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Abstract

The effects of the violations of normality and homogeneity of variances assumptions on the
power of the one-way ANOVA F-test is studied in this paper. Simulation experiments were
conducted to compare the power of the parametric F-test with the non-parametric Kruskal–
Wallis (KW) test in normal/non-normal, equal/unequal variances scenarios and equal/unequal
sample group means. Each of these 184 simulation experiments was replicated N = 1000
times and power obtained for both F and KW−tests. The Shapiro–Wilk’s test for normality
and Bartlett’s/Levene’s tests for homogeneity of variances was conducted in each experiment.
Results show that the power of the KW tests outperformed those of the F-tests in the 92
(85/92) non-normal cases. Although the power of the F-tests is higher than those of the KW
tests in 85 out of the 92 experiments under normality assumptions, these differences, in all
cases in this study are not significant (p > 0.05) using both t and sign tests. Based on these
results, this study favours the KW test as a more robust test and safer to use rather than the
F-test especially when the distributional assumptions of data sets are in doubt.

Keywords: ANOVA, Homogeneity test, Kruskal–Wallis test, Normality test, Power
comparison

1. Introduction

The one-way analysis of variance (ANOVA) is one of the most popular statistical methods
for the comparison of treatment means from completely randomized designed (CRD) experi-
ments since its introduction into the statistics literature from the 1920s by R. A. Fisher. As a
classical statistical method, two of the major requirements of the method to produce optimal
results are: (i) data set be normally distributed, and (ii) group variances be homogeneous. In
real-life situations, data sets are not often normally distributed and group variances unequal
making these assumptions always unattainable. However, many applied researchers such as
those in the fields of business, economics, the social sciences, etc., go ahead to apply the
method because they are either not aware of these restrictions or ignorant of the seriousness
of their violations.
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To circumvent the effects of these assumptions, Kruskal and Wallis (1952) introduced
a non-parametric version of the analysis of means by ranks as an alternative to ANOVA’s
F-test. The remarkable thing about Kruskal–Wallis (KW) test is that the assumptions are
milder than those of the parametric F-test. Effects of violations of homogeneity of variances,
non-normality of group means or both on Type I error rate are available (see, for example,
Kutner et al., 2005; Legendre & Borcard, 2008; Marcinko, 2014; Moder, 2007, 2010). A
good review of the effect of non-normality on the robustness of the F-test can be found in
Blanca Mena et al. (2017), especially when degrees of skewness and kurtosis ranging from
−1 to 1 are considered.

To compare these methods, Hecke (2012) whose simulation experiments were based
on permutation to determine the power of both tests, observed a higher power in KW as
compared to the classical F-test in the case of non-symmetrical distributions. Lachenbruch
and Clements (1991) had demonstrated that the KW test may have greater power than the F-
test when the population distributions are not normal. They further argued that in comparison
with F-test, the KW test is more robust against the departures from assumptions of equality of
variance. The research carried out by Glass et al. (1972) focused on the powers of the F-test
and KW test when the population of interest is skewed. They observed that non-normality
has some effect on the Type I error, but the minimal effect when the variances are equal. For a
completely randomized fixed-effect model of data with binomial errors, the F-test behaved in
general, better than the KW test, controlling the nominal level of significance and presenting
higher power (Ferreira et al., 2012).

From the foregoing, opinions of researchers are divided on the robustness of the classical
F-test in the analysis of data sets from completely randomized experiments. In this study, we
use Monte Carlo simulations to investigate the effects of violations of these assumptions on
the power of the F-test and KW test under various scenarios, e.g., unequal means and sample
sizes.

2. Two competing tests

2.1. The ANOVA F-test
The ANOVA test is a powerful statistical tool for tests of equality of a group means. By

using Fisher notation, a one-way ANOVA model may be represented mathematically as

Yi j = µ +αi + εi j

where i = 1, . . . ,k, j = 1, . . . ,ni, Yi j is the yield from the j-th observation at i-th treatment, µ

is the general mean effect given by

µ =
k

∑
i=1

µiαi/n

and αi is the fixed/random effect due to the i-th treatment. This means that if there were no
treatment differences and no chance causes, then the yield of each observation will be µ . The
αi which is the effect of the i-th treatment is given by

αi = µi −µ.

Therefore the i-th treatment increases or decreases the yield by an amount αi. The two basic
assumptions of this model are (i) that the data set is normally distributed, Y ∼ N(µ,σ2) and
εi ∼ N(0,σ2

ε ) and (ii) group variances are equal. The test hypothesis is therefore stated as

H0 : µ1 = µ2 = · · ·= µk,
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for
F =

MStr

MSe
(2.1)

where F is the test statistic, MStr and MSe are treatment mean squares and error mean squares
respectively. Based on Equation (2.1), H0 is rejected for a given α if F > Fk−1,k(n−1);α .

2.2. The Kruskal–Wallis test
The KW test as a non-parametric alternative to the one-way ANOVA assumes that

observations in each group come from a population with the same shape of the distribution. It
becomes a problem when truly the observations are not coming from the population with the
same shape. The null hypothesis associated with this test is given by

H0 : η1 = η2 = · · ·= ηk

where ηi is the median of the i-th group. This is equivalent to H0: Samples are from identical
populations. Let n denote the total number of observations n = ∑

k
i=1 ni where ni is the size

of the i-th sample, i = 1,2, . . . ,k and k is the number of groups. Rank the n observations in
either ascending or descending order of magnitude and use average ranks when there are ties.
Let R(Xi j) represent the rank assigned to the j-th observation from the i-th group, Xi j and
Ri represent the sum of the ranks assigned to the i-th group Ri = ∑

ni
i=1 R(Xi j), i = 1,2, . . . ,k.

Define the test statistic T as

T =
1
S2

(
k

∑
i=1

Ri
2

ni
− n(n+2)2

4

)
where

S2 =
1

n−1

(
∑

allrank
R(Xi j)

2 −n
(n−1)2

4

)
.

If there are no ties, S2 simplifies to n(n+1)/12 and the test statistic reduces to

T =
12

n(N +1)

k

∑
i=1

R2
i

ni
−3(n+1).

Under the null hypothesis, H0 (Lehmann, 2006), T is asymptotically chi-square distributed
with k−1 degrees of freedom, i.e., T ∼ χ2

k−1.

3. Methodology

3.1. The power of a test
In testing the equality of group means of a data set by whatever method, the researcher

will be interested in the correctness or otherwise of the outcome of the test hypothesis. The
outcome is interpreted using a p-value, which is the probability of observing the result with a
specified level of significance, α , given that H0 is true. When an experimenter erroneously
accepts a H0 when H1 is true, then that experimenter has committed a Type II error stated as
P(Accept H0|H1 is true) = β . Then define a statistical power of a test as the probability that
the test correctly rejects H0 when a specified alternative is true, i.e., Power = P(Reject H0|H1
is true) = 1−β .

Power is influenced mainly by the chosen significant level of the test and the sample size.
Since power is stated in terms of probability, its value is within the range 0 ≤ P ≥ 1, therefore
with two methods testing a given dataset, the method with higher P will be considered a better
method. Therefore, a method with a lower power has a higher risk of committing Type II
errors (of accepting a null hypothesis when indeed the alternative is true).
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3.2. Tests on assumptions

Tests on assumptions will be conducted on each simulation experiment. For the normality
assumption, the Shapiro–Wilks W test will be implemented. The hypothesis of interest is H0:
Data are normally distributed, versus the alternative, H1: Data are not normally distributed.

For the homogeneity of group variances assumption, the Bartlett’s K2 test will be applied
when data are assumed normal or near-normal while the Levene’s L test will be used when
data set is either skewed or for non-normal data. The Levene’s test, unlike the Bartlett’s, is
known to be less sensitive to departures from normality. In these two cases, the hypothesis is
given by

H0 : σ
2
i = σ

2
j

H0 : σ
2
i ̸= σ

2
j .

For these three tests in this subsection, H0 will be rejected if p < α ; if p > α , then the H0
cannot be rejected and conclude that the group variances are equal. The reader is referred
to Sahai and Ageel (2000, pp. 93–107) for Shapiro–Wilk’s, Bartlett’s and Levene’s tests
respectively.

3.3. Tests for differences

3.3.1. The t-test
Each data set generated will be analyzed using two methods, the F-test and the KW test

each of them independently reporting the power of the test. To compare the powers from
these methods, a paired t-test is considered to determine whether the difference between their
powers is significantly different from zero.

Let Ai and Bi, i = 1,2, . . . ,n denote the power of the F-test and the KW test on the i-th
experiment respectively. Further, let di = Ai −Bi, be assumed to be identically distributed, all
with the same expected population mean values µd and variances σ2

d . The hypotheses for this
test are given as follows

H0 : µd = 0 vs. H1 : µd ̸= 0.

The t-statistic for this test is

Tn =
d̄

s/
√

n
∼ t(n−1;α)

where d̄ and s are the mean and standard deviation respectively of the di. Rejection of this
null hypothesis at α level of significance will lead to the conclusion that the power of the
F-test is significantly different from the power of the KW test. T -tests will be performed for
all the experiments.

3.3.2. The Sign test S
A nonparametric sign test will then be used to determine if the number of F-test with

positive power differences is significantly greater than or equal to the number of KW tests
with negative power differences.

Taking S+ to be the number of positive differences (+) in favour of F-tests out of m pairs,
then the null hypothesis of interest is

H0 : P(S+) = P(S−) = 0.5

H1 : P(S+)< P(S−)

P(S ≤ q|p = 0.5) = α
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where S is the number (S = S+
m∗ , where m∗ = S++S−) of F-test with positive differences, q is

the critical value and α the level of significance. If P(S+)≤ q, then the F-test, then H0 will
be rejected and conclude that F-test with positive differences is significantly less than the
number of KW test power with negative differences.

4. Simulation studies

4.1. The criteria

A Monte Carlo simulation is implemented to access the performances of both the one-way
ANOVA and KW methods for the following scenarios are listed in Table 1. The following
setup and conditions have been defined for purposes of clarity (eight scenarios for normal
and eight scenarios for non-normal distributions) and reproducibility. All simulations were
carried out using R software and plots with MATLAB. Each of the 194 experiments were
replicated N = 1000 times.

Table 1: The 16 scenarios for both normal and non-
normal distributions

S/N n µ σ

1 Equal Equal Equal
2 Equal Equal Unequal
3 Equal Unequal Equal
4 Equal Unequal Unequal
5 Unequal Equal Equal
6 Unequal Equal Unequal
7 Unequal Unequal Equal
8 Unequal Unequal Unequal

Note: S/N = simulation scenario, n = sample size, µ = mean,
σ = standard deviation

4.1.1. Balanced/unbalanced design
In this study ni (i = 1,2,3) was decided upon for convenience without loss of generality.

By definition, a completely randomized design is said to be balanced if the group sizes are
equal, i.e., n = n1 = n2 = n3. In this work balanced data is taken to mean n = n1 = n2 =
n3 = 5,10,15, . . . ,60. In the unbalanced cases, the total sample size is given by the sum of
all group sizes, i.e., n = n1 +n2 +n3. For example, n1 = 3, n2 = 3, n3 = 4 so n = 10. Or, if
n1 = 13, n2 = 23, n3 = 24 then n = 60.

4.1.2. Equal/unequal group means
In the simulated data sets, equal means are taken to be µ = µ1 = µ2 = µ3 = 8 and unequal

means understood to mean the vector µ = (8,9,11) = (µ1,µ2,µ3).

4.1.3. Homogeneity/heterogeneity of variances
For homogeneity of group variances, each group standard deviation (SD) σ is taken to be

σ = σ1 = σ2 = σ3 = 5. However in the heterogeneity scenario, the vector σ = (σ1,σ2,σ3) =
(5.3,8.5,11.3).
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4.1.4. Normal/non-normal
In all simulation experiments, equal or unequal sample sizes, equal or unequal group

means and equal or unequal group variances were considered. The eight simulation studies
carried out were based on the assumption of normality of data sets so generated. For the
non-normal simulations, two scenarios were considered:

1. For equal n the multivariate non-normal distributed data sets were generated with the
mvnonnorm() function in the semTools and MASS packages of the R software based on
Vale and Maurelli (1983) method. The parameters of this function include, among oth-
ers, the variance-covariance matrix V = (v11,v22,v33,v21,v31,v32), skewness
Sk = (s1 = s2 = s3 = 1.5), and kurtosis K = (k1 = k2 = k3 = 3.5) vectors. While the
skewness and kurtosis parameters were kept constant, V varied according as equal or
unequal variances; V = (v11 = 5.3,v22 = 8.5,v33 = 11.3,v21 = 2,v31 = 1,v32 = 2) for
unequal and diag(V ) = (v11 = v22 = v33 = 8) for equal variances.

2. For unequal n, the log-normal distribution data sets were also generated for equal or
unequal means; meanlog = µ1 = µ2 = µ3 = 8 or meanlog = (8,9,11), and standard
deviation, sdlog = (5,5,5) or (5.3,8.5,11.3) respectively.

4.2. The algorithm

The algorithm of the simulation experiment can be depicted in the following steps:
1. Generate three random samples in accordance with Sections 4.1.1–4.1.4.
2. Run both the ANOVA and KW tests on the independent groups simulated in step 1 at

α = 0.05 level of significance.
3. Calculate the p-values from the tests.
4. Repeat steps 1–3 1000 times.
5. Calculate the probability of rejecting the null hypothesis when it is true (i.e., Type I

error).
6. Compute power by obtaining the proportion of simulation runs that rejected H0.

5. Results and discussions

Results of the simulation studies carried out in Section 4 above are presented in Tables 2–
17. Each of these tables consists of nine columns, the first of which is the sample size, n, an
integer for equal sample sizes and a vector with three elements in the case of unbalanced
design. The computed power values corresponding to the respective sample sizes for the
F-test and KW test are given in columns two and three. The test statistic W for the Shapiro–
Wilk’s test for normality and its corresponding p-values are in columns 4–6. Similarly,
values displayed in columns 7–9 are results for the K2 statistic from the Bartlett’s K2 test for
homogeneity of variances when the data set under consideration is assumed normal, otherwise
the Levene L-test was used. The hypotheses were true (T) or false (F) according to the test
results are reflected in the p-value.

From Table 2, 12 experiments were performed and each replicated 1000 times. At the
end of each experiment, the F-test and KW-test were conducted and their respective powers
obtained. Similarly, the Shapiro–Wilk’s W statistic for normality test and Bartlett’s K2

statistic and Levene’s L statistic for tests for equality of variances were extracted. Following
the Shapiro–Wilk’s test on data set when n = 5,µ = 8,σ = 5 in Table 2, we assume that the
data set is normally distributed (W = 0.978, p > 0.05(0.955)). Similarly, the Bartlett’s test on
the same data set confirm the homogeneity (K2 = 0.307, p > 0.05(0.858)) of group variances
of the data set.
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For equal means, variances and sample sizes, the normality and equality of variances
assumptions were maintained (or nearly so) in all 12 experiments displayed in Table 2. It
was observed that the power of the F-test was higher than that of the KW test in eight out of
12 experiments (Table 2 and Figure 1(a)). Similarly, results of power analyses displayed in
Table 3 show that F-test was slightly better than the KW test only in five experiments, while the
KW test performed better in five experiments and both tests tied in two of the 12 experiments.
This is displayed in Figure 1(b). This poor performance of the F-test may have been due
to the violation of the equal variance assumption where σi = (σ1,σ2,σ3) = (5.3,8.5,11.3).
F-test performed better in all 12 experiments in Table 4 as the group sample sizes were equal
and equality of variances assumptions were respected. In situations of unequal group means,
the power of both tests showed a positive trend with increasing sample sizes (panels (c) and
(d) of Figures 1–4). Increasing sample size, however, did not influence the power of F-test in
the log-normal situations. Regardless of group sizes and whether or not the variances were
equal, the two tests under comparison demonstrated nearly identical power except in the
log-normal scenarios when the KW maintained dominance (Figure 4). Similar observations
could be rendered to results presented in Tables 6–9, and displayed graphically in Figures 1
and 2 where normal distributions were assumed.

The situation in non-normal scenarios is of interest in this work. Except for results
in Table 10, KW test performed better than the F-test (Tables 11–14), but in multivariate
non-normal cases, both tests showed indications of asymptotic convergence when sample
sizes are equal and the means are unequal (Tables 12 and 13, and Figure 3 in panels (c) and
(d)). The superior performance of the power of the KW test over the F-test in a non-normal
scenario is demonstrated under the lognormal distribution (Tables 14–17, and Figure 4).

These results are in tandem with the trends in research involving parametric and non-
parametric statistics (Blanca Mena et al., 2017; Sawilowsky et al., 1989) where non-parametric
tests are less powerful than parametric tests but such power gap is small. On the other hand,
these authors observed that the power advantage of the non-parametric tests under conditions
of non-normality can be dramatic.

Further analysis of the values of power of the F-test and the KW test were performed
using data in Tables 2–17 and displayed in Table 18. The negative values in the t-statistic
column indicate scenarios where the power of the KW is higher than the F-test, and positive
otherwise. The corresponding p-values show the significance of the differences (p < 0.05);
the hypothesis of no difference in power are in 11 out of the 16 tests especially when data
sets were assumed to be normally distributed.

The result of the t-test that was carried out to see if the power of the F-test is indeed
higher than that of the KW test using values in columns 3 and 4 of Table 18 showed that
with 11 degrees of freedom for Tables 2–5 and Tables 10–13 and 10 degrees of freedom for
those with 11 experiments, the t-tests rejected the hypothesis of no difference (p < 0.05) only
in 5 out of 16 tests. The KW test performed about three times better than the conventional
F-test. Since the p-values are very small (p < 0.001) in the five cases, there are very small
probability of these results occurring by chance.

Similarly, the non-parametric sign test results as displayed (Table 18) where the statistic
S (shown in bold) is the number of positive differences where F-test performed better than
KW test. For instance, 8/12 is understood to mean F-test is higher in power than KW in 8
out of 12 experiments in Table 2 and that the difference is statistically different (p > 0.05).
The values of S in this table show also that KW test outperformed the F-test, (p < 0.05). The
overall result shows that the F-test is better in only 74 out of 184 experiments.
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Table 2: Normal: Equal n, µ = 8, σ = 5, 12 experiments

Power Normality Homogeneity

n F KW W p H0 K2 p H0

5 0.045 0.042 0.978 0.955 T 0.307 0.858 T

10 0.058 0.054 0.970 0.532 T 2.403 0.297 T

15 0.054 0.032 0.977 0.519 T 1.807 0.405 T

20 0.048 0.047 0.981 0.477 T 1.519 0.468 T

25 0.049 0.054 0.978 0.229 T 0.366 0.833 T

30 0.049 0.046 0.990 0.697 T 2.191 0.334 T

35 0.056 0.062 0.983 0.192 T 1.310 0.520 T

40 0.038 0.042 0.982 0.109 T 5.325 0.070 T

45 0.048 0.046 0.988 0.312 T 4.169 0.124 T

50 0.053 0.057 0.996 0.941 T 0.537 0.765 T

55 0.047 0.041 0.997 0.969 T 0.018 0.991 T

60 0.041 0.036 0.987 0.101 T 0.221 0.895 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p =
p-value

Table 3: Normal: Equal n, µ = 8, σ = (5.3,8.5,11.3), 12 experi-
ments

Power Normality Homogeneity

n F KW W p H0 K2 p H0

5 0.048 0.041 0.959 0.678 T 2.499 0.287 T

10 0.051 0.052 0.982 0.865 T 0.118 0.943 T

15 0.044 0.046 0.978 0.540 T 2.436 0.296 T

20 0.058 0.044 0.962 0.059 T 12.998 0.002 F

25 0.057 0.058 0.964 0.032 F 8.874 0.012 F

30 0.047 0.043 0.979 0.154 T 15.743 0.000 F

35 0.046 0.046 0.991 0.704 T 3.976 0.137 T

40 0.051 0.058 0.961 0.002 F 18.580 0.000 F

45 0.058 0.052 0.979 0.034 F 26.686 0.000 F

50 0.045 0.050 0.991 0.414 T 28.913 0.000 F

55 0.065 0.060 0.987 0.123 T 24.962 0.000 F

60 0.058 0.061 0.988 0.114 T 24.053 0.000 F

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-
value
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Table 4: Normal: Equal n, µ = (8,9,11), σ = 5, 12 experiments

Power Normality Homogeneity

n F KW W p H0 K2 p H0

5 0.103 0.089 0.958 0.658 T 0.444 0.801 T

10 0.189 0.165 0.948 0.150 T 6.057 0.048 F

15 0.283 0.271 0.952 0.063 T 2.753 0.252 T

20 0.382 0.360 0.986 0.696 T 0.204 0.903 T

25 0.474 0.435 0.994 0.982 T 3.725 0.155 T

30 0.559 0.535 0.979 0.165 T 2.832 0.243 T

35 0.615 0.585 0.994 0.919 T 2.434 0.296 T

40 0.680 0.665 0.988 0.368 T 1.203 0.548 T

45 0.704 0.688 0.991 0.495 T 0.486 0.784 T

50 0.767 0.750 0.997 0.981 T 1.577 0.455 T

55 0.818 0.796 0.988 0.187 T 1.529 0.466 T

60 0.861 0.846 0.991 0.323 T 0.091 0.956 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p =
p-value

Table 5: Normal: Equal n, µ = (8,9,11), σ = (5.3,8.5,11.3),
12 experiments

Power Normality Homogeneity

n F KW W p H0 K2 p H0

5 0.072 0.067 0.941 0.390 T 1.262 0.532 T

10 0.096 0.082 0.985 0.934 T 2.672 0.263 T

15 0.128 0.111 0.982 0.710 T 4.990 0.082 T

20 0.145 0.130 0.983 0.551 T 8.523 0.014 F

25 0.169 0.162 0.971 0.081 T 28.763 0.000 F

30 0.200 0.196 0.963 0.012 F 12.461 0.002 F

35 0.239 0.212 0.988 0.448 T 3.879 0.144 T

40 0.283 0.253 0.967 0.035 F 24.372 0.000 F

45 0.269 0.257 0.991 0.557 T 10.809 0.004 F

50 0.324 0.306 0.990 0.354 T 20.851 0.000 F

55 0.350 0.328 0.991 0.367 T 30.040 0.000 F

60 0.344 0.323 0.989 0.161 T 28.190 0.000 F

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p =
p-value
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Table 6: Normal: Unequal n, µ = 8, σ = 5, 11 experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

3,3,4 0.052 0.026 0.896 0.198 T 2.198 0.333 T

4,5,6 0.043 0.037 0.923 0.211 T 6.214 0.045 F

5,7,8 0.043 0.043 0.954 0.432 T 1.940 0.379 T

6,9,10 0.035 0.029 0.964 0.509 T 0.529 0.767 T

7,11,12 0.060 0.056 0.940 0.092 T 1.295 0.523 T

8,13,14 0.053 0.045 0.954 0.152 T 0.021 0.990 T

9,15,16 0.054 0.046 0.961 0.177 T 0.015 0.992 T

10,17,18 0.054 0.051 0.968 0.249 T 1.105 0.576 T

11,19,20 0.042 0.048 0.977 0.421 T 1.199 0.549 T

12,21,22 0.053 0.051 0.985 0.743 T 3.158 0.206 T

13,23,24 0.050 0.035 0.974 0.233 T 2.884 0.237 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value

Table 7: Normal: Unequal n, µ = 8, σ = (5.3,8.5,11.3), 11 experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.042 0.040 0.966 0.854 T 3.712 0.156 T

(4,5,6) 0.044 0.035 0.880 0.047 F 5.232 0.073 T

(5,7,8) 0.037 0.038 0.976 0.874 T 3.958 0.138 T

(6,9,10) 0.027 0.026 0.995 0.761 T 5.334 0.069 T

(7,11,1) 0.035 0.039 0.951 0.185 T 8.036 0.018 F

(8,13,14) 0.042 0.040 0.968 0.379 T 5.198 0.074 T

(9,15,16) 0.028 0.030 0.934 0.022 T 5.910 0.052 T

(10,17,18) 0.041 0.043 0.977 0.515 T 8.023 0.018 F

(11,19,20) 0.042 0.049 0.985 0.765 T 13.503 0.001 F

(12,21,22) 0.028 0.030 0.971 0.208 T 5.704 0.058 T

(13,23,24) 0.037 0.037 0.958 0.036 F 9.948 0.007 F

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value



Power comparison of ANOVA and Kruskal–Wallis tests . . . 63

Table 8: Normal: Unequal n, µ = (8,9,11), σ = 5, 11 experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.076 0.053 0.949 0.655 T 0.739 0.691 T

(4,5,6) 0.105 0.095 0.978 0.953 T 2.133 0.344 T

(5,7,8) 0.149 0.138 0.950 0.373 T 0.468 0.791 T

(6,9,10) 0.157 0.141 0.969 0.613 T 0.819 0.664 T

(7,11,1) 0.175 0.157 0.980 0.814 T 1.066 0.587 T

(8,13,14) 0.188 0.186 0.972 0.497 T 2.821 0.244 T

(9,15,16) 0.241 0.226 0.963 0.218 T 3.338 0.188 T

(10,17,18) 0.294 0.267 0.983 0.749 T 3.265 0.196 T

(11,19,20) 0.286 0.273 0.996 0.999 T 0.715 0.699 T

(12,21,22) 0.344 0.318 0.968 0.145 T 0.275 0.871 T

(13,23,24) 0.350 0.335 0.960 0.047 F 0.017 0.991 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value

Table 9: Normal: Unequal n, µ = (8,9,11), σ = (5.3,8.5,11.3), 11 exper-
iments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.058 0.041 0.878 0.125 T 3.490 0.175 T

(4,5,6) 0.057 0.053 0.957 0.648 T 3.268 0.195 T

(5,7,8) 0.055 0.048 0.955 0.448 T 3.311 0.191 T

(6,9,10) 0.060 0.064 0.882 0.008 F 8.301 0.016 F

(7,11,1) 0.068 0.076 0.944 0.117 T 2.419 0.298 T

(8,13,14) 0.073 0.073 0.962 0.260 T 6.517 0.038 F

(9,15,16) 0.088 0.090 0.987 0.931 T 3.860 0.145 T

(10,17,18) 0.085 0.078 0.991 0.972 T 5.523 0.063 T

(11,19,20) 0.096 0.099 0.970 0.223 T 18.740 0.000 F

(12,21,22) 0.095 0.094 0.980 0.492 T 9.512 0.009 F

(13,23,24) 0.112 0.101 0.963 0.068 T 18.660 0.000 F

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value
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Table 10: Multivariate Non-normal: Equal n, µ = 8, σ = 5, 12
experiments

Power Normality Homogeneity

n F KW W p H0 L p H0

5 0.025 0.023 0.900 0.095 T 1.904 0.386 T

10 0.019 0.017 0.800 0.000 F 3.544 0.170 T

15 0.023 0.020 0.850 0.000 F 1.443 0.486 T

20 0.016 0.022 0.848 0.000 F 7.634 0.022 F

25 0.015 0.019 0.797 0.000 F 0.852 0.653 T

30 0.014 0.013 0.793 0.000 F 5.715 0.057 T

35 0.021 0.021 0.879 0.000 F 1.980 0.371 T

40 0.015 0.014 0.874 0.000 F 6.144 0.046 F

45 0.019 0.022 0.940 0.000 F 2.355 0.308 T

50 0.011 0.014 0.925 0.000 F 3.346 0.188 T

55 0.014 0.017 0.873 0.000 F 7.189 0.028 F

60 0.017 0.019 0.911 0.000 F 3.670 0.160 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p =
p-value

Table 11: Multivariate Non-normal: Equal n, µ = 8, σ =
(5.3,8.5,11.3), 12 experiments

Power Normality Homogeneity

n F KW W p H0 L p H0

5 0.030 0.035 0.864 0.028 F 4.093 0.129 T

10 0.023 0.031 0.968 0.494 T 1.377 0.502 T

15 0.022 0.029 0.768 0.000 F 8.910 0.012 F

20 0.035 0.044 0.811 0.000 F 16.417 0.000 F

25 0.023 0.042 0.910 0.000 F 10.169 0.006 F

30 0.024 0.043 0.891 0.000 F 2.911 0.233 T

35 0.023 0.049 0.879 0.000 F 0.562 0.755 T

40 0.022 0.053 0.874 0.000 F 18.222 0.000 F

45 0.028 0.046 0.923 0.000 F 1.142 0.565 T

50 0.023 0.066 0.888 0.000 F 18.459 0.000 F

55 0.021 0.063 0.901 0.000 F 7.396 0.025 F

60 0.024 0.081 0.850 0.000 F 18.287 0.000 F

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-
value



Power comparison of ANOVA and Kruskal–Wallis tests . . . 65

Table 12: Multivariate Non-normal: Equal n, µ = (8,9,11),
σ = 5, 12 experiments

Power Normality Homogeneity

n F KW W p H0 L p H0

5 0.434 0.425 0.913 0.148 T 2.730 0.255 T

10 0.734 0.824 0.944 0.114 T 1.230 0.541 T

15 0.907 0.962 0.947 0.040 F 3.762 0.153 T

20 0.973 0.993 0.976 0.275 T 0.437 0.804 T

25 0.994 0.999 0.943 0.002 F 3.370 0.186 T

30 0.998 1.000 0.933 0.000 F 3.578 0.167 T

35 1.000 1.000 0.920 0.000 F 5.186 0.075 T

40 1.000 1.000 0.936 0.000 F 0.199 0.905 T

45 1.000 1.000 0.952 0.000 F 2.228 0.328 T

50 1.000 1.000 0.948 0.000 F 1.752 0.417 T

55 1.000 1.000 0.976 0.005 F 3.326 0.190 T

60 1.000 1.000 0.980 0.012 F 5.754 0.056 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p =
p-value

Table 13: Multivariate Non-normal: Equal n, µ = (8,9,11), σ =
(5.3,8.5,11.3), 12 experiments

Power Normality Homogeneity

n F KW W p H0 L p H0

5 0.501 0.538 0.890 0.005 F 5.792 0.055 T

10 0.743 0.813 0.840 0.000 F 4.099 0.129 T

15 0.225 0.240 0.787 0.003 F 5.704 0.058 T

20 0.865 0.914 0.923 0.001 F 2.016 0.365 T

25 0.936 0.974 0.945 0.003 F 0.757 0.685 T

30 0.976 0.996 0.833 0.000 F 15.273 0.001 F

35 0.988 0.996 0.928 0.000 F 1.549 0.461 T

40 0.998 1.000 0.874 0.000 F 26.109 0.000 F

45 0.998 1.000 0.957 0.000 F 0.475 3.789 T

50 0.999 1.000 0.890 0.000 F 9.985 0.007 F

55 1.000 1.000 0.870 0.000 F 1.805 0.406 T

60 1.000 1.000 0.913 0.000 F 5.562 0.062 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-
value
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Table 14: Lognormal: Unequal n, µ = 8, σ = 5, 11 experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.042 0.029 0.962 0.811 T 0.505 0.624 T

(4,5,6) 0.051 0.041 0.909 0.131 T 0.148 0.864 T

(5,7,8) 0.053 0.040 0.945 0.297 T 1.806 0.194 T

(6,9,10) 0.043 0.043 0.956 0.333 T 0.044 0.957 T

(7,11,12) 0.059 0.047 0.938 0.080 T 2.604 0.092 T

(8,13,14) 0.052 0.050 0.912 0.008 F 1.657 0.207 T

(9,15,16) 0.052 0.056 0.969 0.340 T 0.000 1.000 T

(10,17,18) 0.054 0.052 0.923 0.005 F 1.508 0.233 T

(11,19,20) 0.054 0.055 0.923 0.005 F 1.508 0.233 T

(12,21,22) 0.056 0.048 0.976 0.323 T 1.192 0.312 T

(13,23,24) 0.053 0.050 0.980 0.437 T 0.229 0.796 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value

Table 15: Lognormal: Unequal n, µ = 8, σ = (5.3,8.5,11.3), 11 experi-
ments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.042 0.029 0.962 0.811 T 0.505 0.624 T

(4,5,6) 0.051 0.041 0.909 0.131 T 0.148 0.864 T

(5,7,8) 0.053 0.040 0.945 0.297 T 1.806 0.194 T

(6,9,10) 0.043 0.043 0.956 0.333 T 0.044 0.957 T

(7,11,12) 0.059 0.047 0.938 0.080 T 2.604 0.092 T

(8,13,14) 0.052 0.050 0.912 0.008 F 1.657 0.207 T

(9,15,16) 0.052 0.056 0.969 0.340 T 0.000 1.000 T

(10,17,18) 0.054 0.052 0.923 0.005 F 1.508 0.233 T

(11,19,20) 0.054 0.055 0.923 0.005 F 1.508 0.233 T

(12,21,22) 0.056 0.048 0.976 0.323 T 1.192 0.312 T

(13,23,24) 0.053 0.050 0.980 0.437 T 0.229 0.796 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value
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Table 16: Lognormal: Unequal n, µ = (8,9,11), σ = 5, 11 experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.006 0.046 0.560 0.000 F 0.995 0.417 T

(4,5,6) 0.002 0.030 0.285 0.000 F 0.723 0.506 T

(5,7,8) 0.002 0.035 0.289 0.000 F 0.997 0.390 T

(6,9,10) 0.003 0.044 0.203 0.000 F 0.733 0.492 T

(7,11,1) 0.001 0.041 0.232 0.000 F 0.988 0.355 T

(8,13,14) 0.001 0.033 0.232 0.000 F 0.777 0.468 T

(9,15,16) 0.001 0.042 0.147 0.000 F 0.740 0.484 T

(10,17,18) 0.001 0.036 0.136 0.000 F 0.819 0.448 T

(11,19,20) 0.001 0.044 0.125 0.000 F 0.742 0.482 T

(12,21,22) 0.000 0.026 0.128 0.000 F 0.828 0.443 T

(13,23,24) 0.000 0.030 0.208 0.000 F 0.000 0.145 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value

Table 17: Lognormal: Unequal n, µ = (8,9,11), σ = (5.3,8.5,11.3), 11
experiments

Power Normality Homogeneity

(n1,n2,n3) F KW W p H0 K2 p H0

(3,3,4) 0.008 0.059 0.433 0.000 F 0.673 0.540 T

(4,5,6) 0.004 0.089 0.348 0.000 F 0.817 0.465 T

(5,7,8) 0.007 0.118 0.282 0.000 F 0.830 0.453 T

(6,9,10) 0.007 0.159 0.346 0.000 F 0.946 0.404 T

(7,11,1) 0.004 0.161 0.187 0.000 F 0.840 0.443 T

(8,13,14) 0.006 0.206 0.399 0.000 F 2.279 0.119 T

(9,15,16) 0.009 0.235 0.286 0.000 F 1.913 0.162 T

(10,17,18) 0.008 0.244 0.197 0.000 F 0.511 0.604 T

(11,19,20) 0.009 0.304 0.270 0.000 F 0.725 0.490 T

(12,21,22) 0.004 0.298 0.120 0.000 F 0.735 0.485 T

(13,23,24) 0.011 0.332 0.116 0.000 F 1.828 0.170 T

Note: n = sample size, F = F-test, KW = Kruskal–Wallis test, p = p-value
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Table 18: Summary of performances and tests for differences

t-test Sign test

Distribution Table # t p S p

Normal 2 0.5941 0.559 8/12 0.927

Normal 3 0.5053 0.618 5/12 0.500

Normal 4 0.2031 0.841 12/12 1.000

Normal 5 0.4121 0.684 12/12 1.000

Normal 6 1.8049 0.087 9/11 0.999

Normal 7 −0.1323 0.896 4/11 0.377

Normal 8 0.4035 0.691 11/11 1.000

Normal 9 0.3186 0.753 6/11 0.828

Non-normal 10 −0.6485 0.524 5/12 0.500

Non-normal 11 −5.1883 0.000 0/12 0.000

Non-normal 12 −0.1960 0.846 1/12 0.109

Non-normal 13 −0.4068 0.688 0/12 0.000

Non-normal 14 −13.6000 0.000 0/11 0.000

Non-normal 15 −8.2373 0.000 1/11 0.005

Non-normal 16 −7.0466 0.000 0/11 0.000

Non-normal 17 −11.6210 0.000 0/11 0.000

Figure 1: Normal: (a) Equal n, µ = 8, σ = 5; (b) Equal n, µ = 8,
σ = (5.3,8.5,11.3); (c) Equal n, µ = (8,9,11), σ = 5; (d) Equal n,
µ = (8,9,11), σ = (5.3,8.5,11.3)
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Figure 2: Normal: (a) Unequal n, µ = 8, σ = 5; (b) Unequal n, µ = 8,
σ = (5.3,8.5,11.3); (c) Unequal n, µ = (8,9,11), σ = 5; (d) Unequal n,
µ = (8,9,11), σ = (5.3,8.5,11.3)

Figure 3: Multivariate Non-normal: (a) Equal n, µ = 8, σ = 5; (b) Equal
n, µ = 8, σ = (5.3,8.5,11.3); (c) Equal n, µ = (8,9,11), σ = 5; (d) Equal
n, µ = (8,9,11), σ = (5.3,8.5,11.3)
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Figure 4: Lognormal: (a) Unequal n, µ = 8, σ = 5; (b) Unequal n, µ = 8,
σ = (5.3,8.5,11.3); (c) Unequal n, µ = (8,9,11), σ = 5; (d) Unequal n,
µ = (8,9,11), σ = (5.3,8.5,11.3)

6. Conclusion

The purpose of this study was to compare the power of the parametric ANOVA F-test
and its alternative, the non-parametric Kruskal–Wallis KW test where the assumptions of
normality and homogeneity of variances are violated. The power of both tests showed a
particular pattern in the case of equal means for normal and non-normal situations. In unequal
group mean scenarios, they showed positive trends with increasing sample sizes for balanced
or unbalanced designs, the distribution of the data set notwithstanding.

This study has shown that the instances when the F-test was more powerful than the KW
test, it is often very difficult to distinguish. However, when the KW test was demonstrated to
be more powerful, especially in non-normal scenarios, it came with a significant difference
(p < 0.05). These results in general imply that the F-test has a higher risk of accepting the
hypothesis of equality of group means when, indeed, they are not so. Specifically, the risk
of using the F-test in the analysis of non-normal data is very high. Since it is rare to have
perfect normality if ever, this study has provided more evidence that there is quite literally
little to lose in using the Kruskal–Walis test as a non-parametric alternative to the parametric
analysis of variance F-test.

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers and the Editors for their
time, constructive comments, and suggestions that led to the significant improvement of this
paper.



Power comparison of ANOVA and Kruskal–Wallis tests . . . 71

References

Blanca Mena, M. J., Alarcón Postigo, R., Arnau Gras, J., Bono Cabré, R., Bendayan, R., et al.
(2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29(4), 552–557.
https://doi.org/10.7334/psicothema2016.383

Ferreira, E. B., Rocha, M. C., & Mequelino, D. B. (2012). Monte Carlo evaluation of the
ANOVA’s F and Kruskal–Wallis tests under binomial distribution. Sigmae, 1(1), 126–
139.

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet as-
sumptions underlying the fixed effects analyses of variance and covariance. Review of
Educational Research, 42(3), 237–288. https://doi.org/10.3102/00346543042003237

Hecke, T. V. (2012). Power study of ANOVA versus Kruskal–Wallis test. Journal of Statistics
and Management Systems, 15(2-3), 241–247. https://doi.org/10.1080/09720510.2012.
10701623

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association, 47(260), 583–621.

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical models
(5th ed.). McGraw-Hill.

Lachenbruch, P. A., & Clements, P. J. (1991). ANOVA, Kruskal–Wallis, normal scores and
unequal variance. Communications in Statistics - Theory and Methods, 20(1), 107–
126.

Legendre, P., & Borcard, D. (2008). Statistical comparison of univariate tests of homogene-
ity of variances [Unpublished manuscript]. Département de sciences biologiques,
Université de Montréal.

Lehmann, E. L. (2006). Nonparametrics: Statistical methods based on ranks. Springer.
Marcinko, T. (2014). Consequences of assumption violations regarding one-way ANOVA.

Proceedings of The 8th International Days of Statistics and Economics, 116(47),
974–985.

Moder, K. (2007). How to keep the Type I error rate in ANOVA if variances are heteroscedas-
tic. Austrian Journal of Statistics, 36(3), 179–188. https://doi.org/10.17713/ajs.v36i3.
329

Moder, K. (2010). Alternatives to F-test in one way ANOVA in case of heterogeneity of
variances (a simulation study). Psychological Test and Assessment Modeling, 52(4),
343–353.

Sahai, H., & Ageel, M. I. (2000). The analysis of variance: Fixed, random and mixed models.
Springer.

Sawilowsky, S. S., Blair, R. C., & Higgins, J. J. (1989). An investigation of the Type I error
and power properties of the rank transform procedure in factorial ANOVA. Journal
of Educational and Behavioral Statistics, 14(3), 255–267. https://doi.org/10.3102/
10769986014003255

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions.
Psychometrika, 48(3), 465–471. https://doi.org/10.1007/BF02293687

https://doi.org/10.7334/psicothema2016.383
https://doi.org/10.3102/00346543042003237
https://doi.org/10.1080/09720510.2012.10701623
https://doi.org/10.1080/09720510.2012.10701623
https://doi.org/10.17713/ajs.v36i3.329
https://doi.org/10.17713/ajs.v36i3.329
https://doi.org/10.3102/10769986014003255
https://doi.org/10.3102/10769986014003255
https://doi.org/10.1007/BF02293687

	Introduction
	Two competing tests
	The ANOVA F-test
	The Kruskal–Wallis test

	Methodology
	The power of a test
	Tests on assumptions
	Tests for differences
	The t-test
	The Sign test S


	Simulation studies
	The criteria
	Balanced/unbalanced design
	Equal/unequal group means
	Homogeneity/heterogeneity of variances
	Normal/non-normal

	The algorithm

	Results and discussions
	Conclusion

