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Abstract: This article presents a new methodology called Deep Theory of Functional Connections
(TFC) that estimates the solutions of partial differential equations (PDEs) by combining neural
networks with the TFC. The TFC is used to transform PDEs into unconstrained optimization problems
by analytically embedding the PDE’s constraints into a “constrained expression” containing a free
function. In this research, the free function is chosen to be a neural network, which is used to solve
the now unconstrained optimization problem. This optimization problem consists of minimizing
a loss function that is chosen to be the square of the residuals of the PDE. The neural network
is trained in an unsupervised manner to minimize this loss function. This methodology has two
major differences when compared with popular methods used to estimate the solutions of PDEs.
First, this methodology does not need to discretize the domain into a grid, rather, this methodology
can randomly sample points from the domain during the training phase. Second, after training,
this methodology produces an accurate analytical approximation of the solution throughout the entire
training domain. Because the methodology produces an analytical solution, it is straightforward to
obtain the solution at any point within the domain and to perform further manipulation if needed,
such as differentiation. In contrast, other popular methods require extra numerical techniques if the
estimated solution is desired at points that do not lie on the discretized grid, or if further manipulation
to the estimated solution must be performed.

Keywords: deep learning; neural network; theory of functional connections; partial
differential equation

1. Introduction

Partial differential equations (PDEs) are a powerful mathematical tool that is used to model
physical phenomena, and their solutions are used to simulate, design, and verify the design of a variety
of systems. PDEs are used in multiple fields including environmental science, engineering, finance,
medical science, and physics, to name a few. Many methods exist to approximate the solutions of
PDEs. The most famous of these methods is the finite element method (FEM) [1–3]. FEM has been
incredibly successful in approximating the solution to PDEs in a variety of fields including structures,
fluids, and acoustics. However, FEM does have some drawbacks.

FEM discretizes the domain into elements. This works well for low-dimensional cases, but the
number of elements grows exponentially with the number of dimensions. Therefore, the discretization
becomes prohibitive as the number of dimensions increases. Another issue is that FEM solves the PDE at
discrete nodes, but if the solution is needed at locations other than these nodes, an interpolation scheme
must be used. Moreover, extra numerical techniques are needed to perform further manipulation of
the FEM solution.
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Reference [4] explored the use of neural networks to solve PDEs, and showed that the use of neural
networks avoids these problems. Rather than discretizing the entire domain into a number of elements
that grows exponentially with the dimension, neural networks can sample points randomly from the
domain. Moreover, once the neural network is trained, it represents an analytical approximation of the
PDE. Consequently, no interpolation scheme is needed when estimating the solution at points that
did not appear during training, and further analytical manipulation of the solution can be done with
ease. Furthermore, Ref. [4] compared the neural network method with FEM on a set of test points that
did not appear during training (i.e., points that were not the nodes in the FEM solution), and showed
that the solution obtained by the neural network generalized well to points outside of the training
data. In fact, the maximum error on the test set of data was never more than the maximum error on
the training set of data. In contrast, the FEM had more error on the test set than on the training set.
In one case, the test set had approximately three orders of magnitude more error than the training set.
In short, Ref. [4] presents strong evidence that neural networks are useful for solving PDEs.

However, what was presented in Ref. [4] can still be improved. In Ref. [4] the boundary constraints
are managed by adding extra terms to the loss function. An alternative method is to encapsulate the
boundary conditions, by posing the solution in such a way that the boundary conditions must be
satisfied, regardless of the values of the training parameters in the neural network. References [5,6]
manage boundary constraints in this way when solving PDEs with neural networks by using a method
similar to the Coons’ patch [7] to satisfy the boundary constraints exactly.

Exact boundary constraint satisfaction is of interest for a variety of problems, particularly when
confidence in the constraint information is high. This is especially important for physics informed
problems. Moreover, embedding the boundary conditions in this way means that the neural
network needs to sample points from the interior of the domain only, not the domain and
the boundary. While the methods presented in [5,6] work well for low-dimensional PDEs with
simple boundary constraints, they lack a mechanized framework for generating expressions that
embed higher-dimensional or more complex constraints while maintaining a neural network with
free-to-choose parameters. For example, the fourth problem in the results section cannot be solved
using the solution forms shown in Ref. [5,6]. Luckily, a framework that can embed higher-dimensional
or more complex constraints has already been invented: The Theory of Functional Connections
(TFC) [8,9]. In Ref. [10], TFC was used to embed constraints into support vector machines, but left
embedding constraints into neural networks to future work. This research shows how to embed
constraints into neural networks with the TFC, and leverages this technique to numerically estimate
the solutions of PDEs. Although the focus of this article is a new technique for numerically estimating
the solutions of PDEs, the article’s contribution to the machine learning community is farther reaching,
as the ability to embed constraints into neural networks has the potential to improve performance
when solving any problem that has constraints, not just differential equations, with neural networks.

TFC is a framework that is able to satisfy many types of boundary conditions while maintaining
a function that can be freely chosen. This free function can be chosen, for example, to minimize
the residual of a differential equation. TFC has already been used to solve ordinary differential
equations with initial value constraints, boundary value constraints, relative constraints, integral
constraints, and linear combinations of constraints [8,11–13]. Recently, the framework was extended to
n-dimensions [9] for constraints on the value and arbitrary order derivative of (n− 1)-dimensional
manifolds. This means the TFC framework can now generate constrained expressions that satisfy the
boundary constraints of multidimensional PDEs [14].

2. Theory of Functional Connections

The Theory of Functional Connections (TFC) is a mathematical framework designed to turn
constrained problems into unconstrained problems. This is accomplished through the use of
constrained expressions, which are functionals that represent the family of all possible functions
that satisfy the problem’s constraints. This technique is especially useful when solving PDEs, as it
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reduces the space of solutions to just those that satisfy the problem’s constraints. TFC has two major
steps: (1) Embed the boundary conditions of the problem into the constrained expression; (2) solve
the now unconstrained optimization problem. The paragraphs that follow will explain these steps in
more detail.

The TFC framework is easiest to understand when explained via an example, like a simple
harmonic oscillator. Equation (1) gives an example of a simple harmonic oscillator problem.

m
d2y
dx2

1
+ k y = 0 subject to:

{
y(0) = y0

yx1(0) = yx1 ,
(1)

where the subscript in yx1 denotes a derivative of y with respect to x1.
Based on the univariate TFC framework presented in Ref. [8], the constrained expression is

represented by the functional,

f (x1, g(x1)) = g(x1) +
2

∑
j=1

ηj sj(x1),

where the sj(x1) are a set of mutually linearly independent functions, called support functions, and ηj
are coefficient functions that are computed by imposing the constraints. For this example, let’s choose
the support functions to be the first two monomials, s1(x1) = 1 and s2(x1) = x1. Hence, the constrained
expression becomes,

f (x1, g(x1)) = g(x1) + η1 + x1 η2. (2)

The coefficient functions, η1(x1) and η2(x1), are solved by substituting the constraints into the
constrained expression and solving the resultant set of equations. For the simple harmonic oscillator
this yields the set of equations given by Equations (3) and (4).

y(0) = g(0) + η1 (3)

yx1(0) = gx1(0) + η2. (4)

Solving Equation (3) results in η1 = y(0)− g(0), and solving Equation (4) yields η2 = yx1(0)−
gx1(0). Substituting η1 and η2 into Equation (3) we obtain,

f (x1, g(x1)) = g(x1) + y(0)− g(0) + x1

[
yx1(0)− gx1(0)

]
which is an expression satisfying the constraints, no matter what the free function, g(x1), is. In other
words, this equation is able to reduce the solution space to just the space of functions satisfying
the constraints, because for any function g(x1), the boundary conditions will always be satisfied
exactly. Therefore, using constrained expressions transforms differential equations into unconstrained
optimization problems.

This unconstrained optimization problem could be cast in the following way. Let the function to
be minimized, L, be equal to the square of the residual of the differential equation,

L(x1) =

[
m

d2 f (x1, g(x1))

dx2
1

+ k f (x1)

]2

.

This function is to be minimized by varying the function g(x1). One way to do this is to choose
g(x1) as a linear combination of a set of basis functions, and calculate the coefficients of the linear
combination via least-squares or some other optimization technique. Examples of this methodology
using Chebyshev orthogonal polynomials to obtain least-squares solutions of linear and nonlinear
ordinary differential equations (ODEs) can be found in Refs. [11,12], respectively.
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2.1. n-Dimensional Constrained Expressions

The previous example derived the constrained expression by creating and solving a series
of simultaneous algebraic equations. This technique works well for constrained expressions in
one dimension; however, it can become needlessly complicated when deriving these expression
in n dimensions for constraints on the value and arbitrary order derivative of n − 1 dimensional
manifolds [9]. Fortunately, a different, more mechanized formalism exists that is useful for this case.
The constrained expression presented earlier consists of two parts; the first part is a function that
satisfies the boundary constraints, and the second part projects the free-function, g(x1), onto the
hyper-surface of functions that are equal to zero at the boundaries. Rearranging Equation (2) highlights
these two parts,

f (x1, g(x1)) = y(0) + x1yx1(0)︸ ︷︷ ︸
A(x1)

+ g(x1)− g(0)− x1gx1(0)︸ ︷︷ ︸
B(x1,g(x1))

,

where A(x1) satisfies the boundary constraints and B(x1, g(x1)) is a functional projecting the
free-function onto the hyper-surface of functions that are equal to zero at the boundaries.

The multivariate extension of this form for problems with boundary and derivative constraints in
n-dimensions can be written compactly using Equation (5).

f (x, g(x)) = Mi1,i2,··· ,in(c(x))vi1(x1)vi2(x2) · · · vin(xn)︸ ︷︷ ︸
A(x)

+ (5)

+ g(x)−Mi1,i2,··· ,in(g(x))vi1(x1)vi2(x2) · · · vin(xn)︸ ︷︷ ︸
B(x,g(x))

where x = {x1, x2, · · · , xn}T is a vector of the n independent variables,M is an n-th order tensor
containing the boundary conditions c(x), the vi1 , · · · , vin are vectors whose elements are functions
of the independent variables, g(x) is the free-function that can be chosen to be any function that is
defined at the constraints, and f (x, g(x)) is the constrained expression. The first term, A(x), analytically
satisfies the boundary conditions, and the term, B(x, g(x)), projects the free-function, g(x), onto the
space of functions that vanish at the constraints. A mathematical proof that this form of the constrained
expression satisfies the boundary constraints is given in Ref. [9]. The remainder of this section discusses
how to construct the n-th order tensorM and the v vectors shown in Equation (5).

Before discussing how to build theM tensor and v vectors, let’s introduce some mathematical

notation. Let k ∈ [1, n] be an index used to denote the k-th dimension. Let kcd
p :=

∂dc(x)
∂xd

k

∣∣∣∣
xk=p

be

the constraint specified by taking the d-th derivative of the constraint function, c(x), evaluated at the
xk = p hyperplane. Further, let kcdk

pk
be the vector of `k constraints defined at the xk = pk hyperplanes

with derivative orders of dk, where pk and dk ∈ R`k . In addition, let’s define a boundary condition
operator kbd

p that takes the d-th derivative with respect to xk of a function, and then evaluates that
function at the xk = p hyperplane. Mathematically,

kbd
p[ f (x)] =

∂d f (x)
∂xd

k

∣∣∣∣
xk=p

.

This mathematical notation will be used to introduce a step-by-step method for building the
M tensor. This step-by-step process will be be illustrated via a 3-dimensional example that has
Dirichlet boundary conditions in x1 and initial conditions in x2 and x3 on the domain x1, x2, x3 ∈
[0, 1]× [0, 1]× [0, 1]. TheM tensor is constructed using the following three rules.

1. The elementM111 = 0.
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2. The first order sub-tensor of M specified by keeping one dimension’s index free and setting
all other dimension’s indices to 1 consists of the value 0 and the boundary conditions for that
dimension. Mathematically,

M1,...,1,ik ,1,...,1 =
{

0,k cdk
pk

}
.

Using the example boundary conditions,

Mi111 =
[
0, c(0, x2, x3), c(1, x2, x3)

]T

M1i21 =
[
0, c(x1, 0, x3), cx2(x1, 0, x3)

]T (6)

M11i3 =
[
0, c(x1, x2, 0), cx3(x1, x2, 0)

]T.

3. The remaining elements of theM tensor are those with at least two indices different than one.
These elements are the geometric intersection of the boundary condition elements of the first
order tensors given in Equation (6), plus a sign (+ or −) that is determined by the number of
elements being intersected. Mathematically this can be written as,

Mi1i2 ...in = 1b
d1

i1−1

p1
i1−1

[
2b

d2
i2−1

p2
i2−1

[
. . .
[

nb
dn

in−1
pn

in−1
[c(x)]

]
. . .
]]

(−1)m+1,

where m is the number of indices different than one. Using the example boundary conditions we
give three examples:

M133 = −cx2x3(x1, 0, 0)

M221 = −c(0, 0, x3)

M332 = cx2(1, 0, 0)

A simple procedure also exists for constructing the vik vectors. The vik vectors have
a standard form:

vik =

{
1,

`k

∑
i=1

αi1 hi(xk),
`k

∑
i=1

αi2 hi(xk), . . . ,
`k

∑
i=1

αi`k
hi(xk)

}T

,

where hi(xk) are `k linearly independent functions. The simplest set of linearly independent functions,
and those most often used in the TFC constrained expressions, are monomials, hi(xk) = xi−1

k . The `k ×
`k coefficients, αij, can be computed by matrix inversion,

kbd1
p1 [h1]

kbd1
p1 [h2] . . . kbd1

p1 [h`k
]

kbd2
p2 [h1]

kbd2
p2 [h2] . . . kbd2

p2 [h`k
]

...
...

. . .
...

kb
d`k
p`k

[h1]
kb

d`k
p`k

[h2] . . . kb
d`k
p`k

[h`k
]




α11 α12 . . . α1`k

α21 α22 . . . α2`k
...

...
. . .

...
α`k1 α`k2 . . . α`k`k

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Using the example boundary conditions, let’s derive the vi1 vector using the linearly independent
functions h1 = 1 and h2 = x1.[

1 0
1 1

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
→

[
α11 α12

α21 α22

]
=

[
1 0
−1 1

]

vi1 =
{

1, 1− x1, x1

}T

.
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For more examples and a mathematical proof that these procedures for generating theM tensor
and the v vectors form a valid constrained expression see Ref. [9].

2.2. Two-Dimensional Example

This subsection will give an in depth example for a two-dimensional TFC case. The example
is originally from problem 5 of Ref. [5], and is one of the PDE problems analyzed in this article.
The problem is shown in Equation (7).

∇2z(x, y) = e−x(x− 2 + y3 + 6y) subject to:
z(x, 0) = c(x, 0) = xe−x

z(0, y) = c(0, y) = y3

z(x, 1) = c(x, 1) = e−x(x + 1)

z(1, y) = c(1, y) = (1 + y3)e−1

where (x, y) ∈ [0, 1]× [0, 1]

(7)

Following the step-by-step procedure given in the previous section we will construct theM tensor:

1. The first element isM11 = 0.
2. The first order sub-tensors ofM are:

Mi11 =
{

0 c(0, y) c(1, y)
}

M1i2 =
{

0 c(x, 0) c(x, 1)
}

3. The remaining elements of M are the geometric intersection of elements from the first order
sub-tensors.

M22 = −c(0, 0) M23 = −c(1, 0)

M32 = −c(0, 1) M33 = −c(1, 1)

Hence, theM tensor is,

Mi1i2 =

 0 c(0, y) c(1, y)
c(x, 0) −c(0, 0) −c(1, 0)
c(x, 1) −c(0, 1) −c(1, 1)

 =

 0 y3 (1 + y3)e−1

xe−x 0 −e−1

e−x(x + 1) −1 −2e−1


Following the step-by-step procedure given in the previous section we will construct the v vectors.

For vi1 , let’s choose the linearly independent functions h1 = 1 and h2 = x.[
1 0
1 1

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
→

[
α11 α12

α21 α22

]
=

[
1 0
−1 1

]

vi1 =
{

1, 1− x, x
}T

.

For vi2 let’s choose the linearly indpendent functions h1 = 1 and h2 = y.[
1 0
1 1

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
→

[
α11 α12

α21 α22

]
=

[
1 0
−1 1

]

vi2 =
{

1, 1− y, y
}T

.
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Now, we use the constrained expression form given in Equation (5) to finish building the
constrained expression.

f (x, y, g(x, y)) = g(x, y) +
xy(y2 − 1)

e
+ e−x(x + y)+ (8)

+ (1− x)
(

g(0, 0) + y
(

g(0, 1) + y2 − g(0, 0)− 1
))

+ (x− 1)g(0, y)+

+ x
(

yg(1, 1) + (1− y)g(1, 0)
)
− xg(1, y) + (y− 1)g(x, 0)− yg(x, 1)

Notice, that Equation (8) will always satisfy the boundary conditions of the problem regardless
of the value of g(x, y). Thus, the problem has been transformed into an unconstrained optimization
problem where the cost function, L, is the square of the residual of the PDE,

L(x, y, g(x, y)) =
(
∇2 f (x, y, g(x, y))− e−x(x− 2 + y3 + 6y)

)2
.

For ODEs, the minimization of the cost function was accomplished by choosing g to be a linear
combination of orthogonal polynomials with unknown coefficients, and performing least-squares or
some other optimization technique to find the unknown coefficients. For two dimensions, one could
make g(x, y) the product of two linear combinations of these orthogonal polynomials, calculate all
of the cross-terms, and then solve for the coefficients that multiply all terms and cross-terms using
least-squares or non-linear least-squares. However, this will become computationally prohibitive as
the dimension increases. Even at two dimensions, the number of basis functions needed, and thus the
size of the matrix to invert in the least-squares, becomes large. An alternative solution, and the one
explored in this article, is to make the free function, g(x, y), a neural network.

3. PDE Solution Methodology

Similar to the last section, the easiest way to describe the methodology is with an example.
The example used throughout this section will be the PDE given in Equation (7).

As mentioned previously, Deep TFC approximates solutions to PDEs by finding the constrained
expression for the PDE and choosing a neural network as the free function. For all of the problems
analyzed in this article, a simple, fully connected neural network was used. Each layer of
a fully connected neural network consists of non-linear activation functions composed with affine
transformations of the form A = W · x + b, where W is a matrix of the neuron weights, b is a vector
of the neuron biases, and x is a vector of inputs from the previous layer (or the inputs to the neural
network if it is the first layer). Then, each layer is composed to form the entire network. For the fully
connected neural networks used in this paper, the last layer is simply a linear output layer. For example,
a neural network with three hidden layers that each use the non-linear activation function φ can be
written mathematically as,

N (x; θ) = W4 · φ
(

W3 · φ
(

W2 · φ
(
W1 · x + b1

)
+ b2

)
+ b3

)
+ b4,

where N is the symbol used for the neural network, x is the vector of inputs, Wk are the weight
matrices, bk are the bias vectors, and θ is a symbol that represents all trainable parameters of the
neural network; the weights and biases of each layer constitute the trainable parameters. Note that
the notation N (x, y, . . . ; θ) is also used in this paper for independent variables x, y, . . . and trainable
parameters θ.
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Thus, the constrained expression, given originally in Equation (8), now has the form given in
Equation (9).

f (x, y; θ) = N (x, y; θ) +
xy(y2 − 1)

e
+ e−x(x + y)+

+ (1− x)
(
N (0, 0; θ) + y

(
N (0, 1; θ) + y2 −N (0, 0; θ)− 1

))
+ (x− 1)N (0, y; θ)+

+ x
(

yN (1, 1; θ) + (1− y)N (1, 0; θ)
)
− xN (1, y; θ) + (y− 1)N (x, 0; θ)− yN (x, 1; θ)

(9)

In order to estimate the solution to the PDE, the parameters of the neural network have to be
optimized to minimize the loss function, which is taken to be the square of the residual of the PDE.
For this example,

L =
N

∑
i
Li(xi, yi; θ) where Li(xi, yi; θ) =

(
∇2 f (xi, yi; θ)− e−xi (xi − 2 + y3

i + 6yi)
)2

.

The attentive reader will notice that training the neural network will require, for this example,
taking two second order partial derivatives of f (x, y; θ) to calculate Li, and then taking gradients of L
with respect to the neural network parameters, θ, in order to train the neural network.

To take these higher order derivatives, TensorFlow’sTM gradients function was used [15].
This function uses automatic differentiation [16] to compute these derivatives. However, one must be
conscientious when using the gradients function to ensure they get the desired gradients.

When taking the gradient of a vector, yj, with respect to another vector, xi,
TensorFlowTMcomputes,

zi =
∂

∂xi

( N

∑
j=1

yj

)
where zi is a vector of the same size as xi. The only example where it is not immediately obvious that
this gradient function will give the desired gradient is when computing ∇2 fi. The desired output of
this calculation is the following vector,

zi =

{
∂2 f1

∂x2
1
+

∂2 f1

∂y2
1

, · · · ,
∂2 fN

∂x2
N

+
∂2 fN

∂y2
N

}T

,

where zi has the same size as fi and (xi, yi) is the point used to generate fi. TensorFlow’sTM gradients
function will compute the following vector,

z̃i =

{
∂2(∑N

j=1 f j
)

∂x2
1

+
∂2(∑N

j=1 f j
)

∂y2
1

, · · · ,
∂2(∑N

j=1 f j
)

∂x2
N

+
∂2(∑N

j=1 f j
)

∂y2
N

}T

.

However, because fi only depends on the point (xi, yi) and the derivative operator commutes
with the sum operator, TensorFlow’sTM gradients function will compute the desired vector (i.e., z̃i = zi).
Moreover, the size of the output vector will be correct, because the input vectors, xi and yi, have the
same size as fi.

Training the Neural Network

Three methods were tested when optimizing the parameters of the neural networks:

1. Adam optimizer [17]: A variant of stochastic gradient descent (SGD) that combines the advantages
of two other popular SGD variants: AdaGrad [18] and RMSProp [19].
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2. Broyden–Fletcher–Goldfarb–Shanno [20] (BFGS): A quasi-Newton method designed for solving
unconstrained, non-linear optimization problems. This method was chosen based on its
performance when optimizing neural network parameters to estimate PDE solutions in Ref. [5].

3. Hybrid method: Combines the first two methods by applying them in series.

For all four problems shown in this article, the solution error when using the BFGS optimizer
was lower than with the other two methods. Thus, in the following section, the results shown use the
BFGS optimizer.

The BFGS optimizer is a local optimizer, and the weights and biases of the neural networks are
initialized randomly. Therefore, the solution error when numerically estimating PDEs will be different
each time. However, Deep TFC guarantees that the boundary conditions are satisfied, and the loss
function is the square of the residual of the PDE. Therefore, the loss function indicates how well
Deep TFC is estimating the solution of the PDE at the training points. Moreover, because Deep TFC
produces an analytical approximation of the solution, the loss function can be calculated at any point.
Therefore, after training, one can calculate the loss function at a set of test points to determine whether
the approximate solution generalizes well or has over fit the training points.

Due to the inherit stochasticity of the method, each Deep TFC solution presented in the results
section that follows is the solution with the lowest mean absolute error of 10 trials. In other words,
for each problem, the Deep TFC methodology was performed 10 times, and the best solution of those
10 trials is presented. Moreover, to show the variability in the Deep TFC method, problem 1 contains
a histogram of the maximum solution error on a test set for 100 Monte Carlo trials.

4. Results

This section compares the estimated solution found using Deep TFC with with the analytical
solution. Four PDE problems are analyzed. The first is the example PDE given in Equation (7), and the
second is the wave equation. The third and fourth PDEs are simple solutions to the incompressible
Navier–Stokes equations.

4.1. Problem 1

The first problem analyzed was the PDE given by Equation (7), copied below for the
reader’s convenience.

∇2z(x, y) = e−x(x− 2 + y3 + 6y) subject to:
z(x, 0) = xe−x

z(0, y) = y3

z(x, 1) = e−x(x + 1)

z(1, y) = (1 + y3)e−1

where (x, y) ∈ [0, 1]× [0, 1]

The known analytical solution for this problem is,

z = e−x(x + y3).

The neural network used to estimate the solution to this PDE was a fully connected neural
network with 6 hidden layers, 15 neurons per layer, and 1 linear output layer. The non-linear activation
function used in the hidden layers was the hyperbolic tangent. Other fully connected neural networks
with various sizes and non-linear activation functions were tested, but this combination of size and
activation function performed the best in terms of solution error. The biases of the neural network
were all initialized as zero, and the weights were initialized using TensorFlow’sTM implementation of
the Xavier initialization with uniform random initialization [21]. One hundred training points, (x, y),
evenly distributed throughout the domain were used to train the neural network.
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Figure 1 shows the difference between the analytical solution and the estimated solution using
Deep TFC on a grid of 10,000 evenly distributed points. This grid represents the test set. Figure 2
shows a histogram of the maximum solution error on the test set for 100 Monte Carlo trials.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

|z
z t

ru
e|

1e
7

0.0

0.5

1.0

1.5

2.0

2.5

5.00e-08

1.00e-07

1.50e-07

2.00e-07

2.50e-07

Figure 1. Problem 1 solution error.
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Figure 2. Problem 1 maximum test set solution error from 100 Monte Carlo trials.

The maximum error on the test set shown in Figure 1 was 2.780× 10−7 and the average error was
8.517× 10−8. Figure 2 shows that Deep TFC produces a solution at least as accurate as the solution
in Figure 1 approximately 10% of the time. The remaining 90% of the time the solution error will be
larger. Moreover, Figure 2 shows that the Deep TFC method is consistent. The maximum solution
error in the 100 Monte Carlo tests was 3.891× 10−6, approximately an order of magnitude larger
than the maximum solution error shown in Figure 1. The maximum error from Figure 1 is relatively
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low, six orders of magnitude lower than the solution values, which are on the order of 10−1. Table 1
compares the maximum error on the test and training sets obtained with Deep TFC with the method
used in Ref. [5] and FEM. Note, the FEM data was obtained from Table 1 of Ref. [5].

Table 1. Comparison of Deep TFC, Ref. [5], and finite element method (FEM).

Method Training Set Test Set

Deep TFC 3× 10−7 3× 10−7

Ref. [5] 5× 10−7 5× 10−7

FEM 2× 10−8 1.5× 10−5

Table 1 shows that Deep TFC is slightly more accurate than the method from Ref. [5]. Moreover,
in consonance with the findings from Ref. [5], the FEM solution performs better on the training set than
Deep TFC, but worse on the solution set. Note also “that the accuracy of the finite element method
decreases as the grid becomes coarser, and that the neural approach considers a mesh of 10× 10 points
while in the finite element case a 18× 18 mesh was employed” [5].

The neural network used in this article is more complicated than the network used in Ref. [5],
even though the two solution methods produce similarly accurate solutions. The constrained
expression, f (x, y; θ), created using TFC, which is used as the assumed solution form, is more complex
both in the number of terms and the number of times the neural network appears than the assumed
solution form in Ref. [5]. For the reader’s reference, the assumed solution form for problem 1 from
Ref. [5] is shown in Equation (10). Equation (10) was copied from Ref. [5], but the notation used has
been transformed to match that of this paper; furthermore, a typo in the assumed solution form from
Ref. [5] has been corrected here.

f (x, y; θ) = x(1− x)y(1− y)N (x, y; θ) + (1− x)y3 + x(1 + y3)e−1

+ (1− y)x(e−x − e−1) + y((1 + x)e−x − (1− x + 2e−1))
(10)

To investigate how the assumed solution form affects the accuracy of the estimated solution,
a comparison was made between the solution form from Ref. [5] and the solution form created using
TFC in this article, while keeping all other variables constant. Furthermore, in this comparison,
the neural network architecture used is identical to the neural network architecture given in Ref. [5]
for this problem: one hidden layer with 10 neurons that uses a sigmoid non-linear activation function
and a linear output layer. Each network was trained using the BFGS optimizer. The training points
used were 100 evenly distributed points throughout the domain.

Figure 3 was created using the solution form posed in [5]. The maximum error on the test set was
4.246× 10−7and the average error on the test set was 1.133× 10−7. Figure 4 was created using the
Deep TFC solution form. The maximum error on the test set was 8.790× 10−6 and the average error
on the test set was 2.797× 10−6.

Comparing Figures 3 and 4 shows that the solution form from [5] gives an estimated solution that
is approximately an order of magnitude lower in terms of average error and maximum error for this
problem. Hence, the more complex TFC solution form requires a more complex neural network to
achieve the same accuracy as the simpler solution form from Ref. [5] with a simple neural network.
This results in a trade-off. The TFC constrained expressions allow for more complex boundary
conditions (i.e., derivatives of arbitrary order) and can be used on n-dimensional domains, but require
a more complex neural network. In contrast, the simpler solution form from Ref. [5] can achieve the
same level of accuracy with a simpler neural network, but cannot be used for problems with higher
order derivatives or n-dimensional domains.
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Figure 3. Problem 1 solution error using Ref. [5] solution form.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

|z
z t

ru
e|

1e
6

0
1
2
3
4
5
6
7
8

1.00e-06

2.00e-06

3.00e-06

4.00e-06

5.00e-06

6.00e-06

7.00e-06

8.00e-06

Figure 4. Problem 1 solution error using Deep TFC solution form.

4.2. Problem 2

The second problem analyzed was the wave equation, shown in Equation (11).

∂2u
∂t2 (x, t) = c2 ∂2u

∂x2 (x, t) subject to:
z(0, t) = 0

z(1, t) = 0

z(x, 0) = x(1− x)

zt(x, 0) = 0

where (x, t) ∈ [0, 1]× [0, 1]

(11)
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where the constant, c = 1. The analytical solution for this problem is,

z(x, t) =
∞

∑
k=0

8
(2k + 1)3π3 sin

(
(2k + 1)πx

)
cos

(
(2k + 1)cπt

)
.

Although the true analytical solution is an infinite series, for the purposes of making numerical
comparisons, one can simply truncate this infinite series such that the error incurred by truncation falls
below machine level precision. The constrained expression for this problem is shown in Equation (12).

f (x, t; θ) = (1− x)
[
N (0, 0; θ)−N (0, t; θ)

]
+ x
[
N (1, 0; θ)−N (1, t; θ)

]
−N (x, 0; θ)

+ x(1− x) +N (x, t; θ) + t
[
(1− x)Nt(0, 0; θ) + xNt(1, 0; θ)−Nt(x, 0; θ)

] (12)

The neural network used to estimate the solution to this PDE was a fully connected neural network
with three hidden layers and 30 neurons per layer. The non-linear activation function used was the
hyperbolic tangent. The biases and weights were initialized using the same method as problem 1.
The training points, (x, t), were created by choosing x to be an independent and identically distributed
(IID) random variable with uniform distribution in the range [0, 1], and t to be an IID random variable
with uniform distribution in the range [0, 1]. The network was trained using the BFGS method and
1000 training points.

Figure 5 shows the difference between the analytical solution and the estimated solution using
Deep TFC on a grid of 10,000 evenly distributed points; this grid represents the test set.
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Figure 5. Problem 2 solution error.

The maximum error on the test set was 2.643× 10−3 m and the average error on the test set was
6.305× 10−4 m. The error of this solution is larger than in the problem 1, while the solution values are
on the same order of magnitude, 10−1 m, as in problem 1. The larger relative error in problem 2 is due
to the more oscillatory nature of the solution (i.e., the surface of the true solution in problem 2 is more
complex than that of problem 1).

4.3. Problem 3

The third problem analyzed was a known solution to the incompressible Navier–Stokes equations,
called Poiseuille flow. The problem solves the flow velocity in a two-dimensional pipe in steady-state
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with a constant pressure gradient applied in the longitudinal axis. Equation (13) shows the associated
equations and boundary conditions.

∂u
∂x

+
∂v
∂y

= 0

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂P

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= µ

(
∂2v
∂x2 +

∂2v
∂y2

)
subject to:

u(0, y, t) = u(L, y, t) = u(x, y, 0) = 1
2µ

∂P
∂x

(
y2 −

(
H
2

)2
)

u(x, H
2 , t) = u(x,−H

2 , t) = 0

v(0, y, t) = v(L, y, t) = v(x, y, 0) = 0

v(0, H
2 , t) = v(0,−H

2 , t) = 0

(13)

where u and v are velocities in the x and y directions respectively, H is the height of the channel, P is
the pressure, ρ is the density, and µ is the viscosity. For this problem, the values H = 1 m, ρ = 1
kg/m3, µ = 1 Pa·s, and ∂P

∂x = −5 N/m3 were chosen. The constrained expressions for the u-velocity,
f u(x, y, t; θ), and v-velocity, f v(x, y, t; θ), are shown in Equation (14).

f u(x, y, t; θ) = N (x, y, t; θ)−N (x, y, 0; θ) +
L− x

L

(
N (0, y, 0; θ)−N (0, y, t; θ)

)

+
x
L

(
N (L, y, 0; θ)−N (L, y, t; θ)

)
+

P
(

4y2 − H2
)

8µ

+
1

2HL

(
(2y− H)

(
(L− x)N

(
0,−H

2
, 0; θ

)
+ xN

(
L,−H

2
, 0; θ

)
− LN

(
x,−H

2
, 0; θ

)
− (L− x)N

(
0,−H

2
, t; θ

)
+ LN

(
x,−H

2
, t; θ

)
− xN

(
L,−H

2
, t; θ

))
− (H + 2y)

(
(L− x)N

(
0,

H
2

, 0; θ
)
− LN

(
x,

H
2

, 0; θ
)
+ xN

(
L,

H
2

, 0; θ
)

− (L− x)N
(

0,
H
2

, t; θ
)
− xN

(
L,

H
2

, t; θ
)
+ LN

(
x,

H
2

, t; θ
)))

f v(x, y, t; θ) = N (x, y, t; θ)−N (x, y, 0; θ) +
L− x

L

(
N (0, y, 0; θ)−N (0, y, t; θ)

)

+
x
L

(
N (L, y, 0; θ)−N (L, y, t; θ)

)
+

1
2HL

(
(2y− H)

(
(L− x)N

(
0,−H

2
, 0; θ

)
+ xN

(
L,−H

2
, 0; θ

)
− LN

(
x,−H

2
, 0; θ

)
− (L− x)N

(
0,−H

2
, t; θ

)
+ LN

(
x,−H

2
, t; θ

)
− xN

(
L,−H

2
, t; θ

))
− (H + 2y)

(
(L− x)N

(
0,

H
2

, 0; θ
)
− LN

(
x,

H
2

, 0; θ
)

+ xN
(

L,
H
2

, 0; θ
)
− (L− x)N

(
0,

H
2

, t; θ
)
− xN

(
L,

H
2

, t; θ
)
+ LN

(
x,

H
2

, t; θ
)))

(14)

The neural network used to estimate the solution to this PDE was a fully connected neural network
with four hidden layers and 30 neurons per layer. The non-linear activation function used was the
sigmoid. The biases and weights were initialized using the same method as problem 1. The training
points, (x, y, t), were created by sampling x, y, and t IID from a uniform distribution that spanned
the range of the associated independent variable. For x, the range was [0, 1]. For y, the range was
[−H

2 , H
2 ], and for t, the range was [0, 1]. The network was trained using the BFGS method on a batch
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size of 1000 training points. The loss function used was the sum of the squares of the residuals of the
three PDEs in Equation (13).

The maximum error in the u-velocity was 3.308× 10−7 m per second, the average error in the
u-velocity was 9.998× 10−8 m per second, the maximum error in the v-velocity was 5.575× 10−7 m per
second, and the average error in the v-velocity was 1.542× 10−7 m per second. Despite the complexity,
the maximum error and average error for this problem are six to seven orders of magnitude lower
than the solution values. However, the constrained expression for this problem essentially encodes the
solution, because the initial flow condition at time zero is the same as the flow condition throughout
the spatial domain at any time. Thus, if the neural network outputs a value of zero for all inputs,
the problem will be solved exactly. Although the neural network does output a very small value for all
inputs, it is interesting to note that none of the layers have weights or biases that are at or near zero.

4.4. Problem 4

The fourth problem is another solution to the Navier–Stokes equations, and is very similar to
the third. The only difference is that in this case, the fluid is not in steady state, it starts from rest.
Equation (15) shows the associated equations and boundary conditions.

∂u
∂x

+
∂v
∂y

= 0

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= − ∂P

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= µ

(
∂2v
∂x2 +

∂2v
∂y2

)
subject to:

u(0, y, t) = ∂u
∂x (L, y, t) = u(x, y, 0) = 0

u(x, H
2 , t) = u(x,− H

2 , t) = 0

v(0, y, t) = ∂v
∂x (L, y, t) = v(x, y, 0) = 0

v(x, H
2 , t) = v(x,− H

2 , t) = 0

(15)

This problem was created to avoid encoding the solution to the problem into the constrained
expression, as was the case in the previous problem. The constrained expressions for the u-velocity,
f u(x, y, t; θ), and v-velocity, f v(x, y, t; θ), are shown in Equation (16).

f u(x, y, t; θ) = N (x, y, t; θ)−N (x, y, 0; θ) +N (0, y, 0; θ)−N (0, y, t; θ) + xNx(L, y, 0; θ)− xNx(L, y, t; θ)

+
1

2H

(
(2y− H)

(
N
(

0,−H
2

, 0; θ
)
−N

(
x,−H

2
, 0; θ

)
+ xNx

(
L,−H

2
, 0; θ

)
−N

(
0,−H

2
, t; θ

)
+N

(
x,−H

2
, t; θ

)
− xNx

(
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2
, t; θ
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(
N
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H
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(
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)))

f v(x, y, t; θ) = N (x, y, t; θ)−N (x, y, 0; θ) +N (0, y, 0; θ)−N (0, y, t; θ) + xNx(L, y, 0; θ)− xNx(L, y, t; θ)

+
1

2H

(
(2y− H)

(
N
(

0,−H
2
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)
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(
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+N

(
x,

H
2

, t; θ
)
− xNx
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H
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, t; θ
)))

(16)

The neural network used to estimate the solution to this PDE was a fully connected neural
network with four hidden layers and 30 neurons per layer. The non-linear activation function used was
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the hyperbolic tangent. The biases and weights were initialized using the same method as problem 1.
Problem 4 used 2000 training points that were selected the same way as in problem 3, except the new
ranges for the independent variables were [0, 15] for x, [0, 3] for t, and [−H

2 , H
2 ] for y.

Figures 6–8 show the u-velocity of the fluid throughout the domain at three different times.
Qualitatively, the solution should look as follows. The solution should be symmetric about the line
y = 0, and the solution should develop spatially and temporally such that after a sufficient amount of
time has passed and sufficiently far from the inlet, x = 0, the u-velocity will be equal, or very nearly
equal, to the steady state u-velocity of problem 3. Qualitatively, the u-velocity field looks correct in
Figures 7 and 8, and throughout most of the spatial domain in Figure 6. However, near the left end of
Figure 6, the shape of the highest velocity contour does not match that of the other figures. This stems
from the fact that none of the training points fell near this location. Other numerical estimations of this
PDE were made with the exact same method, but with different sets of random training points, and in
those that had training points near this location, the u-velocity matched the qualitative expectation.
However, none of those estimated solutions had a quantitative u-velocity with an error as low as
the one shown in Figures 6–8. Quantitatively, the u-velocity at x = 15 from Figure 8 was compared
with the known steady state u-velocity, and had a maximum error of 5.378× 10−4 m per second and
an average error of 3.117× 10−4 m per second.

Figure 6. u-velocity in meters per second at 0.01 s.

Figure 7. u-velocity in meters per second at 0.1 s.
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Figure 8. u-velocity in meters per second at 3.0 s.

5. Conclusions

This article demonstrated how to combine neural networks with the Theory of Functional
Connections (TFC) into a new methodology, called Deep TFC, that was used to estimate the solutions
of PDEs. Results on this methodology applied to four problems were presented that display how
accurately relatively simple neural networks can approximate the solutions to some well known PDEs.
The difficulty of the PDEs in these problems ranged from linear, two-dimensional PDEs to coupled,
non-linear, three-dimensional PDEs. Moreover, while the focus of this article was on numerically
estimating the solutions of PDEs, the capability to embed constraints into neural networks has the
potential to positively impact performance when solving any problem that has constraints, not just
differential equations, with a neural network.

Future work should investigate the performance of different neural network architectures on
the estimated solution error. For example, Ref. [4] suggests a neural network architecture where the
hidden layers contain element-wise multiplications and sums of sub-layers. The sub-layers are more
standard neural network layers like the fully connected layers used in the neural networks of this
article. Another architecture to investigate is that of extreme learning machines [22]. This architecture
is a single layer neural network where the weights of the linear output layer are the only trainable
parameters. Consequently, these architectures can ultimately be trained by linear or non-linear least
squares for linear or non-linear PDEs respectively.

Another topic for investigation is reducing the estimated solution error by sampling the training
points based on the loss function values for the training points of the previous iteration. For example,
one could create batches where half of the new batch consists of half of the points in the previous batch
that had the largest loss function value and the other half are randomly sampled from the domain.
This should consistently give training points that are in portions of the domain where the estimated
solution is farthest from the real solution.

Finally, future work will explore extending the hybrid systems approach presented in Ref. [23]
to n-dimensions. Doing so would enable Deep TFC to solve problems that involve discontinuities
at interfaces. For example, consider a heat conduction problem that involves two slabs of different
thermal conductivities in contact with one another. At the interface condition, the temperature is
continuous but the derivative of temperature is not.
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