 Spectral analysis: (a) measured transmission spectra 

and (b) spatial frequency spectra. 
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Fig. 4 Measured transmission spectra of the (a) SC-SCF- 

based MZI and (b) WS-SCF-based MZI. 

3. Experimental results and discussion 

The bending and temperature responses of the 

proposed sensor have been experimentally studied, 

as shown in Fig. 5. The setup consists of a super 

luminescent diode (SLD, Denselight, China), an 

optical spectrum analyzer (OSA, Yokogawa Electric 

Corporation, AQ6375, Japan), two 3-axis roller 

block stage (Thorlabs, RBL13D, USA), and a 

thermostat. The light with a broadband of 

1 250 nm–1 650 nm from the SLD transmits into the 

sensor, and then the filtered spectra are received by 

the OSA with a resolution of 0.05 nm. 

In the bending measurement, when the bending 

changes, the temperature is kept at room temperature 

of 26 ℃. The lead-in SMF and lead-out SMF are 
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fixed on the two 4-axis translation stages, 

respectively. By adjusting the distance between the 

two stages, the bending can be adjusted, as shown as 

[28] 
324 LC d≈             (1) 

where d  is the distance difference between the two 

translation stages and increases from 0 mm to 

0.4 mm with an increment interval of 0.05 mm. L  

is the distance between the two stages, which is set 

as 11.46 cm. 

Thermostat OSA SLD 

3-axis rollerblock stage 

(a)

SC-SCFWC-SCF SC-SCF 

1 cm
(b)

 
Fig. 5 Experimental setup of the bending and temperature 

measurement. 

Figures 6(a) and 6(b) show the transmission 

spectra under different bending for the sensor with 

L1=1.0 cm and L2=1.0 cm in the bending ranges 

from 0 m−1 to 2.649 4 m−1. It shows that the 

interference dips have a significant blue shift, which 

is consistent with the reported results [27, 28]. For 

bending sensing, the interference wavelength is 

mainly affected by the strain-induced refractive 

index changes. In the process of the curvature 

increasing, there is a negative correlation between 

the wavelength shift and the strain-induced 

refractive index coefficient [29]. Thus, the blue shift 

in the bending increasing process is reasonable. 

After repeated measurements three times, the 

wavelengths versus bending for Dips 1 and 2 are 

shown in Fig. 6(c). It is obvious that Dip 1 has the 

higher bending sensitivity than Dip 2. The two dips 

in three measurements illustrate a good linear 

response. In the range from 0 m−1 to 0.936 7 m−1, the 

sensor is affected not only by the curvature, but also 

by the prestress. The maximum standard deviation 

in the whole cycle for the two dips are 0.46 nm  

and 0.17 nm, respectively. It proves the good 

reliability of the proposed sensor. According to the 

experimental results, the sensitivity of the two dips 

in the range of 0.936 7 m−1–2.649 4 m−1 is 

−4.238 nm/m−1 and −2.263 nm/m−1, respectively, 

with a linear fit with high adj. R2 of 0.989 and 0.992. 
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Fig. 6 Bending measurement: (a) transmission spectra under 

different bending, (b) detail view, and (c) relationship between 
the bending and dip wavelengths for Peaks 1 and 2. 

For the temperature sensing, the sensor is placed 

on the thermostat, as shown in Fig. 5. The ambient 

temperature increases from 30  to 8℃ 0  with a ℃

step of 5 . At each test, the temperature ℃ is kept for 

5 min to ensure the temperature stability. Figure 7 

shows the transmission spectra under different 
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temperatures, which are repeated 3 times. All dips 

have an obvious red shift when the temperature 

increases. The linear fitting curve shows that the two 

dips have good linearity with high adj. R2 of 0.997 

and 0.990, and the sensitivity of 0.047 nm/℃    

and 0.064 nm/ , respectively. For three times ℃

measurements, the maximum standard deviation  

for the two dips are 0.150 nm and 0.058 nm, 

respectively. This proves the good repeatability of 

the proposed sensor. Meantime, based on the 

different spectrum responses for bending and 

temperature of different MZIs, a dual wavelength 

matrix can be built to measure the two 

environmental parameters simultaneously. 
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Fig. 7 Temperature measurement: (a) transmission spectra 

under different temperatures, (b) detail view, and (c) relationship 
between the temperature and dip wavelengths. 

For the proposed sensor, the wavelengths shift 

under different bending and temperatures can be 

expressed as 

Dip 1 11 12K C K TλΔ = Δ + Δ           (2) 

Dip 2 21 22K C K TλΔ = Δ + Δ           (3) 

where 11K , 12K , 21K , and 22K  are the bending 

sensitivity and the temperature sensitivity of two 

dips, respectively. These have been calculated in the 

above state. Based on the dual-wavelength matrix 

method, the relationship between the wavelengths 

and the two environmental parameters can be 

expressed as 

Dip 1 11 12

Dip 2 21 22

K K C

K K T

λ
λ =

Δ Δ     
     Δ Δ   

.       (4) 

When the unknown bending and temperature are 

applied to the sensor, the bending and temperature 

can be demodulated as 
1

Dip 111 12

Dip 221 22

K KC

K KT

λ
λ

−

=
ΔΔ    
    ΔΔ     

.      (5) 

Substituting the sensitivity in the experiments, 

the bending and temperature can be calculated as 
11

Dip 1

1
Dip 2

4.238nm m 0.047nm

2.263nm m 0.064nm

C

T

λ
λ

−−

−=
ΔΔ −    
    ΔΔ −     

℃

℃
.(6) 

Table 1 compares the bending sensitivity and 

temperature sensitivity of the sensor in our work 

with the previous publications. Compared with the 

optical fiber grating-based bending sensors, the 

sensitivity of our sensor reaches the average level 

with the simpler fabrication method and lower cost. 

The typical MZI sensors have higher bending 

sensitivity and can achieve simultaneous 

measurement of two parameters. 

4. Conclusions 

In summary, the composed sensor based on the 

SC-SCF-WC-SCF-SC-SCF with the ability of 

dual-parameter sensing is presented and 

demonstrated experimentally. The dual-type SCFs 

splicing structure excites two MZIs. By utilizing the 

different sensitivity of MZIs to bending and 

temperature responses, it is easy to achieve     

dual parameter demodulation. The experimental 

results show the maximum bending sensitivity 

reaches 4.238 nm/m−1 in the range of 0.936 7 m −1– 
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2.649 4 m−1, and the maximum temperature sensitivity 

is 0.064 nm/  in the range of 30℃  ℃–80 . With the ℃

advantages of the simple structure, easy fabrication, 

high sensitivity, and dual-parameter measurement, 

the proposed sensor is more suitable in various 

fields, such as the environment, bridges, dams, oil 

fields, clinical medical inspection, and food safety 

inspection. 

Table 1 Comparison of the typical bending sensor. 

Configuration 
Bending sensitivity 

(nm/m−1) 
Range (m−1) 

Temperature sensitivity 

(pm/ )℃  
Fabricated method Two-parameter Ref. 

SC-SCF-based FBG −3.909 8 0–0.494 0 11.80 
FBG fabricated by 193 nm 

excimer laser 
Yes [26] 

Two non-orthogonal LPFG 3.234 0–0.588 0 56.00 
LPFG fabricated by CO2 

laser 
Yes [12] 

SPR based on D-type 

double-clad multimode fiber 
0.611 4 0–45.977 0 - - No [11] 

FMF-based MZI 2.00 0–10.000 0 10.65 MZI enhanced by CO2 laser No [8] 

SCF-based composed MZIs 4.238 0.936 7–2.649 4 64.00 Fusion splicing Yes Our work
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