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Abstract: This paper presents a new approach and methodology to solve the 
second-order one-dimensional hyperbolic telegraph equation with Dirichlet and 
Neumann boundary conditions using the cubic trigonometric B-spline collocation 
method. The usual finite difference scheme is used to discretize the time deriva-
tive. The cubic trigonometric B-spline basis functions are utilized as an interpolating 
function in the space dimension, with a � weighted scheme. The scheme is shown 
to be unconditionally stable for a range of � values using the von Neumann (Fourier) 
method. Several test problems are presented to confirm the accuracy of the new 
scheme and to show the performance of trigonometric basis functions. The pro-
posed scheme is also computationally economical and can be used to solve com-
plex problems. The numerical results are found to be in good agreement with known 
exact solutions and also with earlier studies.
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1. Introduction

1.1. Problem
Consider the second-order one-dimensional hyperbolic telegraph equation (“the telegraph equa-
tion”), given by

with initial conditions

and the following two types of boundary conditions

(1) � Dirichlet boundary conditions 

(2) � Neumann boundary conditions 

1.2. Applications
The study of electric signal in a transmission line, dispersive wave propagation, pulsating blood flow 
in arteries and random motion of bugs along a hedge are amongst a host of physical and biological 
phenomena which can be described by the telegraph Equation (1). Details of the above-mentioned 
phenomena and other phenomena which can be described by the telegraph Equation (1) can be 
found in Bohme (1987), Dehghan and Ghesmati (2010), (Mohanty & Jain, 2001a) and Pascal (1986). 
Clearly, the equation and its solution are of importance in many areas of applications.

1.3. Literature review
Several numerical methods have been developed to solve the telegraph equation subject to Dirichlet 
boundary conditions and the references are in Mohanty and Jain, (2001a,  2001b), Mohanty, Jain, 
and Arora (2002), Mohanty (2004) and Mohanty, Jain, and George (1996). In Liu, Liu, and Chen 
(2009), two semi-discretization methods based on quartic splines function have been developed to 
solve the telegraph equations. A class of unconditionally stable finite difference schemes construct-
ed with the help of quartic splines functions has been developed by H. W. Liu and L. B. Liu (2009) for 
the solution of the telegraph equation. Further several numerical methods have been developed by 
Dehghan and Shokri (2008) and Mohebbi and Dehghan (2008) in collaboration with different au-
thors. These include the thin plate splines radial basis functions (RBF) for the numerical solution of 
the telegraph equation (Dehghan & Shokri, 2008) and high-order compact finite difference method 
to solve the telegraph equation (Mohebbi & Dehghan, 2008). Further details on other numerical 
methods including interpolating scaling functions (Lakestani & Saray, 2010), RBFs (Esmaeilbeigi, 
Hosseini, & Mohyud-Din, 2011), quartic B-spline collocation method (QuBSM) (Dosti & Nazemi, 2012), 
cubic B-spline collocation method (CuBSM) (Mittal & Bhatia, 2013; Rashidinia, Jamalzadeh, & 
Esfahani, 2014) for the solution of the telegraph equation subject to Dirichlet boundary conditions 

(1)
�
2u

�t2
(x, t) + 2�

�u

�t
(x, t) + �

2u(x, t) =
�
2u

�x2
(x, t) + q(x, t) a ≤ x ≤ b, t ≥ 0

(2)u(x, 0) = g1(x), ut(x, 0) = g2(x), a ≤ x ≤ b

(3)
u(a, t) = f1(t), u(b, t) = f2(t), t ≥ 0

(4)
ux(a, t) = w1(t), ux(b, t) = w2(t), t ≥ 0
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are in the literature. Thus many numerical methods have been developed to solve the telegraph 
Equation (1) with Dirichlet boundary conditions.

Some numerical methods have been developed for numerical solution of the telegraph equation 
with Neumann boundary conditions. These include methods by Dehghan and Ghesmati (2010) who 
constructed a dual reciprocity boundary integral equation (DRBIE) method in which cubic radial ba-
sis function (C-RBF), thin plate spline radial basis function (TPS-RBF) and linear radial basis functions 
(L-RBF) are utilized for the numerical solution of the telegraph equation with Neumann boundary 
conditions. L. B. Liu and H. W. Liu (2013) have developed a compact difference unconditionally stable 
scheme (CDS) to solve the telegraph equation with Neumann boundary conditions. Further, Mittal 
and Bhatia (2014) have developed a technique based on collocation of cubic B-spline collocation 
method (CuBSM) for solving the telegraph equation with Neumann boundary conditions.

The trigonometric B-spline collocation method has attracted attention in the literature and has 
been used for the numerical solutions of several linear and non-linear partial differential equations 
(Abbas, Majid, Ismail, & Rashid, 2014a,   2014b,  2014c; Zin, Abbas, Majid, & Ismail, 2014; Zin, Majid, 
Ismail, & Abbas, 2014a,  2014b). The trigonometric B-splines have many geometric properties like 
local support, smoothness and capability of handling local phenomena. There properties make trigo-
nometric B-spline appropriate to solve linear and non-linear partial differential equations easily and 
effortlessly. Fyfe (1969) found that the spline method is better than the usual finite difference 
scheme because it has the flexibility to obtain the solution at any point in the domain with greater 
accuracy. The trigonometric B-spline produced more accurate results for linear and non-linear initial 
boundary value problems as compared to traditional B-spline functions (Abd Hamid, Abd Majid, & Md 
Ismail, 2010; Nikolis, 1995).

In this work, a numerical collocation finite difference technique based on cubic trigonometric 
B-spline is presented for the solution of telegraph Equation (1) with initial conditions in Equation (2) 
and different two types of boundary conditions in Equations (3) and (4). Several studies have been 
carried out as the ordinary B-spline collocation methods to solve the proposed problem subject to 
different types of boundary conditions but not with cubic trigonometric B-spline collocation method. 
A usual finite difference scheme is applied to discretize the time derivative while cubic trigonometric 
B-spline is utilized as an interpolating function in the space dimension. The proposed method is un-
conditionally stable over 0.5 ≤ � ≤ 1 and this is proved by von Neumann approach. The feasibility of 
the method is shown by test problems and the approximated solutions are found to be in good 
agreement with the exact solutions. The proposed method is superior to C-RBF (Dehghan & Ghesmati, 
2010), TPS-RBF (Dehghan & Ghesmati, 2010), L-RBF (Dehghan & Ghesmati, 2010), RBF (Dehghan & 
Shokri, 2008), QuBSM (Dosti & Nazemi, 2012), CDS (L. B. Liu & H. W. Liu, 2013), CuBSM (Mittal & Bhatia, 
2013),  2014) due to smaller storage and CPU time in seconds.

1.4. Outlines of current paper
The outline of this paper is as follows: in Section 2, the cubic trigonometric B-spline collocation meth-
od is explained. In Section 3, numerical solution of proposed problem (1) is discussed. In Section 4, 
the stability of proposed method is investigated. In Section 5, the results of numerical experiments 
are presented and compared with exact solutions and some previous methods. Finally, in Section 6, 
the conclusion of this study is given.

2. Description of new trigonometric B-spline method
In this approach, the space derivatives are approximated using cubic trigonometric B-spline method 
(CuTBSM). A mesh Ω which is equally divided by knots xi into N subintervals [xi , xi+1], 
i = 0, 1, 2, … , N − 1 such that, Ω:a = x0 < x1 < ⋯ < xN = b is used. For the telegraph equation 
(1), an approximate solution using collocation method with cubic trigonometric B-spline is obtained 
in the form (Abd Hamid et al., 2010; Nikolis, 1995)
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where Ci(t) are to be calculated for the approximated solutions u(x, t) to the exact solutions 
uexc(x, t), at the point (xi , tj). A C2 piecewise cubic trigonometric B-spline basis functions TBi(x) over 
the uniform mesh can be defined as (Abbas et al., 2014a,  2014b,  2014c).

where, �(xi) = sin
(
x−xi

2

)
, � (xi) = sin

(
xi−x

2

)
, � = sin

(
h

2

)
sin

(
h
)
sin

(
3h

2

)
 and h = (b − a) N. 

The approximations Uj
i
 at the point (xi , tj) over subinterval [xi , xi+1] can be defined as:

The values of TBi(x) and its derivatives at knots are required to obtain the approximate solutions and 
these derivatives are recorded in Table 1.

where a1 =
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.

From (5) and (6), the values at the knots of Uj
i
 and their derivatives up to second order are calcu-

lated in the terms of time parameters Cj
i
 as:

The Equation (5) and boundary conditions given in (3) and (4) are used to obtain the approximate 
solution at end points of the mesh as:

and

(5)U(x, t) =

N−1∑
i=−3

Ci(t) TBi(x)

(6)TBi(x) =
1
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⎧
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i−3
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i−3
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(9)

{
U(x0, tj+1) = a1C−3 + a2C−2 + a1C−1 = f1(tj+1)

U(xN, tj+1) = a1CN−3 + a2CN−2 + a1CN−1 = f2(tj+1)

(10)

{
Ux(x0, tj+1) = a3C−3 + a4C−1 = w1(tj+1)

Ux(xN, tj+1) = a3CN−3 + a4CN−1 = w2(tj+1)

Table 1. Values TB
i
(x) and its derivatives

Basis x
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3. Numerical solution of telegraph equation
In this section, a numerical solution of telegraph Equation (1) is obtained using collocation approach 
based on cubic trigonometric basis functions. The discretization in time derivative is obtained by 
forward finite difference scheme and � weighted scheme applied to problem (1) to obtain a tri-diag-
onal of linear equations. The proposed � weighted scheme is closely related to the accuracy of the 
method and numerical stability. A uniform mesh Ω with grid points (xi , tj) to discretize the grid re-
gion Δ = [a, b] × [0, T] with xi = a + ih, i = 0, 1, 2, … , N and tj = jΔt,   j = 0, 1, 2, 3, … , M, is 
used T = MΔt. The quantities h and Δt are mesh space size and time step size, respectively. Using � 
weighted technique, the approximations for the solutions of telegraph Equation (1) at tj+1th time 
level can be given by as (Abbas et al., 2014b)

where gj
i
= (Uxx)

j

i
− �

2U
j

i
 and the subscripts j and j + 1 are successive time levels, j = 0, 1, 2, … , M. 

Using the central finite difference discretization of the time derivatives and rearranging the Equation 
(11), we obtain

The Equation (12) yields it as

where k = Δt is the time step. It is noted that the system becomes an explicit scheme when � = 0, 
a fully implicit scheme when � = 1, and a Crank–Nicolson scheme when � = 1∕2 (Abbas et al., 
2014a,  2014b). Hence, (13) becomes,

The initial condition (2) is substituted into last term of Equation (14) for computing C1.

By central difference approximation,

After that, the system thus obtained for j ≥ 1 on simplifying (14) after using (8) consists of N + 1 
linear equations in N + 3 unknowns Cj+1 =

(
C
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)
 at the time level t = tj+1. The 

boundary conditions given in Equations (9) or (10) are used for two additional linear equations to 
obtain a unique solution of the resulting system. Thus, the system becomes a matrix system of di-
mension (N + 3) × (N + 3) which is a tri-diagonal system that can be solved by the Thomas 
Algorithm (Burdern & Faires, 2004; Hoffman, 1992; Iyengar & Jain, 2009; Rosenberg, 1969; Sastry, 
2009).

3.1. Initial state
After the initial vectors C0 have been computed from the initial conditions, the approximate solu-
tions Uj+1

i
 at a particular time level can be calculated repeatedly by solving the recurrence relation 

(14) (Abbas et al., 2014a,  2014b). C0 can be obtained from the initial and boundary values of the 
derivatives of the initial condition as follows (Abbas et al., 2014b).
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Thus the Equations (16) yield a (N + 3) × (N + 3) matrix system for which the solution can be com-
puted by the use of the Thomas algorithm.

4. Stability of proposed method
In this section, the von Neumann stability method is applied to investigate the stability of the pro-
posed scheme. Such an approach has been used by many researchers (Abbas et al., 2014a,  2014b,  
2014c; Siddiqi & Arshed, 2013). Substituting the approximate solution U(x, t), their derivatives at the 
knots with q(x, t) = 0 (Strikwerda, 2004, chapter 9), into Equation (14) yields a difference equation 
with variables Cm given by

Simplifying it leads to

where

Now on inserting the trial solutions (one Fourier mode out of the full solution) at a given point xm, 
Cjm = �

j exp(im �h) into Equation (18) and rearranging the equations, � is the mode number, h is the 
element size and i2 = −1, we obtain

Dividing Equation (20) by �j−1ei�(m−2)h and rearranging, we obtain
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which represents the number of grid interval over one wavelength. Then the Equation (22) can be 
rearranged to the form (Strikwerda, 2004)

where � = � h is dimensionless wave number. As the shortest waves represented at the considered 
grid points have wavelength 2 h, whereas the longest ones tend to infinity, then 2 ≤ N ≤ ∞ implies 
that 0 ≤ � ≤ � (Strikwerda, 2004). Let

Then the Equation (21) yields

Applying the Routh–Hurwitz criterion (Siddiqi & Arshed, 2013) on Equation (24), the necessary and 
sufficient conditions for Equation (14) to be unconditionally stable as follows: Consider the transfor-
mation � =

1+�

1−�
 and simplifying the Equation (14) becomes as

The unconditionally stability condition |�| ≤ 1 under the following necessary and sufficient 
conditions
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1

2
.

Thus the proposed scheme for telegraph equation is unconditionally stable in the region 0.5 ≤ � ≤ 1 
without any restriction on grid size and time step size but h should be chosen in such a way that the 
accuracy of the scheme is not degraded.

N =
�

h

(23)� = � h =
2�

N

A = w2 + 2w1 cos (�)

B = w4 + 2w3 cos (�)

C = a2 + 2a1 cos (�)

(24)A �
2
− B � + C = 0

(25)(A + B + C)�2 + 2(A − C)� +
(
A − B + C

)
= 0

(26)A + B + C ≥ 0, A − C ≥ 0, A − B + C ≥ 0

(27)

A + B + C =
(
w2 +w4 + a2

)
+ 2

(
w1 +w3 + a1

)
cos (�)

A − B + C =
(
w2 −w4 + a2

)
+ 2

(
w1 −w3 + a1

)
cos (�)

A − C =
(
w2 − a2

)
+ 2

(
w1 − a1

)
cos (�)

(28)A + B + C =

(
16(1 + k�) + 2k2 (3 + 4�2)(−1 + 2�) sin

2

(
h

4

))
cos ec2

(
h

4

)
≥ 0

(29)A − B + C = k2 cos ec2
(
h

4

)(
6 cos2

(
h

4

)
+ 8�2 sin

2

(
h

4

))
≥ 0

(30)A − C = k cos ec2
(
h

2

)(
6 k � cos2

(
h

4

)
+ 2(8� + 4k�2�) sin

2

(
h

4

))
≥ 0



Page 8 of 17

Nazir et al., Cogent Mathematics (2017), 4: 1382061
https://doi.org/10.1080/23311835.2017.1382061

5. Numerical experiments
This section presents some numerical results of the hyperbolic telegraph equation (1) with initial (2) 
and boundary conditions (3) or (4). To test the accuracy of proposed method, several numerical ex-
periments for different values of � and � are given in this section with L

∞
, L2 and root mean square 

(RMS) errors are calculated by

We compare the numerical solutions obtained by cubic trigonometric B-spline collocation method 
for telegraph equation (1) with known exact solutions and those numerical methods in the litera-
ture. We carry out (14) by the proposed method and Intel®Core TM i5-2410M CPU@2.30 GHz with 8GB 
RAM and 64-bit operating system (Windows 7). The numerical implementation is carried out in 
Mathematica 9. Numerical results are computed by cubic trigonometric B-spline collocation method 
for the telegraph equation (1) at different time levels with smaller storage and CPU time which are 
tabulated in different Tables. All Figures are drawn at the value of weighting parameter � = 0.5.

Example 1  Consider the following particular case of Equation (1) in the domain 
[
0, �

]
 with 

� = 2, � =
√
2   (Dehghan & Shokri, 2008; Mittal & Bhatia, 2013)

subject to the following initial and boundary conditions

where q(x, t) = −2 e−t sin (x). The exact solution of this problem is u exc(x, t) = e
−t sin (x).

The proposed method is applied to calculate the numerical solutions of the telegraph equation 
(1)–(2) with h = 0.02, Δt = 0.0001 at different time levels. The absolute errors (L

∞
) and relative er-

ror (L2) at weighting parameter � = 0.5, different time levels and also CPU time in second, are re-
ported in Table 2. It can be concluded that our results are more accurate as compared to results 
obtained by Dehghan and Shokri (2008) and Mittal and Bhatia (2013). In Table 3 and Figure 1, we 
report the absolute errors, relative errors and RMS for h = 0.02, Δt = 0.01 at different time levels 

L
∞
= ‖uexc − UN‖∞ = max

J
�uj − (UN)j�

L2 = ‖u exc − UN‖2 =
����h

N�
j=o

�uj − (UN)j�2

RMS =

�∑N

j=o �uj − (UN)j�2
N + 1

.

�
2u

�t2
(x, t) + 4

�u

�t
(x, t) + 2u(x, t) =

�
2u

�x2
(x, t) + q(x, t) 0 ≤ x ≤ �, t ≥ 0

{
u(x, t = 0) = sin(x), �u

�t
(x, t = 0) = − sin(x)

u(x = 0, t) = 0, u(x = �, t) = 0

Table 2. Relative errors, maximum errors and CPU time of Example 1 with 𝚫t = 0.0001, h = 0.02

CuTBSM CuBSM (Mittal & 
Bhatia, 2013)

RBF (Dehghan & 
Shokri, 2008)

t L
2

L
∞

� CPU (s) L
2

L
∞

CPU (s) L
2

L
∞

CPU (s)
0.5 4.45E-08 3.55E-08 0.56 2.89 2.33E-06 1.86E-06 3.04 7.95E-05 8.37E-

06
5

1.0 5.02E-09 4.01E-09 0.56 4.15 4.36E-06 3.48E-06 4.89 1.45E-04 1.57E-
05

12

1.5 8.36E-10 6.66E-10 0.56 5.01 4.78E-06 3.82E-06 5.27 1.59E-04 1.74E-
05

19

2.0 8.06E-10 6.42E-10 0.56 7.04 4.27E-06 3.40E-06 7.53 1.42E-04 1.58E-
05

28
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with CPU time with different values of weighting parameter � due to the purpose of comparison with 
existing methods. The numerical results of this problem are in good agreement with exact solution 
and are more accurate than cubic B-spline collocation method (Mittal & Bhatia, 2013). Figure 2 de-
picts the graphs of comparison between exact and numerical solutions at time levels t = 1, 2, 3 
with h = 0.02, Δt = 0.01. Figure 3 shows the space–time graph of exact and approximate solutions 
at t = 3 with h = 0.02, Δt = 0.01. 

Example 2  In this problem, we consider the telegraph equation (1) in the domain 
[
0, 2

]
 with 

� = 10, � = 5 (Dosti & Nazemi, 2012; Mittal & Bhatia, 2013)

subject to the following initial and boundary conditions

and function q(x, t) = �

(
1 + tan2

(
(x + t) 2

))
+ �

2 tan
(
(x + t) 2

)
. The exact solution of this equation 

is u exc(x, t) = tan
(
(x + t) 2

)
.

In this problem, we take L = 2, h = 0.02 and two values of time step size k = 0.0001 and 
k = 0.001 due to the purpose of comparison with existing methods. In Table 4, we report the abso-
lute errors and relative errors of this problem using present method at different time levels and dif-
ferent values of weighting parameter �. In Table 5, we also recorded the absolute errors and relative 
errors at different time levels for h = 0.001, k = 0.001 and concluded that our results are more 

�
2u

�t2
(x, t) + 20

�u

�t
(x, t) + 25u(x, t) =

�
2u

�x2
(x, t) + q(x, t) 0 ≤ x ≤ 2, t ≥ 0

⎧
⎪⎨⎪⎩

u(x, 0) = tan
�
x 2

�
, �u

�t
(x, 0) = 1

2

�
1 + tan2

�
x 2

��

u(0, t) = tan
�
t 2

�
, u(2, t) = tan

�
(2 + t) 2

�

Figure 1. Error graph of 
Example 1 at different time 
levels with h = 0.02, 𝚫t = 0.01.

t 0.5
t 1.0
t 1.5
t 2.0

0.5 1.0 1.5 2.0 2.5 3.0
x

2. 10 8

4. 10 8

6. 10 8

8. 10 8

Errors

Table 3. Relative errors, maximum errors, RMS, values of � and CPU time of Example 1 with 
𝚫t = 0.01, h = 0.02

CuTBSM CuBSM (Mittal & Bhatia, 
2013)

t L
2

L
∞

RMS � CPU (s) L
2

L
∞

CPU (s)
0.5 1.07E-07 8.56E-08 6.03E-08 0.66500 0.32 2.33E-06 1.86E-06 0.51

1.0 2.56E-08 2.04E-08 1.44E-08 0.66615 0.45 4.36E-06 3.48E-06 0.59

1.5 2.38E-08 1.90E-08 1.33E-08 0.66649 0.56 4.78E-06 3.82E-06 0.63

2.0 1.17E-08 9.38E-09 6.61E-09 0.66664 0.65 4.27E-06 3.40E-06 0.68
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Figure 2. Comparison of 
numerical and exact solution 
of Example 1 at different time 
levels with h = 0.02, 𝚫t = 0.01.

t 1.0

t 1.5

t 2.0

t 3.0

0.5 1.0 1.5 2.0 2.5 3.0
x

0.05

0.10

0.15

0.20

0.25

0.30

0.35

U x,t

Figure 3. Space–time graphs 
of Example 1 at T = 3 with 
h = 0.02, 𝚫t = 0.01.

Space Time graph of Approximate solution at t 3.0

0
0.4

0.8
1.2

1.6
2.

2.4

3.
3.2

x

0

0.5

1.

1.5

2.

2.5
3

t

0

0.2

0.4

0.6

0.8

1.

U x,t

Space Time graph of Exact solution at t 3.0
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0.8
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Table 4. L
2
, L

∞
 errors of Example 2 at different time levels with h = 0.02

Method t L
2
(k = 0.0001) L

∞
(k = 0.0001) L

2
(k = 0.001) L

∞
(k = 0.001)

CuTBSM 0.2 2.13E-05 3.35E-05 1.85E-04 2.79E-04

0.4 5.25E-05 7.92E-05 4.43E-04 6.35E-04

0.6 1.02E-04 1.63E-04 7.96E-04 1.17E-03

0.8 2.39E-04 4.65E-04 1.47E-03 2.40E-03

1.0 1.73E-03 5.59E-03 4.19E-03 9.51E-03

CuBSM (Mittal & Bhatia, 
2013)

0.2 5.03E-05 3.48E-05 1.88E-04 2.63E-04

0.4 9.52E-05 5.34E-05 4.89E-04 7.00E-04

0.6 2.20E-04 9.47E-04 9.49E-04 1.49E-03

0.8 7.83E-04 1.88E-04 1.87E-03 3.41E-03

1.0 7.92E-03 5.87E-04 5.10E-03 1.12E-02

Table 5. Relative errors and maximum errors of Example 2 with 𝚫t = h = 0.001

t CuTBSM CuBSM (Mittal & Bhatia, 2013) QuBSM (Dosti & Nazemi, 
2012)

L
2

L
∞

L
2

L
∞

L
∞

0.2 1.82E-04 2.72E-04 2.18E-04 3.61E-04 2.77E-04

0.4 4.34E-04 6.17E-04 5.66E-04 1.03E-04 7.08E-04

0.6 7.71E-04 1.12E-03 1.15E-04 2.59E-03 1.39E-03

0.8 1.37E-03 2.18E-03 2,60E-03 7.62E-03 3.09E-03

1.0 2.99E-03 5.63E-03 1.03E-02 4.66E-02 1.34E-03
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accurate than Dosti and Nazemi (2012) and Mittal and Bhatia (2013). Figure 4 illustrates the com-
parison of exact solution with approximate solution of this problem at various time levels and differ-
ent values. In Figure 5, we show the space–time graph of approximate and exact solutions at time 
t = 1.0.

Example 3  We consider the telegraph equation (1) in the domain 
[
0, 1

]
 with � = 0.5, � = 1.0 (Deh-

ghan & Shokri, 2008; Mittal & Bhatia, 2013)

subject to the following initial and boundary conditions

and 

q(x, t) =
(
2 − 2t + t2

)(
x − x2

)
e−t + 2t2e−t. The exact solution of this problem is u exc(x, t) =

(
x − x2

)
t2e−t.

The absolute errors, relative errors and CPU time in seconds is shown in Table 6 with 
Δt = 0.001, h = 0.01. Numerical results are compared with the obtained results in Dehghan and 
Shokri (2008) and Mittal and Bhatia (2013). It can be concluded that the numerical solutions ob-
tained by our method are good in comparison with Dehghan and Shokri (2008) and Mittal and Bhatia 
(2013). The graph of exact and numerical solutions at t = 1, 2, 3, 4, 5 is shown in Figure 6 and the 
space–time graph of solutions up to t = 5 is presented in Figure 7.

�
2u

�t2
(x, t) +

�u

�t
(x, t) + u(x, t) =

�
2u

�x2
(x, t) + q(x, t)

{
u(x, 0) = 0,

�u

�t
(x, 0) = 0 0 ≤ x ≤ 1 & u(0, t) = 0, u(1, t) = 0 t ≥ 0

Figure 4. Numerical and exact 
solutions of Example 2 at 
different time levels with 
h = 0.02, 𝚫t = 0.001.
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Figure 5. 3D solutions plot 
of Example 2 at t = 1.0 with 
h = 0.02.

Space Time graph of Approximate solution at t 1.0
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Space Time graph of Exact solution at t 1.0
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Example 4  Consider the telegraph equation (1) in the domain 
[
0, 1

]
 and � = 6, � = 2 (Dosti & Naze-

mi, 2012; Mittal & Bhatia, 2013)

with following initial and boundary conditions

and q(x, t) = −2� sin(t) sin(x) + �
2 cos(t) sin(x). The exact solution of this problem is 

u(x, t) = cos(t) sin(x).

The efficiency can be noted from Table 7 using L2, L∞ and RMS errors with Δt = 0.0001, h = 0.01. 
In Table 8, we also reported the absolute errors and relative errors at different time levels for 

�
2u

�t2
(x, t) + 12

�u

�t
(x, t) + 4u(x, t) =

�
2u

�x2
(x, t) + q(x, t)

{
u(x, 0) = sin(x), �u

�t
(x, 0) = 0 0 ≤ x ≤ 1

u(0, t) = 0, u(1, t) = cos(t) sin(1) t ≥ 0

Figure 6. Comparison of 
numerical and exact solutions 
of Example 3 at different time 
levels with h = 0.01, 𝚫t = 0.001.

t 1.0

t 2.0

t 3.0

t 4.0

t 5.0

0.2 0.4 0.6 0.8 1.0
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14
U x,t

Table 6. Relative errors, maximum errors and CPU time of Example 3 with 𝚫t = 0.001, h = 0.01

CuTBSM CuBSM (Mittal & 
Bhatia, 2013)

RBF (Dehghan & 
Shokri, 2008)

t L
2

L
∞

CPU (s) L
2

L
∞

CPU (s) L
2

L
∞

CPU (s)
1.0 6.31E-05 8.76E-05 0.34 4.55E-05 5.91E-05 0.43 1.44E-04 1.85E-06 0

2.0 2.34E-05 3.29E-05 0.57 1.43E-05 1.78E-05 0.77 8.08E-05 1.07E-05 0

3.0 4.62E-06 5.90E-06 1.05 6.42E-06 1.43E-05 1.15 1.29E-04 1.82E-05 1

4.0 2.19E-05 3.04E-05 1.11 8.92E-06 1.35E-05 1.29 1.18E-04 1.65E-05 1

5.0 5.18E-06 6.92E-06 1.26 3.01E-06 5.20E-06 1.46 7.55E-05 1.05E-05 2

Figure 7. Space–time surface 
plot of solutions for Example 3 
at t = 5.0 with h = 0.01.

Exact Time graph of Approximate solution at t 5.0
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Exact Time graph of Exact solution at t 5.0
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different values h with Δt = 0.001 and the numerical results are compared with those of Dosti and 
Nazemi (2012) and Mittal and Bhatia (2013). We found that our numerical results are comparable to 
that of QuBSM (Dosti & Nazemi, 2012) and CuBSM (Mittal & Bhatia, 2013) in terms of L2, L∞ errors. 
Figure 8 presents the comparison of numerical and exact solutions for different time levels with 
Δt = 0.001, h = 0.01. The space–time graph of numerical and exact solutions at t = 1.0 is pre-
sented in Figure 9.

Example 5  Consider the following particular case of second-order one-dimensional equation (1) 
over the region 

[
0, 2�

]
×
[
0, 3

]
 with � = 4, � = 2 (Dehghan & Ghesmati, 2010; L. B. Liu & H. W. Liu, 

2013; Mittal & Bhatia, 2014)

Figure 8. Comparison of 
numerical and exact solutions 
of Example 4 at different time 
levels with h = 0.01, 𝚫t = 0.001.
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Table 7. Relative errors, maximum errors and RMS errors of Example 4 with 𝚫t = 0.001, h = 0.01

CuTBSM CuBSM (Mittal & Bhatia, 2013)
t L

2
L
∞

RMS L
2

L
∞

RMS
0.2 2.96E-06 4.63E-06 2.94E-06 2.69E-06 5.24E-06 2.67E-06

0.4 6.77E-06 1.01E-05 6.73E-06 5.61E-06 8.61E-06 5.59E-06

0.6 9.81E-06 1.42E-05 9.76E-06 9.75E-06 1.25E-05 9.70E-06

0.8 1.20E-05 1.71E-05 1.19E-05 1.38E-05 2.03E-05 1.37E-05

1.0 1.34E-05 1.90E-05 1.33E-05 1.73E-05 2.75E-05 1.72E-06

Table 8. L
2
 and L

∞
 errors of Example 4 at different time levels with k = 0.001

Method t L
2
(h = 0.01) L

∞
(h = 0.01) L

2
(h = 0.005) L

∞
(h = 0.005)

CuTBSM 0.2 2.92E-05 4.56E-05 2.92E-05 4.56E-05

0.4 6.69E-05 9.99E-05 6.68E-05 9.98E-05

0.6 9.70E-05 1.40E-04 9.69E-05 1.40E-04

0.8 1.19E-04 1.70E-04 1.18E-04 1.70E-04

1.0 1.33E-04 1.88E-04 1.88E-04 1.88E-04

CuBSM (Mittal & Bhatia, 2013) 0.2 3.67E-05 7.91E-05 3.43E-05 6.82E-05

0.4 8.90E-05 1.60E-04 8.57E-05 1.49E-04

0.6 1.37E-04 2.34E-04 1.33E-04 2.24E-04

0.8 1.79E-04 2.98E-04 1.75E-04 2.89E-04

1.0 2.13E-04 3.51E-04 2.09E-04 3.43E-04

QuBSM (Dosti & Nazemi, 2012) 0.2 – – – 2.43E-05

0.4 – – – 7.93E-05

0.6 – – – 1.21E-04

0.8 – – – 1.49E-04

1.0 – – – 1.65E-04
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subject to the following initial and Neumann boundary conditions

where q(x, t) = −2 e−t sin (x). The exact solution of this problem is u exc(x, t) = e
−t sin (x).

The proposed method is applied to calculate the numerical solutions of telegraph equation (1)–(2) 
and (4) at t = 1, 2, 3 with Δt = 0.01 and different values of h. The absolute errors, relative errors 
and RMS errors at different values of weighting parameter � and also CPU time in second, are re-
ported in Table 9. It can be concluded that our results are more accurate as compared to results 

�
2u

�t2
(x, t) + 8

�u

�t
(x, t) + 4u(x, t) =

�
2u

�x2
(x, t) + q(x, t) 0 ≤ x ≤ 2�, t ≥ 0

{
u(x, t = 0) = sin(x), �u

�t
(x, t = 0) = − sin(x)

ux(0, t) = e
−t , ux(2�, t) = e

−t

Figure 9. 3D plot of 
approximate and exact 
solutions for Example 4 at 
t = 5.0 with h = 0.01.

Space Time graph of Approximate solution at t 5.0
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Space Time graph of Exact solution at t 5.0
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Table 9. L
2
, L

∞
 and RMS errors and CPU(s) of Example 5 at different time levels with k = 0.01

Method h t � L
2

L
∞

RMS CPU (s)
CuTBSM 0.05 1.0 0.797420 1.36E-06 7.42E-07 5.43E-07 0.22

0.02 0.800670 1.36E-06 7.39E-07 5.41E-07 0.51
0.05 2.0 0.797420 3.04E-07 1.93E-07 1.20E-07 0.45
0.02 0.800670 2.96E-07 1.89E-07 1.18E-07 1.03
0.05 3.0 0.797420 8.33E-08 7.16E-08 3.31E-08 0.67
0.02 0.800670 8.14E-08 6.87E-08 3.24E-08 1.55
0.01 0.801147 8.13E-08 6.57E-08 3.21E-08 2.90

C-RBF (Dehghan & Ghesmati, 2010) 0.05 3.0 – – – 7.12E-05 –
0.02 – – – 1.71E-05 –
0.01 – – – 8.22E-05 –

TPS-RBF (Dehghan & Ghesmati, 
2010)

0.05 3.0 – – – 9.01E-05 –

0.02 – – – 2.94E-05 –
0.01 – – – 8.99E-06 –

L-RBF (Dehghan & Ghesmati, 2010) 0.05 3.0 – – – 3.01E-04 –
0.02 – – – 7.13E-05 –
0.01 – – – 4.32E-04 –

CuBSM (Mittal & Bhatia, 2014) 0.05 1.0 – 5.11E-04 4.95E-04 2.03E-04 –
0.02 – 1.78E-04 1.67E-04 7.11E-05 –
0.05 2.0 – 3.20E-04 2.45E-04 1.27E-04 –
0.02 – 1.53E-04 1.07E-04 6.11E-04 –
0.05 3.0 – 1.99E-04 1.34E-04 7.85E-04 0.70
0.02 – 1.07E-04 6.61E-05 4.26E-05 1.70
0.01 – – – 3.76E-05 3.10

CDS (L. B. Liu & H. W. Liu, 2013) 0.05 3.0 – – – 6.04E-07 –
0.02 – – – 6.01E-07 –
0.01 – – – 6.00E-07 –
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obtained by three RBFs schemes such as Cubic RBF (CRBF) (Dehghan & Ghesmati, 2010), Thin Plate 
Spline RBF (TPS-RBF) (Dehghan & Ghesmati, 2010), Linear RBF (L-RBF) (Dehghan & Ghesmati, 2010), 
CDS (L. B. Liu & H. W. Liu, 2013) and CuBSM (Mittal & Bhatia, 2014). Figure 10 depicts the errors of 
proposed method at different values of h. The numerical results of this problem are also in good 
agreement with exact solution. Figure 11 shows the space–time graph of approximate and exact 
solutions at t = 3 with h = 0.05, Δt = 0.01.

6. Conclusion
This paper has investigated the application of cubic trigonometric B-spline collocation method to 
find the numerical solution of the telegraph equation with initial condition and Dirichlet as well as 
Neumann’s type boundary conditions. A usual finite difference approach is used to discretize the 
time derivatives. The cubic trigonometric B-spline is used for interpolating the solutions at each 
time. The numerical results shown in Tables 2–9 and Figures 1–11 indicate the reliability of results 
obtained. The obtained solution to the telegraph equation for various time levels has been com-
pared with the exact solution and existing methods by calculating L

∞
, L2 and RMS errors. The com-

parison indicated improved accuracy compared to C-RBF (Dehghan & Ghesmati, 2010), TPS-RBF 
(Dehghan & Ghesmati, 2010), L-RBF (Dehghan & Ghesmati, 2010), RBF (Dehghan & Shokri, 2008), 
QuBSM (Dosti & Nazemi, 2012), CDS (L. B. Liu & H. W. Liu, 2013), CuBSM (Mittal & Bhatia, 2013,  
2014).

Figure 10. Error graph of 
Example 5 at different values of 
h at t = 3.0 with 𝚫t = 0.01.
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Figure 11. Space–time graph 
of solutions for Example 5 up 
to t = 3.0 with k = 0.01 and 
h = 0.05.
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