SICS Software-Intensive Cyber-Physical Systems
https://doi.org/10.1007/s00450-021-00428-2

REGULAR PAPER q

Check for
updates

Automating integration under emergent constraints for embedded
systems

Johannes Schlatow'® - Edgard Schmidt' - Rolf Ernst'

Received: 3 August 2020 / Accepted: 20 September 2021
© The Author(s) 2021

Abstract

As embedded applications are subject to non-functional requirements (latency, safety, reliability, etc.) they require special care
when it comes to providing assurances. Traditionally, these systems are quite static in their software and hardware composition.
However, there is an increasing interest in enabling adaptivity and autonomy in embedded systems that cannot be satisfied with
preprogrammed adaptations any more. Instead, it requires automated software composition in conjunction with model-based
analyses that must adhere to requirements and constraints from various viewpoints. A major challenge in this matter is that
embedded systems are subject to emergent constraints which are affected by inter-dependent properties resulting from the
software composition and platform configuration. As these properties typically require an in-depth evaluation by complex
analyses, a holistic formulation of parameters and their constraints is not applicable. We present a compositional framework
for model-based integration of component-based embedded systems. The framework provides a structured approach to
perform operations on a cross-layer model for model enrichment, synthesis and analysis. It thereby provides the overarching
mechanisms to combine existing models, analyses and reasoning. Furthermore, it automates integration decisions and enables
an iterative exploration of feasible system compositions. We demonstrate the applicability of this framework on a case study
of a stereo-vision robot that uses a component-based operating system.

Keywords Model-based integration - Component-based systems - Distributed real-time systems - Backtracking

1 Introduction As CPS are subject to non-functional requirements such as

latency, safety and reliability, the correct operation of such a

Autonomy is a current trend in Cyber-Pysical Systems (CPS)
as illustrated by the numerous automated and autonomous
driving initiatives. Here, autonomy involves decision-making
in reaction to (unforeseen) events in the system function,
the platform and the environment, which requires platform
adaptivity to deal with these dynamics in order to maintain a
safe operation [19].

This work was supported by German Research Foundation
(FOR 1800).

B Johannes Schlatow
johannes @schlatow.name

Edgard Schmidt
schmidt@edik.ch

Rolf Ernst
ernst@ida.ing.tu-bs.de

Institute of Computer and Network Engineering, Technische
Universitit Braunschweig, Brunswick, Germany

Published online: 23 October 2021

system also relies on emergent and platform-specific proper-
ties. The state of the art is that these requirements are handled
by rigorous development processes that involve the design,
integration and testing of the system and its subsystems. By
integration and testing, we refer to the composition, distribu-
tion and parametrisation of a system and its assurance w.r.t.
application and system-level requirements. These processes
also involve (manual) decisions, predictions and abstractions
based on expertise, which may lead to iterations if it turns out
that the integrated system cannot satisfy all requirements in
the end. Tracking down what decisions or parameters need to
be tuned to solve integration issues is often a manual debug-
ging procedure. With increasing adaptivity and platform
complexity, however, predicting all possible adaptations (i.e.
changes to the system at runtime) will not be an option any
more. A system must therefore be able to deal autonomously
with functional adaptations, unforeseen platform modifica-
tions and change of available implementations. In the general
case, this necessitates repeating the integration procedure to

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-021-00428-2&domain=pdf
http://orcid.org/0000-0003-0654-4618

J. Schlatow et al.

provide proper assurances. If this integration procedure could
be automatically performed in the field, i.e. on the CPS itself
or with assistance of cloud or edge-computing, we would
gain a new kind of platform autonomy for CPS.

This in-field integration was the central research question
of the DFG research unit Controlling Concurrent Change
(CCC) that we will explain more detailed in Sect. 2. In order
to achieve this, we thus need to automate integration activi-
ties such that assurances can be provided before the system
is reconfigured. Model-based analyses are able to provide
assurances if a model (view) with the respective semantics
is available for the system. Examples for this are fault-tree
analyses (FTAs), failure mode and effects analyses (FMEAs)
or response-time analyses (RTAs).

In the scope of this paper, we focus on RTAs for assur-
ance of worst-case latency requirements as a representative
example where formal models and automated analyses are
readily available. The challenge in this regard is to acquire all
the required views and couple them to the integration deci-
sions and adaptations that cause side effects on other views.
Normally, a holistic model incorporating all relevant views
is formulated to approximate and predict these effects and
enable global optimisation. Such an approach, however, will
be specifically tailored to a particular application domain and
platform such that semantic extensions become rather expen-
sive or abstract. In practice, one will often find related work
that address sub-problems in very detail but which cannot
be trivially extended to cover the full spectrum of the own
problem.

The main question that we are addressing in this paper
is thus how we can combine existing models and methods
into an overarching framework for automating the integra-
tion procedure while being able to provide assurances for
critical requirements. The focus in this regard lies on feasi-
bility rather than optimality. We contribute to this question by
introducing a cross-layer model on which existing methods
can be applied via a formalised set of operations. Further-
more, a depth-first search algorithm is defined which keeps
track of the performed operations in order to selectively roll-
back operations that need to be revised. Together, this builds
the foundation for an open-source software framework that
automates the integration procedure of CPS for finding an ini-
tial deployment from scratch and for performing incremental
adaptations for an existing deployment. We demonstrate the
application of this framework on a realistic case study from
the CCC project.

The remainder of this paper is structured as follows: We
describe the general architectural approach supporting in-
field changes in Sect. 2 before we introduce an illustrative use
case in Sect. 3 that we use as a running example. In Sect. 4,
we review the related work and present our framework in
Sect. 5. We apply our framework to the presented use case in
Sect. 6 and draw our conclusions in Sect. 7.

@ Springer

deployment Software

Component

Software
Component

Application Shaper/Monitor |

Run-Time Environment
- (including OS)

Platform Shaper/Monitor |

Hardware Hardware
Component Component
Network
e model domain el execution domain
~a at down time - _ - at run time

Fig. 1 Architectural approach of CCC with model domain (red), exe-
cution domain (green), and changing software/hardware components
(gray). [18] (colour figure online)

2 General approach

In the domain of CPS, we commonly deal with statically
configured systems that, once deployed, only support minor
adaptations at runtime. As mentioned in the previous section,
significant changes to a CPS require redoing an integration
procedure that provides the necessary assurance for critical
requirements such as worst-case latency. Instead of (manu-
ally) performing the integration for every change and target
platform in the lab, we want to equip CPSs with integration
capabilities to autonomously manage any changes. Our archi-
tectural approach for supporting this is depicted in Fig. 1.
The system is split into a model domain and an execution
domain. The runtime environment (RTE) including the Oper-
ating System (OS) resides in the execution domain. It runs
on a set of hardware components that are connected via one
or multiple networks (representing the processing platform)
and hosts a set of software components (representing the
applications). The RTE is optionally augmented by shap-
ing and monitoring mechanisms that enforce and observe
runtime behaviour. The model domain comprises the Multi-
Change Controller (MCC), which is a software module that
operates either as a background process on the same pro-
cessing platform or in the edge/cloud. The MCC takes full
control over the deployment of software components and the
system configuration by handling all change requests to the
system. Change requests can be issued internally by the exe-
cution domain or by external events (e.g. user interaction).
It therefore performs automated integration to find a feasible
solutions to the change request and model-based analyses to
provide assurance for critical requirements. Requests can be
rejected, if no acceptable solution is found.

Automating integration under emergent constraints for embedded systems

In the DFG research unit CCC, two application domains
have been explored: automated driving and space robots.
When it comes to automated driving, we are facing complex
and time-sensitive applications in a safety-critical environ-
ment. In this setting, a modularisation of Advanced Driver
Assistance Systems (ADAS) together with the in-field inte-
gration approach could enable user-determined functionality
(customisation) [18]. For space robots, we are more con-
cerned about heterogeneous resource-constrained devices in
a mission-critical setting where solutions to unexpected sit-
uations (e.g. hardware failures, environmental conditions,
power shortage) shall be found autonomously [8].

3 lllustrative use case: space robot

In this section, we present a use case on which we base the
presentation of our work. For this purpose, we summarise
the necessary information of the underlying RTE, introduce
the application scenario, and provide a formal problem state-
ment.

3.1 Runtime environment

Building safe and secure systems that dynamically change is
avery challenging and multidisciplinary objective. As policy
and behaviour are not fixed and verified at compile time any
more, assumptions made by model-based approaches must be
maintained at runtime. Microkernel-based architectures are
a popular approach for maintaining strong process isolation
and strict access control by OS design. While component-
based design is mainly a modelling concept, there are also
component-based approaches to OS construction [15,27] that
enforce the component concept at runtime. In such systems,
components represent atomic building blocks (compiled
design artefacts) that can be plugged together at runtime by
connecting their Inter-Process Communication (IPC) inter-
faces. We use the Genode OS Framework [10], which follows
the microkernel approach. Genode is a component-based OS
in which each component operates in a separate address
space. Components interact and communicate with each
other via service interfaces of different types. A service
interface type specifies the protocol of the interacting com-
ponents on a syntactical level, i.e. what signals and data
types are exchanged. A service provided by a component
can be used by one or multiple client components. Follow-
ing the principle of least privilege, a component is explicitly
granted the required connections to the services of particular
components. This component-based system is hierarchically
structured in order to minimise the Trusted Computing Base
(TCB) of each application [13] and therefore designed for
security. In contrast to a layered architecture there is no
single entity (e.g. middleware) that is authorised for the

delegation of resources and services. This also means that
software components cannot be easily mapped or migrated
to other processing nodes without modifying the system com-
position. Instead, distribution is achieved by inserting proxy
components that translate service interfaces (using IPC) into
network communication and vice versa [11]. As run-time
dependencies are therefore explicitly granted, there is no
uncertainty in the system composition and the possible com-
ponent interactions.

Components can be further categorised into applica-
tion components, device drivers, resource multiplexers, and
protocol stacks. While application components have an
application-specific purpose, components of the latter three
categories can be universally used as library components. A
device driver accesses a particular hardware device (e.g. net-
work interface controller) and provides a service interface to
another component. Many device drivers only allow a single
client component so that a resource multiplexer is required to
coordinate the access from multiple clients. A protocol stack
translates a service interface into an interface of a different
type.

By instantiating and interconnecting different compo-
nents, a particular functionality is implemented on the
system. The system composition is specified in XML to allow
(re)configuration of the system at runtime. Note, that most
components (apart from device drivers) can be instantiated
(i.e. replicated) multiple times and therefore used in dif-
ferent contexts. For time-sensitive applications, scheduling
priorities can be assigned to components and their processor
affinity can be set.

3.2 Application scenario

Our application scenario originates from the CCC project in
which a space robot was developed for exploring an unknown
environment in search for certain objects (cf. [8]). The robot
is equipped with a stereo camera and executes various image-
processing algorithms. It is further designed as a processing
platform that can adapt to function changes, platform changes
and changes in the environment conditions. This platform
consists of two nodes that are interconnected via Ethernet as
illustrated in Fig. 2. It is therefore representative for modular
and heterogeneous embedded systems that integrate multiple
off-the-shelf processing nodes into their processing platform.
In this use case, each processing node has a static subsystem
and a dynamic subsystem. The dynamic subsystem shall be
controlled by our framework whereas the static subsystem
hosts very basic functionality (e.g. the Ethernet driver). Node
1 is further divided into two symmetrical processing cores
and an optional Field Programmable Gate Array (FPGA)
that acts as a reconfigurable co-processor.

In this paper, we restrict our scope to two different
functions of the robot: An object detection algorithm for

@ Springer

J. Schlatow et al.

stereo

camera node 2

(Y

1
| FPGA 1
core core \ ! core

-:I_ 1.1 1.2 Tiy_na_m’ic 2.1 | dynamic
static static
network
Fig.2 Heterogeneous computing platform of the stereo-vision system

object
detection

camera

reprocess
control prep

camera
control

compute
disparity

compute
point cloud

pose
estimation

Fig.3 The platform executes two different functions: object detection
(top) and pose estimation (bottom)

identifying objects in the environment and a pose estima-
tion algorithm for picking up objects. Figure 3 depicts the
high-level architecture of both functions as interconnected
function blocks and their dependencies. The object detection
requires some preprocessing of the camera images as well as
control access to the camera. The pose estimation algorithm
is based on a point cloud describing the prospective objects.
In order to compute the point cloud, a raw camera image as
well as a disparity image is required that contains the dis-
tance of each pixel. In both cases, this results in a processing
chain with a latency requirement: The object detection must
be performed with at least 10 frames per second (fps) to allow
a minimum speed of the robot. On the other hand, the pose
estimation shall be executed with at least 5 fps. We thus define
the latency requirements of 100 ms and 200 ms respectively.

There is a variety of implementation options for the par-
ticular function blocks. For instance, preprocessing could be
implemented in software or with assistance of the FPGA.
There can also be different algorithms that trade processing
time with, e.g., robustness. As an example, there are numer-
ous stereo matching algorithms [12] that optimise and refine
the disparity at the cost of computation time and power con-
sumption. An adaptive platform should be able to choose
from different implementations dependent on the conditions,
available resources, and performance constraints. Alternative
implementations, however, may require different resources,
libraries, and privileges. Instead of precomputing possible
variants in advance, we want to automate the integration pro-
cess and thereby handle unexpected changes. Such changes
can be triggered from monitoring infrastructure that observes
platform and environment parameters at runtime. For our
investigations, we consider changes in function, platform

@ Springer

and environment: We address function changes by switching
between object detection and pose estimation. By toggling
the availability of the FPGA (e.g. caused by power restric-
tions or hardware failures), we accommodate for platform
changes. Environment changes are incorporated by sensing
whether the robot enters an area with high particle flux (e.g.
caused by a solar flare) in which case it must choose a more
reliable implementation. The goal of the integration process
is to find and select a suitable implementation and a distri-
bution such that the intended function can be executed on
the given platform and latency requirements are satisfied. In
order to provide assurance even if the implementation devi-
ates from the model, runtime monitoring should be applied
to observe critical model parameters. For instance, execution
times can be monitored to maintain the assurance of latency
requirements [25].

3.3 Problem statement

Based on the use case presented above, let us briefly
formulate a more concrete problem statement. We under-
stand the integration process as an incremental enrichment
and refinement of architectural models which starts with a
platform- and implementation-independent functional view.
Other views are derived during this process: An implemen-
tation view is acquired by distributing function blocks on the
target platform and by selecting available implementations.
In our use case, this view serves as a basis for reconfiguring a
component-based OS. For assurance of latency requirements,
we further need to derive a timing view that provides an in-
depth look at the execution behaviour of the implementation.

The inputs are given as a predetermined function archi-
tecture according to Definition 1 of the system (cf. Fig. 3),
a platform model according to Definition 2 that specifies the
structure of the available processing resources (cf. Fig. 2),
and latency requirements that specify the maximum allow-
able latency for a chain of function blocks.

Definition 1 A function architecture is a directed graph
Gfunc = (V, A) in which the nodes v € V represent func-
tion blocks and directed edges @ € A represent function
dependencies. An arc a = (u, v) denotes that u depends on
a function provided by v.

Definition2 A platform model is provided as a bipartite
graph Gpiaform = (U, V, E) where U denotes the set of
processing nodes, V' the set of communication resources
(networks, buses), and E determines what communication
resources are accessible by what processing node. A pro-
cessing node u € U is characterised by a tuple (£, ¢, R)p)
in which F, is a set of provided hardware capabilities
(flags) that abstract the microarchitecture (e.g. instruction
set, available peripherals, CPU frequency), c is the number

Automating integration under emergent constraints for embedded systems

of symmetrical processing cores, and R, specifies the amount
of provided resources (e.g. RAM).

We further assume there is a component repository spec-
ifying the available components according to Definition 3.
It also specifies composite components according to Def-
inition 4 that predefine implementation patterns for the
particular function blocks.

Definition 3 A component is specified by a tuple (n, S,,
Sp, Fry Ry, T, A7, Dr) with the maximum number n of
instantiations per processing node, the required services Sy,
the provided services S, the required hardware capabilities
F;, the required amount of resources R,, a set of tasks T
describing the internal behaviour, precedence relations Ay
between tasks, and the delegations D7 between the service
interfaces S, U S, and the tasks 7. The required and pro-
vided services S, and S, are modelled by their interface type
and the maximum number of clients/connections for each
provided service.

Definition 4 A composite component is specified by (t, S,
Sp, C, Ac, Dc) with the type ¢ (function, proxy, multiplexer
or protocol stack), the required and provided services S,
and S, a set of internal non-composite components C, their
assembly connections A¢ and their delegations Dr to the
external service interfaces S, and §,. In addition to their
interface type (syntax), the required and provided services
are modelled by their expected/provided function (seman-
tics). The provided function is either statically defined or
inherited from one of the composite’s service requirements
(in case of a proxy, multiplexer or protocol stack).

A composite component thus specifies a particular use of one
or multiple components to achieve a certain function, proxy,
multiplexer or protocol stack.

Result of the integration is a component instantiation
according to Definition 5, which specifies what components
must be executed on what processing unit and how the com-
ponents’ interfaces must be interconnected.

Definition 5 A component instantiation is a directed graph
Ginst = (V,A) in which the nodes v € V denote the
components that are instantiated and directed edges a € A
represent the service connections between components. An
arc a = (u,v) denotes that u connects to v. Nodes are
annotated with the processing unit on which they are instan-
tiated and the assigned resources (e.g. RAM, scheduling
parameters). Edges are annotated with the service which they
interconnect.

The component instantiation must not only adhere to
the execution requirements of the components but also the
latency requirements of the function architecture. It should
also be minimal in the sense that, e.g. unused device drivers,
should not be instantiated at all.

In order to perform a RTA to verify the latency require-
ments, we need a timing view in form of a task graph. Here,
we only provide a very basic definition of a task graph. A
more sophisticated model for microkernel-based systems has
been presented in [24]. In our use case, tasks inherit their
scheduling priority from the instantiated component from
which they originate.

Definition 6 A task graphisadirected acyclic graph G515 =
(V, A) with tasks V and precedence relations A. Once acti-
vated, a task must execute for a certain amount of time
to complete which is bounded by its best-case and worst-
case execution time. A task that completed will immediately
activate other tasks according to the specified precedence
relations. Tasks without any incoming edge are further char-
acterised by a lower and upper arrival curve that specify the
minimum and maximum number of activations in a particular
time interval.

4 Related work

There is a large body of research in the field of model-based
design and integration for embedded systems. In particular,
there are several languages and tools that capture model infor-
mation and integrate model checking, analyses and/or code
generation: EAST-ADL! is an established description lan-
guage in the automotive domain and aligned with the classic
AUTOSAR standard. Rubus [17] is a concept for the model-
driven development of vehicular software systems which
particularly expresses timing-related information to support
end-to-end timing analysis. Similar to classic AUTOSAR,
code generation is used in order to deploy the modelled soft-
ware components into tasks and to create the corresponding
communication primitives. AADL? is an approach similar
to EAST-ADL that addresses other safety-critical domains
such as avionics and aerospace. MARTE? addresses the
modelling and analysis of embedded real-time systems by
adding non-functional properties such as timing to UML.
MechatronicUML [7] is a tool suite that integrates software-
and control engineering for the development of mechatronic
systems. Ptolemy II [22] is a software framework for study-
ing the actor-based design of distributed CPS. It focuses on
the assembly of software components and supports different
models of computations, among which the Ptides model [32].
Furthermore, it supports aspect-orientation as a means to
enrich a modelled design with additional concerns (e.g. con-
tracts, execution timing, fault modelling) [1]. Lingua Franca
[16] is a meta language for the definition and composition

1 http://east-adl.info/.

2 http://www.aadl.info/.

3 https://www.omg.org/omgmarte/.

@ Springer

http://east-adl.info/
http://www.aadl.info/
https://www.omg.org/omgmarte/

J. Schlatow et al.

of reactors — a time-aware variant of the actor model — by
reusing many ideas from Ptides. There are also approaches
to combine existing tool suites into a consistent tool chain
and workflow [5,28]. A good overview and characterisation
of such multi-view modelling approaches is given by Pers-
son et al. [20]. However, all these languages and tools are
commonly geared towards visual or textual modelling that
requires user interaction. Although they are very helpful in
assisting the design and integration of embedded systems,
design and integration decisions have to be performed by
human engineers. Moreover, these tools often rely on code
generation and a complete tool chain to statically implement
and integrate the modelled applications as a whole.

In his position paper, Rushby [23] highlights the impor-
tance of self-integration as a means to provide new capabili-
ties or services in a system-of-systems context and argues that
it “requires automated verification and synthesis of monitors,
adapters, and mediators at integration-time”. Since 2014, the
SISSY workshop [2] is dedicated to this problem statement
(cf. [3]) that focuses on the self-integration of systems into
larger system-of-systems rather than the automation of the
integration phase of a single system.

A wide field of related work is known under the term
models@run.time and addresses self-modelling aspects of
all kind of systems to enable adaptivity. Most recently, a
systematic literature review of 275 papers and a summary
of research challenges have been presented by Bencomo et
al. [4]. Our framework is an approach to combining existing
runtime models and methods in order to achieve adaptability
of heterogeneous platforms.

Another line of work can be summarised under the
term automated design-space exploration. There are many
approaches that try to formalise the design space in order
to automatically perform architecture optimisation: Terz-
imehic et al. [29] propose Satisfiability Modulo Theories
(SMT) for formulating constraints and objectives derived
from hardware and software annotations. ProMARTES [30]
is an approach that combines profiling, analysis and simula-
tion for architecture performance optimisation using Genetic
Algorithms (GAs). Eder et al. [9] use a dedicated domain-
specific modelling language to formulate memory, safety,
cost, energy and bandwidth constraints for the mapping/dis-
tribution problem, i.e. the allocation of software components
to hardware components. The main limitation of these
approaches is that the software composition is fixed. This
is a valid assumption when considering the deployment of
software components on a homogeneous architecture. How-
ever, as soon as software layers differ, a particular component
might need to be integrated differently when deployed on
another hardware component. There are approaches that
explicitly address the software composition problem [21]
using constraint-based methods such as SMT [21] or Mixed
Integer Linear Programming (MILP) [14], however, they do

@ Springer

not consider composite components. As soon as the num-
ber of required software components, tasks, etc. is not fixed
before design-space exploration, formulating (system-level)
constraints efficiently becomes very challenging. Further-
more, system-level effects and conflicts must be known
and approximated a-priori to formulate those constraints in
the first place. This is in contrast to our assumption that
system-level effects can often only be determined by com-
plex analyses. Although we do not regard constraint-based
methods as holistic alternatives to our framework, we con-
sider these as reasonable additions to solve subproblems
efficiently.

Intermediate results of our model-based integration
approach have been presented in [26] with a focus on an auto-
motive use case. Yet, the preliminary work has not featured an
overarching framework, a formalisation of cross-layer model
operations, or a backtracking search algorithm.

5 Framework

Following our problem statement, the structure of the mod-
elled architectural views is not predetermined. They must
therefore be (automatically) constructed from the given
input. This also involves the automation of integration deci-
sions (e.g. picking an implementation variant) with poten-
tially complex interdependencies. Under these conditions,
formulating the entire solution space (e.g. to find a global
optimum) quickly becomes unmanageable. With our frame-
work, we provide a solution for this in which we follow a
greedy strategy in combination with backtracking to deal
with conflicts.

Our framework comprises four basic parts as illustrated by
Fig. 4. The The cross-layer model (CLM) stores the modelled
architectural views (which we call model layers) and cap-
tures their relations. It is incrementally built up and refined
by executing operations of different types that we explain
in Sect. 5.2. An operation restricts the type and the scope
of modifications that are allowed on the CLM. The actual
modifications are computed by analysis engines (AEs) that
are invoked by the operations and which may use existing
tools to solve the particular problem. The execution of oper-
ations is managed by a search algorithm as we will explain
in Sect. 5.4. Our framework is applied to a particular inte-
gration problem by a) defining the layers and their hierarchy
of the CLM, b) defining the operations (and their order) that
shall be performed on the CLM, and c) implementing the
corresponding AEs.

5.1 Cross-layer model

The CLM is composed of a fixed set of graph-based model
layers G = {G1, ..., G} and their relations R as explained

Automating integration under emergent constraints for embedded systems

e

Seal.'ch executes » Operation modify > Cross-Layer
Algorithm
G
%,
ll\\
Analysis J
Engine

Fig.4 Our framework comprises four basic parts

below. The nodes and edges of each model layer can be anno-
tated with arbitrary parameters. Let us consider the function
architecture from Fig. 3 as an example of such a model layer.
For the distribution of function blocks on our processing plat-
form from Fig. 2, we also want to annotate each function
block with a discrete mapping parameter. For every block,
we can choose from a candidate set that comprises node 1
and node 2 (or a subset thereof).

Definition7 A model layer is a directed multigraph G, =
(Vk, Ak, Sk, tr) that is defined by a set of nodes Vi, a set of
edges Ay and functions:

— sk : Ay — Vj assigning each edge to its source node,
— tx : Ay — Vj assigning each edge to its target node.

Every node and edge can be annotated with an arbitrary set of
named parameters P. A parameter p; € P ischaracterised by
a set of candidates cand(p;) and a selected value val(p;) €
cand(p;).

The CLM is built by capturing inter-layer relations
between all pairs of layers: R = {R; ;|i < j:G;, G € G}.

Definition 8 The inter-layer relation between two layers G;
and Gj is defined by a 3—tuple R,‘,j = Rj,,' = (U;, Uj, El‘,j)
with

— the set U; = V; U A; of nodes and edges from G;,
— the set U; = V; U A; of nodes and edges from G,
— arelation E; ; C U; x Uj.

5.2 Operations

As mentioned before, we restrict modifications on the CLM
by our concept of operations. In particular, we distinguish
four different operation types: restrict for modifying the can-
didate sets, assign for parameter decisions, transform for
creating nodes/edges and setting inter-layer relations and
check for performing admission tests. Operations are typi-
cally invoked separately for each node/edge of a model layer.
However, in some cases, operations need a larger scope and
thus require all nodes/edges of a model layer as input. We
refer to the latter as batch operations.

5.2.1 Restrict

A restrict operation aggregates and constrains possible can-
didates of a particular parameter and model layer. It can be
regarded as a layer-specific and parameter-specific function
that defines the candidate set for a particular node/edge in
order to define the search space. We denote this operation
by restricty ;(obj) and batch_restricty ; (), where k identifies
the model layer Gy, i the parameter p; and obj the particular
node/edge.

5.2.2 Assign

A assign operation selects one of the possible candidate val-
ues from the candidate set. It can be seen as a refinement
step on the CLM in order to perform a depth-first search.
As above, we denote this operation by assign, ;(obj) and
batch_assigny, ; ().

5.2.3 Transform

The purpose of a transform operation is to populate a
particular model layer with nodes/edges by performing sub-
stitutions to the nodes/edges of an already populated model
layer. We denote this operation by transform; ;(obj) and
batch_transformy, ; (), where k identifies the source model
layer and / identifies the target model layer. While the batch
operation can perform arbitrary substitutions, the non-batch
variant must preserve locality in the sense that edges can only
be created if they connect nodes that were transformed from
interconnected nodes on the source layer. This is captured
more formally by the following definition.

Definition 9 The transform operation substitutes a node/edge
of a source layer G with a particular pattern (subgraph) that
is inserted into a target layer Gy:

transformy; : Vi U Ay — G
x— (V,A,s,1)
X = (VU‘/XUVI‘,AUASUA“S,[)

ifx € Vi :
ifx € Ay :

with:

Ve ={v:3(s(x),v) € Ex 1}

- Vi={v:3(¢x),v) € Ex 1}
—VaeA:(s(a),t@a)eVxV

—VYa € A; : (s(a), t(a)) € (Vg x VYU (V x V)
Va € A; : (s(a),t(a)) € (Vi x V)U(V x Vp)

In the scope of our use case, common examples are
the insertion of intermediate nodes (e.g. proxies) and the
replacement of function blocks by one or multiple software

@ Springer

J. Schlatow et al.

>
Y
[vs)

function layer

i X /@’g\i component layer
1 Y3 b stttickbtlioed - Al
j vo 7

Fig.5 Function blocks are transformed into components

components. An example is depicted by Fig. 5 that shows
how two connected function blocks are translated into com-
ponents. Block A is replaced by a single component X1,
whereas block B is replaced by a pattern of three compo-
nents (Y1,Y2 and Y3) and two edges. The edge between A
and B is transformed into two edges that interconnect the
component X1 (€ V) with Y1 and Y2 (¢ V;).

5.2.4 Check

The check operation is used for performing sanity checks and
admission tests on a particular model layer. We denote this
operation by checky (obj) and batch_checky (). For instance,
we may check every node on a component layer whether its
required services are connected. More sophisticated admis-
sion tests would be the check of latency and reliability
requirements as mentioned in Sect. 3. If a check fails, the
preceding parameter decisions must be revised to explore
alternative combinations. This involves repeating the depen-
dent operations. Ideally, only those decisions will be revised
that actually influence the check operation.

5.3 Analysis engines
AEs are a practical approach to interface established meth-

ods, existing tools and to use model-, application-, and
domain-specific logic for performing particular operations.

Intuitively, an AE encapsulates expert knowledge and addresses

a particular sub-problem, they perform local optimisation or
implement heuristic decisions. AEs may access the CLM
and the annotated parameters during its operation. Accesses
to the CLM are tracked in order to construct a dependency
graph that is used by the search algorithm that is explained
in the following section.

5.4 Search algorithm

As mentioned before, we implement a depth-first search
approach with our framework by selecting parameters early
on. This may require iterations in case a check or assign
operation fails. The latter is the case if there are no (more)
candidate values to choose from. The search algorithm shall

@ Springer

systematically explore alternative parameter candidates until
the first feasible solution is found. While the AEs deal with
prioritising what candidates are tried first (e.g. by implement-
ing heuristic methods), the search algorithm must take care
that a) all parameter combinations are reachable (complete
search) and b) the algorithm terminates (i.e. combinations are
not repeatedly tested). The central question of this algorithm
is what operations to revert and re-execute if a particular
check or assign fails. A straightforward approach is to apply
a simple chronological backtracking algorithm that reverts
the sequence of operations to the latest revisable operation.
However, as the CLM and operations expose parameter deci-
sions and restrict the scope of model modifications, we can
also employ an automated tracking of dependencies between
operations and thereby implement a non-chronological back-
tracking.

Listing 1 Search algoritm

Input: list of templates 1
dg = DependencyGraph() 2
cm = CrossLayerModel () 3
remaining = Stack(reversed(templates)) 4
while op = remaining.pop(): 5
if not op.is_batch(): 6
for obj in op.layer.graph_objects(): 7
if dg.has_node(op, obj): 8
continue 9
cm. start_tracking 10
okay = op.execute(obj) 11
rd, wr = cm. stop_tracking() 12
n = dg.insert_node(op, rd, wr, obj) 13
14
if not okay: 15
rollback(n) 16
else: 17
cm. start_tracking () 18
okay = op.execute(): 19
rd, wr = cm. stop_tracking() 20
n = dg.insert_node(op, rd, wr) 21
if not okay: 22
rollback(n) 23
return cm 24
25
rollback (node): 26
dg.topological_sort(node) 27
rn = dg.latest_revisable_node(node) 28
if not rn: 29
throw "Not Found" 30
31
for n in dg.reversed_subtree(rn, node): 32
cm. rollback (n) 33
if n.op not in remaining: 34
remaining . push(n.op) 35
dg.remove(n) 36

The overall algorithm is listed as pseudo-code in List-
ing 1. A dependency graph (DG) takes care of tracking
dependencies between operations (cf. Sect. 5.4.1). The tem-
plate operations are iterated from first to last by consuming
from the remaining stack (line 5). Non-batch operations
are applied to every node and edge of the operation’s asso-

Automating integration under emergent constraints for embedded systems

ciated layer (line 7) unless they are already present in the
DG for this node/edge (lines 8-9). When executing an oper-
ation, its read and write accesses to the CLM are tracked in
order to insert a new node into the DG accordingly (lines
10-13). In case the operation was not successful (line 15),
the DG is partially sorted (line 27, cf. Sect. 5.4.2) in order
to define a rollback path. If there is a revisable decision (rn)
on which the failed operation depends, the subtree of rn is
iterated from the leaves upwards (line 32) in order to rollback
the CLM (line 33), push the operation template back to the
remaining stack (lines 34-35), and clean up the DG (line
36). For batch operations, the graph objects are not iterated
and the operation is only executed once per layer (lines 18-
23). In particular, all graph objects are passed to the operation
at once and a single node is inserted into the DG.

5.4.1 Dependency tracking

The motivation of the dependency tracking is to allow non-
chronological backtracking [31]. It is enabled by the fact that
there is only a partial order between operations. For instance,
in Fig. 5, it is undefined whether A is transformed before
B or B transformed before A. In consequence, chronologi-
cal backtracking will potentially revert operations that could
otherwise be preserved between iterations. We implement
non-chronological backtracking by tracking read and write
accesses to the CLM for each executed operation. From this,
we derive dependencies between operations as follows: An
operation y depends on x if, e.g., y reads a parameter that
is written by x. Note, that this also includes read and write
accesses to the graph structure of the CLM. Dependencies
are stored in a DG defined as follows.

Definition 10 The dependency graph is a directed acyclic
graph DG = (V, A) with

— aset of nodes V representing operations,
— a set of directed edges A € V x V such that V(u, v) :
jﬂx (u,x), (x,v) € A.

The edges reflect the transitive reduction of execution depen-
dencies between operations, i.e. an edge (u, v) denotes that
v depends on u and (potentially) all operations on which u
depends.

The left side of Fig. 6 depicts a simplified DG for the
example from Fig. 5. In order to decide on the implementa-
tion parameter p; for both function blocks on layer Gy, there
isarestricty ; and assigny, ; operation onnode A and B. As the
assign operations read the candidate set written by the cor-
responding restrict operation, an edge exists between these
operations. Similarly, the transform operation for A and B
depend on the corresponding assign operation, as they access

*

restricty, ; (A)

transform, ;(A)

[restrictk_z(A)] [TestTict;cyz(B)]

[assignk,i(A)] [GSSiynk,i(B)]

[transfarmk.l (A)j [transforka (B)j

E]/ transform,, ;(e) \O

check;(e)

lO

=

restricty (B
assigny, ;(B)

transform,, (B

@ transform, ;(e)
check;(e)

Fig.6 Left: Exemplary dependency graph for Fig. 5. Right: Topologi-
cally sorted graph for failed check. Revisable operations are highlighted

the selected parameter value. The transform operation of the
edge e between A and B, however, depends on both node
transform operations because it connects component nodes
that were inserted (written) when the nodes where trans-
formed. In this example, we assume there is a check operation
that serves as a sanity check for the resulting component
graph. It accesses the nodes and edges written by all three
check operations, yet, only the dependency to the edge trans-
formation is stored in the graph since it transitively includes
the dependencies to the other transform operations. In con-
sequence, the result of the check operation can be affected by
any operation that is a predecessor in the DG. Next, we will
explain how this DG enables the rollback of operations to
systematically revise and iterate parameter decisions. Note,
dependency tracking could also be used to determine the ini-
tial execution order of operations, which must currently be
provided by the user.

5.4.2 Rollback and revision

Let us assume, the check operation in Fig. 6 fails and that
both assign operations are revisable, i.e. there are alternative
candidate values left. The goal is to systematically iterate
all combinations of possible values for both parameters. For
this, we must keep in mind that the set of parameters and
possible candidate values is neither predetermined nor glob-
ally fixed but depends on other operations (e.g. the number
of inserted components). In order to iterate parameter alter-
natives in a systematic pattern and still respect dependencies
between operations, we take the following approach: First,
we store the already tried and discarded candidates for each
parameter in a local context, i.e. for the corresponding assign
operation, so that it is reset when the operation is reverted.
Second, when backtracking is triggered, we sort the prede-
cessors of the failed operation topologically in order to define
an unambiguous path in which the revisable operations can
be hierarchically iterated. This is exemplified by the right

@ Springer

J. Schlatow et al.

side of Fig. 6 that shows the topologically sorted DG from
Fig. 6. In the new graph, the preceding operations have been
sequentialised such that assign; ; (A) is before assign; ; (B)
while independent sub graphs (indicated by “...””) remain
unmodified. The rollback procedure on this graph works as
follows: First, the current parameter value for B is stored in
the set of discarded candidates, every operation in the sub-
tree of assigny ;(B) is reverted and also removed from the
DG (Listing 1, lines 33+36). Second, the assign operation
is revised, i.e. re-executed but disallowing the already dis-
carded values. If no other candidate is left, the operation fails
and the algorithm will jump to assign;, ;(A). All candidates
for B will be iterated again for a new value for A. There
is, however, a special case that we must take into account:
Later operations may transitively add dependencies to oper-
ations that have already been sorted. For instance, such an
operation may depend on transformy, ;(e) and a node from a
previously independent sub graph. If the new operation fails,
its predecessors must be sorted again. Due to the fact that
topological sorting is not unambiguous, the order must be
preserved between multiple sort operations. We resolve the
possible ambiguity by preferring operations from earlier iter-
ations when sorting. This way, the later added operation will
always be appended to the already sorted path.

6 Implementation and evaluation

In this section, we apply the presented framework to our use
case and provide an evaluation. We implemented the frame-
work in the Python programming language. We used the
module networkx* for storing directed multigraphs whose
nodes and edges can be annotated with labelled attributes
that we use for storing the particular parameter values and
candidates. The source code is available online’.

6.1 Framework application

Please note, that we cannot provide the full details on how
our framework is applied to the use case in the scope of this
paper. We therefore provide a summary by going through the
most relevant operations and model layers with emphasis on
the function block preprocess (cf. Fig. 3). We randomised
most of the parameter decisions for evaluating the search
algorithm and omit tailoring the AEs to our use case.

First, a distribution of function blocks to compatible pro-
cessing nodes is defined by selecting (restrict and assign)
the mapping parameter of all nodes. This is performed as a
batch operation in order to have a global view on the function

4 http://metworkx.github.io/.
> https://github.com/IDATUBS/MCC.

@ Springer

architecture and to prefer parameter combinations that min-
imize the number of connections between blocks mapped to
different nodes. There are four implementation options for
the preprocess block of which two require the FPGA that is
only available on node 1, hence the latter will be preferred
over node 2. Furthermore, the compute disparity block has a
hardware (FPGA) implementation and a software implemen-
tation whereas there are two software implementations for
computing the pointcloud. W.r.t. compatibility constraints,
the object detection and pose estimation blocks shall always
execute on node 2 while the camera block is only compatible
to node 1.

Depending on the mapping, communication proxies must
be inserted between dependent but distributed blocks. Hence,
a proxy parameter is selected for all edges. It determines
whether and what communication proxy must be inserted to
establish a communication path between the connected func-
tion blocks. As there is only a single network in this use case,
there is only a single candidate for every edge that, however,
depends on the mapping. A transform operation reflects the
new structure including proxies in the communication archi-
tecture layer by copying the nodes and adding an intermediate
proxy node to the edges with a set proxy parameter. On this
layer, the implementation parameter is selected randomly in
order to select one of the available and compatible imple-
mentations for each function block.

Depending on the implementation parameter, the pre-
process block is transformed into a network of 2, 3 or 4
components. One of the components requires a service from
the camera and another (or the same) component provides a
service delivering the preprocessed image. The edges of this
layer are transformed so that they connect the correspond-
ing components. As the connected components must respect
service compatibility as well as cardinality restrictions (i.e.
maximum number of clients), there are two more steps before
we have a correct component architecture. First, a protocol-
stack parameter is selected for every edge which determines
whether and what protocol stack component must be inserted
to achieve service compatibility. An intermediate model layer
is populated by a transform operation that copies the compo-
nent nodes and inserts the protocol stack components for the
edges according to the previously selected parameter. Simi-
larly, a muxer parameter is selected for every node on the new
layer to determine if resource multiplexers need to be inserted
and to set up the transformation into the component archi-
tecture layer. On this layer, we select an instance parameter
for every node to determine whether duplicate components
can be combined into a single component instantiation. The
transformation into the component instantiation layer may
insert the same object for multiple nodes, which is a valid
operation in our framework.

At this point, we can check whether memory require-
ments of all component on the same processing can be met.

http://networkx.github.io/
https://github.com/IDATUBS/MCC

Automating integration under emergent constraints for embedded systems

In this use case, we employ symmetric multiprocessing on
node 1. To support latency analysis, we want to predetermine
on what core and with what scheduling priority a software
component will be executed. We therefore select an affinity
and a priority parameter for every node on the component
instantiation layer. While we choose the affinity for every
instance uniformly at random, the priority is assigned as a
batch operation. We only consider a single priority assign-
ment as established (optimal) priority-assignment schemes
[6] should be applied that prevent iterating all priority permu-
tations. Every component is represented by one or multiple
tasks that can be triggered by interactions with other com-
ponents via the service interfaces, which is specified in the
component repository. This allows transforming the com-
ponent instantiation layer into a task graph layer. The task
graph can be used to calculate the reliability of critical pro-
cessing chains for a given error rate and to validate whether
the reliability requirements are met. As the FPGA is more
susceptible to particle flux than the CPU, we assume that
processing chains that use the FPGA will achieve lower
reliability than software implementations. For the latency
analysis, we applied the analysis from [24] that serves as
a basis for the last check operation.

6.2 Evaluation

In this section, we evaluate the application of our frame-
work to the use case. In particular, we show a) how our
frameworks performs for finding a first feasible solution for
a given input and b) how our framework reacts adaptively
to changes of model parameters. For a), we compare differ-
ent variants of our use case and compare chronological with
non-chronological backtracking. For b), we trigger adapta-
tions after a solution was found by randomly increasing the
Worst-Case Execution Time (WCET) assumptions for our
component tasks.

For both function architectures depicted in Fig. 3, i.e. pose
estimation (POSE) and object detection (OBJ), we consider
three variants:

I. FPGA disabled, low reliability required
II. FPGA enabled, low reliability required
III. FPGA enabled, high reliability required

Note, that we synthesised the execution time values for
the components’ tasks (i.e. their internal behaviour) because
not all execution traces for the implementation variants were
available. More specifically, we categorised the tasks of each
component into small tasks (100 us), medium tasks (1 ms)
and large tasks (20 ms). We also added some background load
to both processing nodes for realistic operating conditions
rendering the integration process more challenging w.r.t. the
latency requirement.

404
I chronological .
« 30 - EEE non-chronological ¢ . ¢
S f ., ;
o ‘ ¢ ¢
2 20 o H ' $
= ° . . $
] ! $
0- T T T T T T
100 . ¢
— +
L 754 .
o ’
€
i= 504 $ ‘
; I
8 254 , H
04 .;.é .uJ'- AL =3
T T T T T T
OBJ | oBJ Il OBJ 1l POSE | POSE Il POSE Il
Variant

Fig.7 Compare required iterations and time for chronological and non-
chronological backtracking (each box is calculated from 100 samples)

Table 1 summarises the resulting characteristics of our
use case variants that we acquired by a full sweep of the
search space. It displays the number of feasible solutions.
For every solution, the minimum and maximum number of
variables (i.e. parameters with more than one candidate) is
stated. We also denote the possible combinations of param-
eter assignments (assuming independent variables). The last
column indicates a lower bound on the required operations
which is determined by the minimum/maximum number of
nodes contained in the dependency graphs of the solutions.
Note, that not all possible combinations needed to be iterated
for the full sweep as variables are often dependent: For OBJ,
31 candidate solutions were rejected by the latency analysis.
Another 8 solution candidates were rejected earlier due to
inconsistencies in the distribution (missing protocol stack).
In OBJ III, 4 additional solutions were rejected by the reli-
ability check. For POSE I and III, latency analysis rejected
206 solutions (211 for POSE II). Reliability analysis rejected
16 solutions for POSE III. Again, because of inconsistencies
16 solutions were rejected early in POSE I-II1.

In order to evaluate the search efficiency, we executed
the search multiple times and recorded the number of itera-
tions required to find the first solution and the processing
time (executed on a single core of an Intel i5-3210M @
2.50 GHz). Figure 7 depicts the comparison between chrono-
logical and non-chronological backtracking as Tukey box
plots. Although we randomised the affinity and implemen-
tation decision, only a few iterations (in comparison to the
number of possible combinations) are required on average
to find a feasible solution. As expected, non-chronological
backtracking requires fewer iterations. This becomes par-
ticularly evident in OBJ III and POSE III, for which the
reliability requirement leads to late rejections. As the reli-

@ Springer

J. Schlatow et al.

Table 1 Characteristics of the

. . Variant Solutions Variables Possible combinations Required operations
six use case variants
OBJ I 9 6-8 64-256 881-973
OBJ I 13 4-8 32-512 881-973
OBJ III 9 6-8 128-512 881-973
POSE1 50 10-11 1024-2048 1097-1147
POSE I 61 7-12 128-4096 1070-1147
POSE III 50 11-12 2048-4096 1097-1147
Table 2 Number of successful adaptations for every variant and per- 3 10% ¢ ¢
centage value 150 1 HEE 10% (from scratch) Iy N
1 50%
OBJI OBJII OBJII POSEI POSEIl POSEII 2 B 50% (from scratch) N
.2 100 4 .
2 1 100%
10% 66 2 48 25 33 21 E) I 100% (from scratch) 0 .
50% 18 20 3 14 8 16 501y, g '
100% 8 8 2 1 28 3 '

ability test does not depend on the affinity parameters, the
non-chronological backtracking can cut some combinations
off the search space where the chronological backtracking
will iterate alternative affinity decisions before changing the
mapping parameter. On the other hand, the processing time
obviously increases for the non-chronological backtracking
due to the additional bookkeeping of the dependency graph.
In consequence, chronological backtracking will be faster
if the iterations are inexpensive. However, in case of more
expensive operations (e.g. complex admission tests), non-
chronological backtracking can be beneficial. Note, that in
three samples, the latency analysis did not converge,® which
led to extreme outliers for the processing time. For better
readability, these samples are not shown in the box plot for
the processing time.

For the second part of our evaluation, we investigate
whether our framework can be applied to achieve self-
adaptability and self-reflection. When combined with run-
time monitoring, model deviations can be detected and fed
back into our framework as a parameter change. Because the
DG exposes what operations are affected by the parameter
change, the search algorithm is able to rollback and re-
execute these operations. For low-level parameters, mainly
check operations will be affected. If these check operations
fail, the search must be continued to find a solution that can
deal with the changed parameter. For our evaluation, we sim-
ulated WCETSs adaptations of arbitrary tasks by the following
experiment. For every found solution, we randomly pick a
task from the task graph and increase its WCET parameter

6 This is a known effect of advanced timing analysis using network
calculus or busy-window analysis. It indicates low robustness (w.r.t.
timing) of the investigated system. In practice, such cases would be
dropped after bounded analysis time.

@ Springer

\ !
1ot SHE

T T
POSE Il POSE IlI

O—"-“‘-"‘. _—_.:_- &Eﬁl——

oéj I OBIJ I

T T
OoBJ Il POSE |

800 ¢
R ‘
*
.
600 D R
Z A * e
9] i ‘
£ 400
= [}
200 A ¢
U ’ ¢ i
0 _--i _...‘_. g—nﬁ “ =
T T T T T T
OB]J | OBjJ Il OB]J 1l POSE | POSE Il POSE 1lI
Variant

Fig.8 Required iterations and time for our adaptation scenarios

by a predefined percentage. The framework then rolls back
all dependent operations. In this case, only the latency anal-
ysis is rolled back and re-executed to validate whether the
changed parameter affects this admission test. If it does, the
exploration is continued by rolling back to the nearest revis-
able decision in the DG to find a solution for the adaptation.
This is repeated until there are no further solutions, i.e. the
framework cannot deal with the adaptation any more. We per-
formed this experiment for all previously mentioned variants
of our use case with three different percentage values (10%,
50% and 100% increase of WCETS). Table 2 shows the num-
ber of successful adaptations. As expected, a 10% increase in
WCETs does not affect the schedulability as much as a 50%
or 100% increase, hence there are more adaptations possi-
ble on average. However, as the tasks for which to increase
the WCET are picked randomly for every experiment, the
results are prone to stochastic effects. The higher the prior-
ity, the larger the WCET, and the higher the activation rate
of a task, the more impact a WCET increase will have on the
schedulability. The number of successful adaptations thus
also depends on when such a sensitive task was picked in the

Automating integration under emergent constraints for embedded systems

POSE Il (10%)
L 600
. 500 5
8 L 400 &
© o
g L300 §
- @]
- 200
- 100

T T T T T
0 5 10 15 20 25 30

Adaptation

Fig.9 Development of total iterations, time and complexity

experiment. Every adaptation serves as a datapoint in Fig. 8
which summarises the required iterations and processing
time for every adaption as Tukey box plots. For compari-
son, the figure also shows the results when every parameter
adaptation starts a search from scratch (which requires sig-
nificantly more time and iterations in general). For one case
(POSE 111, 50%), searching from scratch was more efficient.
This is explained by the fact that the adaptation experiment
performs a local search, which is dictated by the very first
solution. Figure 9 depicts the development of the total num-
ber of iterations, the total processing time and the search
space complexity (number of total iterations + combinations
left to iterate) for every adaptation for POSE II and 10%
increase as an example. Although the charts look differently
for the other variants, this case emphasises our observations.
First, the required processing time correlates with the num-
ber of iterations. Second, the slope of both curves indicate
how far the search algorithm needed to rollback the model
and extend the search scope. Third, there are multiple spikes
in the complexity since the search space is not holistically
defined in the beginning but extended iteratively. However,
instead of iterating all newly generated combinations, the
framework is able to cut-off parts of the search space because
of detected conflicts.

7 Conclusion

In this paper, we presented a framework that enables mod-
elling and automating integration activities. The framework
builds upon a cross-layer model that captures arbitrary archi-
tectural views and their relations. Integration activities are
represented as incremental operations on this model includ-
ing automated decision-making. Instead of a holistic (and
potentially approximated) formulation of decisions and con-
straints, analysis engines perform decisions and admission
tests on demand. In particular, this allows the integration
of existing methods and specialised tools that implement
these admission tests. On the one hand, admission tests pro-
vide automated verification of functional and non-functional

requirements. On the other hand, they identify emergent
constraints that were not previously known. We pursued a
depth-first search approach to iterate alternative decisions
only if admission tests fail.

Our framework addresses two challenges in particular:
(a) Automated composition of a system from components
and synthesising architectural views that can be passed to
model-based verification tools. (b) Tracking of dependen-
cies between model operations so that the scope of parameter
changes can be limited. Dependencies are captured con-
servatively based on accesses to the cross-layer model.
This traceability is not only essential for enabling a non-
chronological backtracking during integration. It also builds
the foundation for incremental adaptations and self-reflection
in reaction to unforeseen changes/anomalies observed at run-
time (by monitoring).

In our use case, we demonstrated the applicability of this
framework in conjunction with a component-based design
and a component-based OS. In particular, we could show that
the framework can be used for combining heuristic decision-
making with late admission tests (latency, reliability) that
perform an automated verification.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Akkaya I, Derler P, Emoto S, Lee EA (2016) Systems engineer-
ing for industrial cyber-physical systems using aspects. Proc IEEE
104(5):997-1012

2. Bellman K, Botev J, Diaconescu A, Esterle L, Gruhl C, Landauer C,
Lewis PR, Stein A, Tomforde S, Wiirtz RP (2018) Self-improving
system integration - status and challenges after five years of sissy.
In: 2018 IEEE 3rd international workshops on foundations and
applications of self* systems (FAS*W), pp 160-167

3. Bellman K, Gruhl C, Landauer C, Tomforde S (2019) Self-
improving system integration—on a definition and characteristics
of the challenge, pp 1-3. https://doi.org/10.1109/FAS-W.2019.
00014

4. Bencomo N, Gotz S, Song H (2019) Models@run.time: a guided
tour of the state of the art and research challenges. Softw Syst
Model 18:10

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/FAS-W.2019.00014
https://doi.org/10.1109/FAS-W.2019.00014

J. Schlatow et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

Biehl M, El-Khoury J, Loiret F, Torngren M (2014) On the mod-
eling and generation of service-oriented tool chains. Softw Syst
Model 13(2):461-480

Davis RI, Cucu-Grosjean L, Bertogna M, Burns A (2016) A review
of priority assignment in real-time systems. J Syst Archit 65:64-82
Dziwok S, Pohlmann U, Piskachev G, Schubert D, Thiele S, Gerk-
ing C (2016) The MechatronicUML design method: process and
language for platform-independent modeling. Tech. rep., Software
Engineering Department, Fraunhofer IEM/Software Engineering
Group. Heinz Nixdorf Institute, Paderborn, Germany

Dorflinger A, Albers M, Fiethe B, Michalik H, Mostl M, Schlatow
J, Ernst R (2019) Demonstrating controlled change for autonomous
space vehicles. In: NASA/ESA conference on adaptive hardware
and systems (AHS)

Eder J, Zverlov S, Voss S, Khalil M, Ipatiov A (2017) Bringing
dse to life: Exploring the design space of an industrial automotive
use case. In: ACM/IEEE 20th international conference on model
driven engineering languages and systems (MODELS)

Feske N (2020) Genode OS Framework Foundations 20.05. Tech
rep

Hamad M, Schlatow J, Prevelakis V, Ernst R (2016) A communica-
tion framework for distributed access control in microkernel-based
systems. In: Annual workshop on operating systems platforms for
embedded real-time applications (OSPERT)

Hamzah RA, Ibrahim H (2016) Literature survey on stereo vision
disparity map algorithms. J Sens 2016:8742920. https://doi.org/10.
1155/2016/8742920

Hirtig H (2002) Security architectures revisited. In: 10th ACM
SIGOPS European Workshop. ACM, New York

Kirov D, Nuzzo P, Passerone R, Sangiovanni-Vincentelli AL (2017)
Archex: An extensible framework for the exploration of cyber-
physical system architectures. In: Design automation conference.
ACM

Kuz I, Liu Y, Gorton I, Heiser G (2007) CAmKES: a component
model for secure microkernel-based embedded systems. J Syst
Softw 80(5):687-699

Lohstroh M, Romeo f.f, Goens A, Derler P, Castrillon J, Lee
EA, Sangiovanni-Vincentelli A (2019) Reactors: a deterministic
model for composable reactive systems. In: Cyber physical sys-
tems. Model-based design. Springer, Berlin, pp 59-85

Mubeen S, Miki-Turja J, Sjodin M (2014) Communications-
oriented development of component-based vehicular distributed
real-time embedded systems. J Syst Architect 60(2):207-220.
https://doi.org/10.1016/j.sysarc.2013.10.008

Mostl M, Nolte M, Schlatow J, Ernst R (2019) Controlling con-
current change—a multiview approach toward updatable vehicle
automation systems. In: Saidi S, Ernst R, Dirk Ziegenbein E (eds)
Workshop on autonomous systems design (ASD 2019), OpenAc-
cess Series in Informatics (OASIcs), vol 68, pp 4:1-4:15. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Florence, Italy. http://
drops.dagstuhl.de/opus/volltexte/2019/10337/

Mostl M, Schlatow J, Ernst R, Dutt N, Nassar A, Rahmani A,
Kurdahi FJ, Wild T, Sadighi A, Herkersdorf A (2018) Platform-
Centric Self-Awareness as a key enabler for controlling changes in
CPS. In: Proceedings of the IEEE, vol 106

Persson M, Torngren M, Qamar A, Westman J, Biehl M, Tri-
pakis S, Vangheluwe H, Denil J (2013) A characterization of
integrated multi-view modeling in the context of embedded and
cyber-physical systems. In: Proceedings of the eleventh ACM inter-
national conference on embedded software (EMSOFT)

Peter S, Givargis T (2015) Component-based synthesis of embed-
ded systems using satisfiability modulo theories. ACM Trans Des
Autom Electron Syst 20(4):49

Ptolemaeus C (2014) System design, modeling, and simulation:
using Ptolemy II, vol 1. Ptolemy.org, Berkeley

@ Springer

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Rushby J (2016) Trustworthy self-integrating systems. Distributed
Computing and Internet Technology. Springer, Berlin

Schlatow J, Ernst R (2017) Response-time analysis for task chains
with complex precedence and blocking relations. In: ACM Trans-
actions on Embedded Computing Systems ESWEEK Special Issue
(2017)

Schlatow J, Mostl M, Ernst R (2019) Self-aware scheduling for
mixed-criticality component-based systems. In: Real-Time and
Embedded Technology and Applications Symposium (RTAS)
Schlatow J, Nolte M, Mostl M, Jatzkowski I, Ernst R, Maurer
M (2017) Towards model-based integration of component-based
automotive software systems. In: Annual conference of the IEEE
industrial electronics society (IECON17), Beijing, China. https://
doi.org/10.24355/dbbs.084-201803221525

Song J, Wang Q, Parmer G (2013) The state of composite. In:
‘Workshop on operating systems platforms for embedded real-time
applications (OSPERT)

Sztipanovits J, Bapty T, Neema S, Howard L, Jackson E (2014)
OpenMETA: a model- and component-based design tool chain for
cyber-physical systems. Springer, Berlin

Terzimehic T, Voss S, Wenger M (2018). Using design space explo-
ration to calculate deployment configurations of IEC 61499-based
systems. In: IEEE international conference on automation science
and engineering, CASE, Munich, Germany

Triantafyllidis K, Aslam W, Bondarev E, Lukkien JJ, de With
PH (2016) ProMARTES: accurate network and computation delay
prediction for component-based distributed systems. J Syst Softw
117:10

van Beek P (2006) Chapter 4: Backtracking search algorithms.
In: Rossi F, van Beek P, Walsh T (eds) Handbook of constraint
programming, vol 2. Elsevier, New York

Zhao Y, Liu J, Lee EA (2007) A programming model for
time-synchronized distributed real-time systems. In: 13th IEEE
real time and embedded technology and applications symposium
(RTAS’07). IEEE, pp 259-268

Johannes Schlatow received the
M.Sc. degree in computer and
communication systems engineer-
ing from Technische Universitit
Braunschweig, Braunschweig,
Germany, in 2013. Afterwards, he
joined the Embedded System
Design Automation Group of Prof.
Ernst, where he conducted research
in the field of design, modeling
and analysis of component-based
mixed-critical systems, and where
he received his Dr.-Ing degree in
electrical engineering in 2021. He
is currently employed at Genode

Labs GmbH, where he puts component-based operating systems into
practice.

Edgard Schmidt received the B.Sc. degree in computer science from
Technische Universitidt Braunschweig, Braunschweig, Germany, in
2020. He is a software developer and works at Sternico on Siemens
Mobility projects. As a free software enthusiast and passionate pro-
grammer since his youth, his interests centre on software engineering
and the impact of software on everydays life.

https://doi.org/10.1155/2016/8742920
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1016/j.sysarc.2013.10.008
http://drops.dagstuhl.de/opus/volltexte/2019/10337/
http://drops.dagstuhl.de/opus/volltexte/2019/10337/
https://doi.org/10.24355/dbbs.084-201803221525
https://doi.org/10.24355/dbbs.084-201803221525

Automating integration under emergent constraints for embedded systems

Rolf Ernst received the Diploma
degree in computer science and
the Dr.Ing. degree in electrical
engineering from the University
of Erlangen-Nuremberg, Erlangen,
Germany, in 1981 and 1987,
respectively. After two years with
Bell Laboratories, Allentown, PA,
USA, he joined the Technische
Universitaet Braunschweig, Braun-
schweig, Germany, as a Profes-
sor of Electrical Engineering. He
chairs the Institute of Computer
and Network Engineering (IDA)
covering embedded systems
research from computer architecture and realtime systems theory to
challenging automotive, aerospace, or smart building applications.
Prof. Ernst is a DATE Fellow. He is a member of the German
Academy of Science and Engineering (acatech). In 2014, he received
the annual Achievement Award of the European Design Automation
Association (EDAA).

@ Springer

	Automating integration under emergent constraints for embedded systems
	Abstract
	1 Introduction
	2 General approach
	3 Illustrative use case: space robot
	3.1 Runtime environment
	3.2 Application scenario
	3.3 Problem statement

	4 Related work
	5 Framework
	5.1 Cross-layer model
	5.2 Operations
	5.2.1 Restrict
	5.2.2 Assign
	5.2.3 Transform
	5.2.4 Check

	5.3 Analysis engines
	5.4 Search algorithm
	5.4.1 Dependency tracking
	5.4.2 Rollback and revision

	6 Implementation and evaluation
	6.1 Framework application
	6.2 Evaluation

	7 Conclusion
	References

