

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permied.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1946-6226/2024/11-ART
hps://doi.org/10.1145/3702332

ACM Trans. Comput. Educ.

Decoloniality, Digital-coloniality and Computer Programming
Education
HANLI GEYSER
University of the Witwatersrand, Johannesburg, South Africa

Like digital technologies themselves, programming education is embedded in the colonial matrix of power, and access to programming
knowledge demands immersion in the epistemologies of the Global North. While there is a growing body of work exploring ways to
decolonise programming education, far more needs to be done. Current research focuses on the language of instruction and contextual
curricula; outward-facing engagements with decolonisation. However, to move toward digital-decoloniality involves scrutinising how
programming knowledge is recontextualised within curricula. Part of the project should be equipping both educators and students with
the tools to recontextualise programming itself. To dismantle the colonial logic embedded in programming education, attention must be
given to the knowledge formation of the discipline to identify moments of disruption. One such moment is the difficulty students face
when recontextualising their mental models of computing, from programming skills to programming concepts. This occurs at the
moment of reading, tracing and writing code. Programming requires one to refocus computational thinking and engage with a specific
semiotic system, translating the authors' intention into an executable computational process. Disrupting this moment using the strategies
of critical literacies opens computer programming and its resulting code to critical examination, allowing an inward-facing decolonial
engagement with the discipline.

CCS CONCEPTS • Social and professional topics~Professional topics~Computing education~Computational thinking •
Social and professional topics~Professional topics~Computing education~Computing literacy • Social and professional
topics~Professional topics~Computing education~Computing education programs~Computational science and engineering
education
Additional Keywords and Phrases: Introductory programming education, decoloniality, digital-colonialism, digital
literacy, critical literacy, language

1 INTRODUCTION

1.1 Aim
Software development is deeply embedded in the episteme of the Global North and exclusionary of minorities
and the subaltern [1], [2], [3], [4], [5], [6], [7]. The need for decoloniality in software development in both
industry and education is well established; however, there is still a need to extend research into possible
approaches and practices [8]. Most decolonial studies engage at the level of implemented technologies;
software observed in the wild rather than the interrelationships of the software creation process. Moreover, a
critical examination of the connection between the implemented technologies and the code underpinning
them is situated in highly specialised disciplines inaccessible to most developers and students [9]. As the
reach of the digital sphere extends, access to and participation in software creation is essential. International
emphasis on STEM fields, including teaching people programming skills, has led to the proliferation of
programming courses in higher education and sectoral training. While skills are desperately needed to enable
access to the global knowledge economy, educators need to remain aware of how uncritical adoption of
international technocratic mythologies and curricula embeds us in the systems of the technological centre.

The research has emerged through my teaching practice within the Department of Digital Arts at the
University of the Witwatersrand in South Africa, where I teach both programming and digital art theory. We
need to actively engage with decoloniality in our courses that introduce computer programming. Digital-
coloniality is raised in the arts and theory-based courses but has not been sufficiently linked to programming
as this is primarily taught as a functional skill. This lack leads students to see programming as ‘neutral’,

mailto:permissions@acm.org
https://orcid.org/0000-0002-1598-444X
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702332&domain=pdf&date_stamp=2024-11-01

2

ACM Trans. Comput. Educ.

existing outside of socio-cultural influence, and limits engagement with systemic digital-coloniality. As
demonstrated later in this article, this is not a unique problem; it can be seen across programming curricula in
various disciplines internationally.

A barrier to entry for computer programming educators wanting to approach decoloniality in their
curricula is accessing the vast body of knowledge. To provide a starting point, this article aims to set out
working parameters for a discussion of decoloniality in computer programming education. I identify
intersections in the literature on decoloniality, digital-coloniality, and programming education and propose
an additional avenue for investigation: leveraging critical literacies pedagogy to allow moments of
contestation in programming curricula and challenge the pervasive view of technology’s axiological
neutrality. I argue that opening computer programming to scrutiny in our curricula enables us to deconstruct
the digital-colonial power structures embedded in it and foster a critical understanding of how these are
reinforced in the code we write.

1.2 Structure
This article sets out each concern separately, briefly reviews the literature in each area, and raises
intersectional moments, leading to the argument for deploying critical code literacies to subvert the myth of
neutrality perpetuating digital-colonialism. Section two, Digital-(De)coloniality, establishes what we mean by
decoloniality, how this extends into the digital realm, and identifies the colonial apparatus present in the
smallest units of digital meaning-making: the myth of axiological neutrality in the code we write. Section
three, Decolonial Curricula, situates the curriculum as a construct within the
rationality/modernity/coloniality matrics of power through its selection of valid knowledge. It considers the
balancing act we face in our curricula between decolonial engagement and global relevance. It concludes by
arguing for inward-facing decolonial engagement through reading the discipline contrapuntally. Section four,
Programming Education, offers a high-level overview of the paradigms and common approaches
underpinning programming education. It identifies the difficulty of remapping conceptual frameworks when
learning to program as a possible moment of disruption when students engage with the reading, tracing, and
writing of code. Section five, Decolonial Approaches, sets out some common decolonial approaches to
programming education. It breaks these down into two broad categories: contextualisation (including
localisation, ethnocomputing, and indigenous knowledge) and language (including the language of
instruction, the language teaching approach in computer programming education, and translanguaging). It
argues for an additional approach focused on knowledge production in programming itself, in the moment of
reading, tracing and writing code, to challenge the myth of neutrality. These strands are brought together in
section six, Critical (Code) Literacies. The article examines the possibilities of leveraging critical computing,
critical code studies, and critical literacies to disrupt the myth of axiological neutrality and open code to
decolonial engagement. Section seven concludes the article and offers avenues for further research.

1.3 Positionality
As a white South African woman and a lecturer at a research-based university, I am inextricably complicit in
coloniality. Therefore, I position my work as concerned with decoloniality rather than claiming it as
decolonising or decolonised. As an educator, this translates into a conscious focus on finding moments of
disruption to critique colonial constructs and raise decoloniality in my teaching and curricula. I use bell
hooks’ framing of ‘supporting’ or ‘moving towards’ to access the labour of decoloniality without
appropriation [10]. While the relationship between conscientization and decoloniality is problematised, they
exist in productive tension [10], [11], [12], [13], [14], [15], [16]. hooks articulates this when reflecting on the
links between conscientization and decolonisation: a starting point, not an end goal “...that historical moment
when one begins to think critically about the self and identity in relation to one’s political circumstance” [10,
p. 47].

3

ACM Trans. Comput. Educ.

2 DIGITAL-(DE)COLONIALITY

2.1 What is Decoloniality?
Decoloniality relies on and revels in plurality; it is a state and a disposition, a philosophic action alive with
contradictions [17], [18], [19], [20]. Decoloniality is as diverse as the forms of coloniality itself. It is accessed
in a myriad of different ways by different theorists, depending on their fields, concerns, and circumstances. In
their comprehensive literature review of decolonisation in curriculum and pedagogy, Shahjahan et al. identify
that “... disciplinary reflexivity, student movements, and indigenous policy initiatives have created conflicting
conceptualizations and practices of decolonization, signalling the importance of teasing out these various
meanings” [8, pp. 74–75]. Still, all conceptions address the power relations embedded in the
rationality/modernity/coloniality complex [21], [22], [23], [24].

‘Decolonisation’ and ‘decoloniality’ are often used interchangeably; however, like colonialism and
coloniality, there is a distinction. A vast oversimplification would be that one is more commonly associated
with concerns of colonial domination, focusing on the territorial, political, and cultural, and the other with
redressing ideological and epistemological systems of power and subjugation [11], [17], [25]. While
‘decolonisation’ can be more directly linked to settler colonialism, ‘decoloniality’ refers to an epistemic
delinking from the rationality/modernity/coloniality matrix [26]. Decoloniality is concerned with the
intersection between coloniality of power, knowledge, and being. As Quijano states, it requires interrogating
ideological and epistemological matrices of power inherent in colonial systems “to liberate the production of
knowledge, reflection, and communication from the pitfalls of European rationality/modernity” [22, p. 177].
Mignolo traces the development of the term and states that by the early 2000s,

de-coloniality became the common expression paired with the concept of coloniality and the
extension of coloniality of power (economic and political) to coloniality of knowledge and of being
(gender, sexuality, subjectivity and knowledge), [and was] incorporated into the basic vocabulary
among members of the research project [26, p. 457].

In their highly influential article, “Decolonization is not a metaphor”, Tuck and Yang call for resistance to
the use of ‘decolonisation’ as a term to refer to critical, anti-colonial, postcolonial, and social justice concerns
and refer to its use in these contexts as a ‘settler move to innocence’, outlining ways in which the term has
been appropriated and equivocated [11]. Their critique has been adopted in much of the literature on
decolonising pedagogy. However, Shahjahan et al.’s review indicates that rather than the term being
appropriated and equivocated, it simply means different things at different times to different people. They
note that:

Overall, the literature on DCP [Decolonizing Curriculum and Pedagogy] suggested three
meanings of decolonization: (a) recognizing constraints, (b) disrupting, and (c) making room for
alternatives. All three meanings, while not exclusive, fed on each other. However, as we
demonstrated, the third meaning and how it manifested varied across different regions. It is
unsurprising that the regional variety in meanings is connected to varying relationships with
geopolitical power centers. Geographical, disciplinary, economic, and/or political orientation to the
metropole influenced decolonizing vantage. [1, p. 85]

This aligns with Tuck and Yang’s argument, which insists on specificity and context. As Tuck and Yang
make clear in their text and as elaborated on by Zembylas [12] and Garba and Sorintino [27], their argument
addresses settler colonialism as the focal point. They emphasise this when they state that the question:

“What is colonization?” must be answered specifically, with attention to the colonial apparatus
that is assembled to order the relationships between particular peoples, lands, the ‘natural world’,
and ‘civilization’. Colonialism is marked by its specializations… Decolonization likewise must be
thought through in these particularities. [11, p. 21]

To further this discussion, it is therefore necessary to examine the specificities of the colonial apparatus in
question. What is digital-colonialism, where is it situated, and what are the particularities of decoloniality in
this context?

4

ACM Trans. Comput. Educ.

2.2 What is Digital-Coloniality?
Horvath defines colonialism as a “form of domination – the control by individuals or groups over the
territory and/or behaviour of other individuals or groups” [28, p. 46]. Colonialism takes many forms,
interlinked in a complex web, built on and in each other. A distinguishing feature of all constructions of
colonialism is that they are embedded in the mechanisms of the colonial apparatus, the colonialities of power,
knowledge, and being. Lüthi et al. broadly reconfigure colonialisms under classical colonies, settler colonies,
colonies at the margins, and colonialism without colonies [29]. Their categorisation aims to decenter
perspectives of colonialism to include colonialities in the margins. However, they warn that “like all such
designations, these different terms … provide the abstract poles of a continuum rather than paradigms or
precise descriptive categories” [29, p. 4]. One colonial system cannot exist outside of the others. They argue
that approaching colonial formations in this way allows one to trace the “structural continuities of a colonial
matrix” despite their “engagements and interdependencies” [29, p. 1]. Digital-colonialism emerges from the
continuation of colonialism, through neo-colonialism, to techno-colonialism.

Neo-colonialism, coined by Sartre, emerged during the 1960s and was originally theorised by African
scholar Kwame Nkrumah [30]. In 1961, the All-African Peoples’ Conference released a Resolution on Neo-
colonialism, defining it as “an indirect and subtle form of domination by political, economic, social, military or
technical…” [31, np]. Neo-colonialism continues the rationality/modernity/coloniality complex by extending
the colonial myth of linear progress, linking access to ‘modernity’ to subjugation to economic and cultural
imperialism, as well as capitalism, globalisation and colonial aid [22], [32], [33], [34]. Techno-colonialism
indicates the ways in which technology is embedded in the rationality/modernity/coloniality complex
through the logic of progress, and digital-colonialism extends this into the digital technology sphere. While
techno-colonialism refers to the domination resulting from access and control over all technologies, for
example, medical or industrial, the terms ‘techno’ and ‘digital’ are currently used almost interchangeably in
the literature to refer to digital and computational technologies. However, it does not exist only within that
framing as part of a continuum; it also becomes a new form of colonialism in and of itself [35], [36].

Situating the colonial apparatus present in digital technologies requires thinking through the
coloniser/colonised dichotomy. Where do we situate the colony in the ever-shifting digital sphere? A
productive springboard is the colonial tensions between the Global South and the Global North. While the
terms have been criticised for following an “asymmetrical relation” of colonial dichotomies [37, p. 167], they
offer a fluidity and instability that resonates with the reach of digital technologies. Using Global South and
Global North follows the work of Ramón Grosfoguel [38], Comaroff and Comaroff [39], and Connell [40], but
the terms are particularly useful as articulated by Sinah Theres Kloß [41] and Sareeta Amrute [36]. Kloß
describes the Global South as active, a process and a practice that constantly reforms global networks of
power. It is “...a liminal space of transition in which a phase of anti-structure enables the re-organization of,
for example, social and epistemological power relations, and which creates a new model of social, economic,
and political interactions that relies on egalitarian principles” [41, p. 8]. Amrute deploys South/North
specifically in relation to techno-colonialism as being permeable and dispersed, they write “we need to treat
the South as both dispersed across the globe and as very particular sites that first developed new ways of
coping, refusing, and revisioning these relationships” [36, p. 8].

With the reach of the digital, its permeable, unstable nature is self-replicating. Even as it spreads, it
continues to reproduce the epistemologies of the technological centre, the Global North. It is so pervasive that
it enforces ways of thinking and being across the globe, extending the rationality/modernity/coloniality
complex and reproducing historical inequities. The digital realm, in its data and algorithms, shapes our social
interactions and media consumption [42], [43], [44], our labour practices [45], [46], our language [47], [48],
our histories and our geographies [49], [50], [51], [52] and governs access to fundamental resources like
healthcare and education [53]. Birhane outlines how corporate control over the algorithms that govern
networked interaction and ‘AI-driven solutions’ constitutes an “algorithmic invasion [that] simultaneously
impoverishes development of local products while also leaving the continent dependent on Western software
and infrastructure” [5, p. 389]. Couldry and Mejias examine the greed for data as a refashioning of
colonialism, mirroring its “function within the development of economies on a global scale, its normalization

5

ACM Trans. Comput. Educ.

of resource appropriation, and its redefinition of social relations so that dispossession came to seem natural”
[54, p. 5].

Michael Kwet sets out a conceptual framework for techno-colonialism and traces how the USA recreates
imperial structures of economic dominance and exclusion through control of the digital ecosystem [3]. Petar
Jandrić and Ana Kuzmanić present a nuanced analysis of techno-colonialism in their article “The Wretched
Of The Network Society: techno-education and colonisation of the digital”, in which they argue for exploring
digital technologies through the critical lens of postcolonialism [2]. In “Tech Colonialism Today”, Sareeta
Amrute outlines the (re)production of colonial relationships as they play out in digital technologies [36]. They
discuss digital technologies as hierarchical, extractive, exploitative, resulting in uneven consequences, and
displaying malevolent paternalism, giving clear examples of each instance. But Amrute takes this further and
suggests that perhaps “[o]ur theory of colonialism needs to be amended to account for the complicated
territory brought into being in the current moment” [36, p. 7].

Software development is overwhelmingly credited to the North, while labour from the South is exploited
[45], [46]. Geographically, access to technologies is restricted by a lingering digital divide [49], [50], [51], [52].
Attention has also increasingly been drawn to the discriminatory impacts of algorithmic technologies on
marginalised communities [55], [56]. When combined, one can see how peoples from the South are
constructed as being passive consumers of technologies rather than active agents in the technologies
produced, and, as Smith points out,

…the production of these materials is heavily regulated by a technocracy—a cadre of scientists and
hobbyists who have particular technological proclivities that make their entrance into the "discourse
of coding" possible while concurrently limiting the types of people who can join the discourse
community... [9, p. 149]

Broussard frames this as techno-chauvinism, where the producers are a small and relatively homogenous
group (overwhelmingly white men from the Global North), leaving the Global South as “subjects” to the
technologies they create [43]. This construct of being ‘subject to’ digital technology is not a new problem.
Writing from India in 1989, Dinesh Mohan critiques the ideologies of technology as they observed it playing
out in local policy and discourse. A key concern they raise is the impact of the discourse on positioning
‘development’ in the ‘third world’. They write, “... we end up measuring our own future prospects purely in
terms of our ability to cope with these 'emerging' technologies and our perceptions of their role in the
'Information Age'” [57, p. 1815]. Therefore, the drive for relevance in a global knowledge economy seems
dependent on adoption and assimilation into a discourse of knowledge production that continually
(re)enforces the paradigms of the North.

This implicates both digital knowledge production and its re-contextualisation in education. It is a self-
reinforcing cycle, as Birhane and Guest argue: “The present [computational science education] ecosystem
sustains itself by rewarding work that reinforces its conservative structure. Anything and anyone seen as
challenging the status quo faces systemic rejection, resistance, and exclusion” [58, p. 61]. ‘Worthwhile’ or
‘valid’ knowledge in the digital space is dictated by digital-colonial power, and gaining access to it requires
one to be immersed in ways of thinking and doing of the Global North. Kroeze argues that digital
technologies “often continue carrying forth the colonial values of the past in an unobtrusive way... In fact,
western logic (esp. Wittgenstein’s binary philosophical logic) lies at the core of the digital computer” [59, p.
42].

2.3 Code and the myth of neutrality
But as educators, where do we begin? Pinar reminds us, “[t]he first task of thought in our era is to think what
technology is” [60, p. 3]. The technology sector is vast, with many different subsets, one of which is software
development, the core skill set of which is computer programming. Programming can be extended further
into computational thinking and the syntax of programming languages. ‘Code’ is the artefact of programming
as an exercise: it is the textual, executable body of work that denotes computational thinking through the
syntax of a programming language. I argue that deconstructing the colonial logic of progress embedded in
digital technologies requires us to drill down to the smallest units of meaning in digital structures and,
therefore, to open computer programming and its resultant code to scrutiny.

6

ACM Trans. Comput. Educ.

In industry and academia, critical and decolonial engagement with computer programming stalls when
faced with the overwhelming perception that, in its algorithms and underlying code, it is a mathematical,
universal ‘truth’ [5], [10], [42]. [61], [62], [63], [64], [65]. This is a refrain heard in widespread opposition to
the decolonial critique of many sciences [66], [67], [68], [69], [70], [71]. Stemming from the
rationality/coloniality/modernity matrix of power, this argument follows the colonial logic of progress.

This perception of programming is hard to shift, as it is embedded in the first introduction, where the
focus is on the mastery of computational thinking, abstraction, logic, and problem-solving [72], [73], [74]. It is
taught as clear, neutral machine instructions, leaving the semiotic complexity and sociocultural
entanglements overlooked [64], [65], [75], [76]. Smith states that a failure to interrogate the production of
digital tools allows “...technology and colonialism continue to entrench/ insert themselves within a milieu
wherein technological spread and colonization are left unquestioned” [9, p. 159]. Therefore, moving toward
decoloniality requires investigating how programming knowledge, encoded into the code we write, is
recontextualised into curricula and how that works to reinforce digital-colonial systems.

3 DECOLONIAL CURRICULA

3.1 Situating the Curriculum
In an overview of definitions of the curriculum, Marsh notes the constant use of metaphors of movement
[77]. They highlight metaphors of flight, rivers, streams, roads and highways. They also show how these are
linked to maps, borders, and terrain. Writing on Indigenous Education, Madden explores the metaphor of
pedagogic pathways:

Consider a ‘hiking trail’ formed by the relationships among communities of animals, trees, rocks,
streams, and earth; trail markings; a specified distance and level of difficulty described on a website;
and the promise of a spectacular view. Similarly, assumptions about education and teaching,
associated purposes and goals, central themes, and pedagogical methods comprise a pedagogical
pathway that shapes, but does not determine, the learning journey. Some elements of the pathway
remain constant while others fluctuate, and the journey is continuously contextual, distinct,
relational, and unforeseeable. [78, p. 2]

Building on these metaphors, making and living a curriculum is the attempt to establish movement
through an entangled terrain of winding paths, obstacles, and promised reveals. In all of these
conceptualisations, the curriculum is a liminal space. Always between, always in tension, revealed through
the intra-action between the who and the how, as much as the what and why. Curricula exist in the visible
(formal knowledge) and the hidden (the values and epistemes embedded in the knowledge structures).
Shahjahan et al. situate their discussion by conceiving of the “curriculum (material content and purpose,
which imply what counts as knowledge), [as] manifesting inside/outside of classrooms, such as in a course,
program, discipline/profession, institution, and/or minoritized community setting” [8, p. 77].

Seeing the curriculum as existing in tension arises from the traditions of critical theory in pedagogy and
curriculum studies [79], [80], [81], [82], [83]. These tensions are intensified and problematised in discussions
of decolonising the curriculum [9], [12], [84], [85], [86], [87]. These engagements address the relationships
between knowledge, education and power in different ways, but some refrains arise: The creation and
enactment of a curriculum is an act of power; It constructs a disciplinary knowledge that is complicit in
silencing and erasure; Slippages in the processes of knowledge production, recontextualisation, and
reproduction open discursive gaps as sites of contestation; Teaching and learning is a relational, participatory,
social practice. With these understandings, Boughey and McKenna suggest that curriculum research is
approached through three guiding questions:

1. What knowledge is legitimated by the curriculum?
2. Which knowers are legitimated by the curriculum?
3. How are these knowledges and knowers legitimated in the curriculum? [88, p. 83]
In education, the selection of ‘valid’ knowledge represented in curricula is repressive to subaltern

knowledges. Education constructs a dichotomy between those ‘inside’ and those ‘outside’, the ‘knowers’ and
the ‘not knowers’ [25]. This hierarchical relationship extends from the selection of content to pedagogic

7

ACM Trans. Comput. Educ.

modes and assessment methodologies, and the institutions of higher education are complicit in maintaining
the status quo.

No curriculum is neutral; it is inherently ideological as it governs access to knowledge and knowing. Basil
Bernstein’s seminal work on the pedagogic device engages with ways of knowing inherent in the curriculum
[79], [89]. Bernstein traces the translation of knowledge to pedagogic communication from the production of
discourse, its re-contextualisation within the curriculum, and reproduction in teaching, learning and
assessment. He explores the ways in which this is an ideological process as well as a disciplinary one and part
of a system of symbolic control [89], [90]. Within this translation, he identifies ‘discursive gaps’ controlled by
the curriculum in an act of power and authority, always favouring the status quo. Knowledge cannot bridge
these gaps without ideology at play. However, Clarence argues that these gaps also open powerful moments
for disruption and change [86]. These moments of disruption allow us to consider how students come to
know and what students come to know as an act of decoloniality. For academics to identify productive
moments of disruption, they first need to articulate “what constitutes knowledge in their disciplines”, “the
knowledge structure of their disciplines”, and “the knowledge creation process of their disciplines” [85, np].
Quinn and Vorster link the idea of specialised disciplinary knowledge to ‘powerful knowledge’ and argue that
what is done with that knowledge is often the domain of the North, alienating students from gaining
epistemic access [85]. Section four of this article addresses how this plays out in computer programming
education.

3.2 Outward and Inward Facing Approaches
The system of knowledge production is cyclical, with that from the South reflecting and reproducing colonial
epistemologies to achieve ‘validity’. When examining knowledge production from a decolonial lens, we need
to recognise that it is constructed in multiple forms not always designated as ‘valid’ and recognise these in
our work [25]. However, part of the project is also to deconstruct and reconstruct colonial, ‘valid’ knowledge
systems. Shahjahan et al. identify this as an inward-facing decolonial approach that is prominent in
decolonial research from Africa and Asia. They find that:

Similarly, for some, decolonization meant making room for synthesis of knowledge within
disciplines, and not necessarily “destroying” or completely replacing “Eurocentrism.” … Here,
disrupting to decenter, not complete removal, was a salient idea among scholars focused on African
decolonization of knowledge. [8, p. 85]

This inward-facing approach to decoloniality is also disciplinary, occurring more frequently in the social
sciences and humanities. Shahjahan et al. note that within these fields, “several authors thus described
altering the curriculum or pedagogy in ways still within, yet pushed the boundaries of their disciplinary
areas” [8, p. 90]. They observe that more outward-facing strategies occur in applied fields where “scholars
articulated strategies focused on students critically examining their training and/or their relationship to
populations one would engage” [8, p. 91].

The long arm of the global knowledge economy has extended to include computer programming as a
‘valid’ applied knowledge underlying digital-colonialism. In New Digital Worlds, Roopika Risam argues that

Within colonised and formerly colonised nations and for people outside of dominant cultures, access
to the means of digital knowledge production is essential for reshaping the dynamics of cultural
power and claiming the humanity that has been denied by the history of colonialism [63].

Access to digital knowledge production, embodied in programming and code, is essential, and true access
requires us to surface the embedded epistemologies and engage with them productively from within the
Global South [9], [59], [91]. The difficulty of this project is exacerbated by the stringent curricula required to
meet international professional standards essential for uptake into a global economy. This extends to many
applied fields, as Shahjahan et al. point out, “... the professional culture informing the curriculum posed a
challenge [to decolonisation] … In short, the paradoxes of balancing professional knowledge, socialization,
and subjugated knowledge added to the complexity of decolonizing pedagogy and curriculum” [8, p. 97]. The
response to these complexities is often to refocus outward, to the engagement of the curriculum with the
community, and to overlook the intrinsic coloniality of the disciplines. As demonstrated in the literature
reviewed in section five, programming education has primarily focused on outward-facing strategies.

8

ACM Trans. Comput. Educ.

Like Shahjahan et al., Quinn and Vorster, and Monnapula-Mapesela et al. note the tensions inherent in
higher education to address the demands to equip graduates for employment in a global knowledge economy
and still engage with the need for decolonisation [8], [84], [85]. Dalvit explores this tension in relation to
computer science in Africa, where they state that the field is “potentially empowering both economically and
in terms of global access” but caution that it remains deeply embedded in Western epistemologies [92, p. 287].
This balancing act does not require us to abandon the one in favour of the other but rather to deconstruct the
curriculum content and pedagogy in ways that unsettle the epistemologies inherent in approaches from the
Global North and engage in construction and re-construction within a decolonial framework [8], [84]. I argue
that an inward-facing approach to critiquing and decentering the core knowledge formation of the discipline
from within is also warranted.

3.3 Reading the discipline contrapuntally
Zembylas argues that a decolonial curriculum embraces “antiessentialism, contrapuntal readings and ethical
solidarity” [93, p. 11]. Decolonial programming education would require a concerted effort to approach the
content, teaching people to code, from this framework. While writing from a completely different context
(Human Rights Education), Zembylas outlines a concern similar to the one faced in programming education:
the need to equip educators and learners with tools to recontextualise and deconstruct [93]. A decolonising
pedagogy needs to be informed by a “theoretical heteroglossia that strategically utilizes theorizations and
understandings from various fields and conceptual frameworks to unmask the logics, workings, and effects of
[...] colonial domination, oppression, and exploitation in our contemporary contexts” [93, p. 9].

The greatest challenge in programming curricula is to find ways to examine the content, learning to code,
through the lens of antiessentialism and ethical solidarity. Smith explains this challenge as being due to the
extent to which code is obfuscated and resistant to the critique that other pedagogic material is subjected to
[9]. Their argument challenges how we engage with pedagogies, deconstruct textbooks and histories, but read
around the code. Our eyes slide over it. In teaching programming, both educators and students lack the tools
to recontextualise programming itself. To borrow from Zembylas, for us to engage with digital-coloniality, we
need to read programming knowledge contrapuntally.

4 PROGRAMMING EDUCATION

4.1 Paradigms of Computing Education
Computer programming education has primarily been theorised in computer science and software
engineering. Eden situates computer science research as primarily drawing from three paradigms: the
rationalist, the technocratic, and the scientific [94]. The article traces the field's historical progression and the
subsequent philosophical disputes among researchers. It argues vehemently against the dominance of the
technocratic paradigm, specifically as it relates to undergraduate curricula. They state that the technocratic
turn led to “courses focusing on technological trends teaching software design methodologies, software
modelling notations… programming platforms, and component-based software engineering technologies” at
the expense of the theoretical foundations of the discipline and assert that the scientific paradigm provides
the most productive path forward [94, p. 24]. However, there has been an increasing interest in further
broadening the paradigms from which research is conducted.

In computer science education, Thota, Berglund, and Clear reason for pluralism and adopting
methodological eclecticism through a pragmatic paradigm [95]. In another study, Clear argues for the
adoption of critical enquiry [96]. Couldry and Mejias extend the use of critical theory to address a ‘decolonial
turn’ explicitly [62], an approach echoed by Ricaurte [61]. Mejia et al. argue that “traditional [engineering]
scholarships have been normed by epistemological perspectives that have failed to examine structures of
domination and oppression in educational settings” and call for critical paradigms to be adopted [97, p. 2].
Their study, “Critical Theoretical Frameworks in Engineering Education: An Anti-Deficit and Liberative
Approach”, adopts Freirean models of pedagogy and utilises Critical Discourse Analysis as a method. This is
echoed in Cristaldi et al.’s study of the impact of social science education on computing education, which also
highlights Freirean models [98]. This broadening of paradigms and methodologies is essential in allowing

9

ACM Trans. Comput. Educ.

disparate voices to emerge and to attain the theoretic heteroglossia that Zembylas demands of decolonial
curricula [93].

4.2 Approaches to Teaching Programming
The challenges of teaching code are well documented in a substantial body of literature on pedagogies for
programming [72], [73], [74], [99], [100]. The bulk of the literature exists within the discourses of computer
science and software engineering, as well as that of sectoral training. These all approach programming to
facilitate different aims and outcomes and have disparate ways of knowing, doing, and making embedded.
How programming is taught exists within these broader discourses to serve a purpose as a stepping-stone
into disciplinary knowledge or as an entry to employment in the software sector. Computer programming is
most often a foundation that must be laid to enable deeper disciplinary engagement with technology fields
down the line [101], [102]. The difficulties in teaching programming, combined with the foundational
disciplinary nature, means that introductory programming courses tend to be utilitarian and focus on access;
introducing computational thinking, problem-solving, and language divorced from context [101]. This
simplified, clear focus is necessary for responding to the difficulty of the field. There are several reasons
identified for the difficulty of learning programming; these include “an inaccurate understanding of how a
computational model works; an inability to master reading, tracing, and writing code; and an inability to
understand high-level concepts such as design” [100].

Various overviews and meta-analyses of programming pedagogic approaches have identified similar
challenges [84], [73], [74], [100]. A recurring theme in the literature is that students lack sufficient mental
models to approach programming: they struggle with the ‘strictness’ of programming languages,
unnecessarily overemphasise syntax and semantics, and fail to map these to computational logic and
problem-solving. In his paper “Programming Pedagogy – A Psychological Overview”, Leon Winslow
articulates this by stating that “[g]iven a new, unfamiliar language, the syntax is not the problem, learning
how to use and combine the statements to achieve the desired effect is difficult” [72, np]. Winslow identifies
the pedagogic chain as building from syntax and semantics to combination through design, patterns, planning
and testing, and finally to general problem-solving skills [72]. Lau and Yuen’s review of programming
pedagogy literature also highlights a common three-phase cognitive structure: syntactic, conceptual, and
strategic [73]. In “Relationships: computational thinking, pedagogy of programming, and Bloom’s
Taxonomy”, Selby traces the typical order of teaching programming as follows:

1. constructs, facts, types
2. how individual constructs work
3. use programming constructs in contrived contexts
4. discriminate, decompose, abstract
5. create programs, algorithm design
6. test, evaluate [100, np]
Aligning these to Bloom’s Taxonomy Cognitive Domain, “[e]valuation is assigned to the evaluation level;

algorithm design is assigned to the synthesis level; abstraction and decomposition are assigned to the analysis
level; generalisation is assigned to the application level”, and constructs, facts and types (syntax and
semantics) are assigned to the comprehension and knowledge levels [100, np]. They then continue by
arranging these in order of perceived difficulty, with one being the least difficult and six being the most
difficult:

1. evaluation
2. algorithm design
3. generalisation
4. abstraction of functionality
5. abstraction of data
6. decomposition [100, np]
They, therefore, note that the perceived difficulty of computational thinking skills above the levels of

knowledge and comprehension (constructs, facts and types) is a reversal of their mapping to Bloom’s
Taxonomy Cognitive Domain. While they emphasise the need for further research, the observation is useful

10

ACM Trans. Comput. Educ.

to help structure a pedagogic approach. In application, one concern identified by Butler and Morgan is that
students receive far more and more detailed feedback for simpler concepts than for more complex concepts
[103]. Teaching patterns, including sequencing, domain modelling, feedback and assessment, need to be
carefully considered to ensure that students are receiving support in the areas that challenge them most.

Lau and Yuen identified seven common pedagogic approaches from their literature review: the Structure
Programming approach, the Problem-Solving approach, the Software Development approach, the Small
Programming approach, the Language Teaching approach, the Learning Theory approach, and the nebulous
category of ‘Other’ approaches [73]. In their work, they differentiate between programming skills and
programming concepts – broadly syntax and semantics, and problem-solving. When mapped against Selby’s
reading of the skills in line with Bloom, programming skills are located at the comprehension, knowledge and
application levels, while programming concepts are located at analysis, synthesis, and evaluation [100].

The approaches outlined here barely scratch the surface of available literature on programming
pedagogies. In application, pedagogic strategies are selected based on the structures of knowledge in the
individual disciplines where introductory programming is taught and are often adopted as convention.
Disciplinary progression and training guide the conceptualisation of curriculum, and, as Clarence warns,
negotiation between these and decolonisation is complex [86].

4.3 Identifying moments of disruption
Boughey and McKenna, and Quinn and Vorster task educators to identify what knowledge is legitimated in
the curriculum and how that knowledge is structured and produced in the discipline [88], [85]. The core skill
set of learning to program is commonly approached through a three-phase cognitive structure: syntactic,
conceptual, and strategic [73], [100], [103]. This structure makes sense from within the epistemic framework
of the Global North, where the colonial matrix of power underlies logic but is fundamental to accessing a
global discipline [8], [59]. So, the task is to identify where slippages occur in the recontextualisation of
knowledge into the curriculum and to deploy those as moments of disruption [85], [87], [90]. Based on the
overviews presented, the moment that poses the greatest challenge to students learning to program is
remapping conceptual frameworks of computational models to cross from programming skills to
programming concepts, working from syntax and semantics through reading, tracing and writing code, to
problem-solving and high-level concepts [73], [100], [103]. This bottleneck can be reframed as a moment of
disruption, where the literacy moves from alphabetised to interpretive and applied.

5 DECOLONIAL APPROACHES

5.1 Contextualised curricula

5.1.1 Localisation

As the need to train software developers to compete in the global knowledge economy grows, courses
teaching programming have proliferated in all education sectors. This has led to the uncritical adoption of
international ‘best practice’ approaches. As in many scientific and technical fields, the content and the skills
required to progress and enter a global economy are defined by curricula from international bodies operating
within the Global North. When the core difficulties in teaching programming arise from a mismatch of
mental models enabling knowledge progression, shoehorning students from the Global South into the ways of
knowing and being embedded in curricula from the Global North sets them up for failure. In the case of
Tanzania, Apiola and Tedre identify that:

The curricula are often copied directly from western institutions, and they sometimes hold context-
dependent views about content, pedagogy, organisation, interaction, and processes, which may
hinder results. Implementing western pedagogical solutions, such as problem-based learning (PBL)
and learner-centred practices, into the developing world has faced challenges in various contexts [99,
p. 287].

Apiola and Tedre present an extensive case study of a BSc program in Information Technology at Tumaini
University, Tanzania [99]. The paper highlights the failures of a copy-paste curricular approach and argues

11

ACM Trans. Comput. Educ.

that “standard curricula, such as the ACM/IEEE IT curriculum (2005), are not sufficient for that particular
socio-cultural and economic context” [99, p. 286]. A study by Sutinen and Vesisenaho similarly finds that:

Nearly everyone who works in Computing Education Research (CER) uses the universal ACM/IEEE
Computing Curricula (ACM & IEEE, 2001) to anchor her/his understanding of what students should
learn, and on which basis learning outcomes should be measured. Although such an approach might
be justified on purely conceptual grounds, it might attract a researcher to ignore the realities of the
learners’ background in those cases where the cultural assumptions of learners are radically different
from those of learners who have grown up in so-called Western cultures where ICTs are more
commonly an integral and accepted part of everyday life. [101, p. 240]

It has been extensively argued that emulating curricula from the North disregards our local context and
perpetuates the marginalisation already evident internationally [85]. While it may be expedient, adopting
international ‘best practice’ curricula and pedagogies in preparing students to enter a notoriously
exclusionary and adversarial field is complicit in upholding the status quo. Kroeze points out that “although
the international guidelines for IS syllabuses leave room for the cultivation of intercultural skills during
undergraduate and postgraduate programmes… the dominating effect of western textbooks may leave little
room for deep integration of indigenous inputs into these curricula” [59, p. 44]. This is expanded on by
Ayalwe, Tshukudu, and Lefoane in a review of students' performance in a first-year programming course in
Botswana [102]. Similar concerns were noted in Nigerian programming instruction, where the authors
specifically link their concerns and possible solutions to the need to approach programming as a linguistic
skill and consider a range of pragmatic interventions, including access to infrastructure, exercises and
assessment, and tutoring structures. [104].

5.1.2 Ethnocomputing and Indigenous Knowledges

In addition to concerns with the structure and delivery of curricula and the access to infrastructure,
localisation and Africanisation are also expressed as strategies drawing from translanguaging and Indigenous
knowledges [59], [91], [92]. van der Poll, van Zyl, and Kroeze argue that this approach may alleviate the
alienation that occurs when “computing scientists emphasize the modernity of computing education and
often position it in opposition to traditional knowledge” [91, p. 145]. They argue for courses that emphasise
students’ contextual circumstances and community needs.

Ron Eglash's seminal work on ethnocomputing is perhaps the best-known decolonial approach, as it
focuses on incorporating disparate knowledge systems into computational thinking and conceptualises
software development as a cultural construct [105], [106], [107]. Dalvit et al. provide the following
explanation:

Ethnocomputing emphasises the importance of integrating cultural elements into software design
and the teaching of Computer Science in developing countries [11]. Since computers were invented
in the West, they tend to reflect Western values and cultural traits, thus promoting dependency. To
counter dependency, the use and teaching of computers must integrate indigenous knowledge and
respond to local problems, making technology more relevant and more accessible at the same time.
[91, p. 291]

This finds expression in several interrelated approaches, including Indigenous or culturally situated design
[106] [107], [108], socially responsible computing [109], justice-centred computing [110], ancestral computing
[111], culturally responsive computing [112], [108], [113], counter-hegemonic computing [105], liberatory
computing [114], and intercultural computing [115]. While each approaches the problem from a different
angle, the core focus in all of them is on a reciprocal relationship with the community through situated
practice drawing from culturally specific or indigenous knowledges.

Ryoo et al advocate for socially responsible computing, defining it as an approach that:
… challenges the notion that CS is neutral, objective, or apolitical by making visible the relationships
between technological innovation, its creators, and the larger sociocultural and political contexts in
which both exist.
… acknowledges that computing is a form of power in today’s society by critically examining how
new technologies potentially reflect and reproduce existing inequities.

12

ACM Trans. Comput. Educ.

… centres social impact and ethics throughout all computing design processes”. [109, p. 1]
The focus here is to enable students to develop a critical consciousness in their interactions with

computing and take this forward in their own community activism. This addresses the myth of neutrality that
permeates technology, our understanding of the digital realm, and computing. It is about contextualising
computing within a broader socio-political framework, emphasising that “these tech-related forms of
education ‘can’t pretend to be apolitical.’” [109, p. 7].

Similarly, culturally responsive computing [CRC] emphasises working with community organisers and
empowers students to approach computing from within their own personal narratives to benefit their own
communities. Yan et al. describe a process where culturally specific modules were added, and teachers became
the locus for “incorporating and demonstrating the combination of CS [Computer Science] learning and
culture” [113, p. 204]. One concern, as Lachney et al. point out, is that “[t]he majority of CRC research tends
to report on out-of-school or after-school contexts”, and they argue that “without more attention to CRC in
formal contexts the current state of underrepresentation is unlikely to improve” [108, p. 463]. Another related
approach is Ancestral computing, which is guided by centring Indigenous epistemologies and articulates an
Ancestral Paradigm. “This Ancestral paradigm has several guiding principles: a. Embracing Ancestral
Knowledge Systems; b. Relational Accountability; c. Computing as a life-asserting and preserving the body of
knowledge; and d. Research as a praxis of healing” [111, p. 437].

Efforts to integrate Indigenous knowledges and cultural contexts in computing education are rich and
nuanced and are situated in the specificities of each instance. However, two main strategies can be seen:
cultural practice and Indigenous knowledges as a lens through which to approach the digital realm, and
cultural practice and Indigenous knowledges as a means to communicate computing principles. This
simplification effaces the richness of emerging approaches but serves as an entry point to accessing the body
of research. The first concerns developing critical consciousness and connecting computing to real-world
cultural engagement, adding modules or assignments that address local cultural knowledge and engaging
with local community leaders and ‘cultural experts’ to benefit the community. The second shares the same
starting point but continues to draw from Indigenous knowledge and cultural practices, incorporating them
in projects that translate the principles into computing. Good examples of this can be seen in the ‘Cornrow
Curves’ project discussed by Lachney et al. [108] and the ‘Anishinaabe Arcs’ project discussed by Eglash et al.
[106].

Eglash et al. locate their discussion as Culturally Situated Design tools. They emphasise ‘respectful
contextualisation’ and emic, insider engagement with the culture. For them, “the technology interface design
process inhabits a ‘contact zone’”, and they stress the development of design agency, where “student learners
are not merely simulating older designs, but discovering ‘heritage algorithms’… blending of localized
knowledge and STEM to develop new community-relevant innovations” [106, p. 1572]. ‘Cornrow Curves’ also
draws from heritage algorithms, again seeing the technology interface as a contact zone, a “type of meeting
point for CS curriculum and local cultural knowledge to connect and interact conceptually and materially”
[108, p. 480]. Both projects use a block-based interface to coding, enabling the identification of computing
concepts through the culturally situated practice.

5.1.3 The drawbacks of hyper-contextual curricula

Contextual curricula address the question of which knowers are legitimated in the curricula [85], [88]. It
affirms their knowledges, their communities, and their everyday struggles as part of the pedagogic process.
However, Lachney et al. warn that these approaches must be deeply rooted in the community, as it is
“apparent that there are always risks of reproducing shallow culture-computing connections or
assimilationist logics in CS education” [108, p. 480]. There are two drawbacks to hyper-contextualised
curricula. The first is the amount of affective labour involved in creating each new curriculum to avoid
shallow connections and assimilation. The second is student resistance [8], as the curricula do not always
readily translate to skill development for industry. There is still a need to address the complexities of
decoloniality while providing students access to the global economy.

13

ACM Trans. Comput. Educ.

5.2 The language problem

5.2.1 Context and Programming Language

Internationally, the lack of addressing context in programming curricula is beginning to shift. In the 2021
article “Programmers’ Affinity to Languages”, Neto et al. establish their study through the lens of student
context. They draw from a range of established pedagogic approaches to investigate the relationship between
the programming languages chosen for instruction and the contextual background of the students. They
argue that there needs to be a contextual affinity to the programming language selected. They reason that for
the selection of an introductory programming language, the key characteristics of the language be identified
and that these should then be weighed against the students’ contextual background, notably including the
socioeconomic context, previous experience, and English language proficiency [116]. Duke et al. also set out a
range of recommendations for selecting the programming language used in instruction, but these are largely
built on technical and disciplinary needs and do not adequately engage with student context [117]. More
focus on the selection of introductory programming language is required to allow us to align with student
needs. Careful selection can also provide more opportunities for laying bare the moments of reading, tracing
and writing code as a possibility for disruption.

5.2.2 Language of Instruction

The need to equip students for a global economy and the associated need for English proficiency and
professional practice is in constant tension with the increased accessibility of learning in a native language
[92], [91]. English itself is a site of struggle that has been approached from a broad range of views, stretching
from the perspectives of ethical solidarity of multilingualism to incorporating ecocentric worldviews tied to
Indigenous communities’ relationships to the land [118], [119], [120], [121]. As programming languages exist
for people and are primarily written for English speakers, English language proficiency and the medium of
instruction may form a large part of student access to programming. Lau and Yuen put forward a
comprehensive study of the impact of the medium of instruction from the context of programming courses in
Hong Kong [122]. While mitigated by many complicating factors, the study suggests that instruction in the
student’s first language yields better results and that, somewhat predictably, students with middle to low
English proficiency are at high risk in English medium instruction. However, in Ayalew, Tshukudu and
Lefoane’s study of success factors in introductory programming courses in Botswana, they found no
correlation between students’ performance and English as a second language skills [102], neither did Soosai
Raj et al. in their study of India [123]. These results require further investigation but may have far-reaching
implications in multilingual societies and for institutions with complex language policies. However, with
international studies showing contrary results, it needs to be considered from within the context of individual
students and institutions.

Additionally, students often challenge decolonial approaches to computer programming education that
centre on native language instruction. Shahjahan et al. note that a common challenge for decolonisation in
applied fields is student resistance to moving away from ‘valid’ systems that grant access to the global
economy [8]. van der Poll, van Zyl and Kroeze encounter this when addressing the dominance of English in
computing curricula in an African context. They attribute it to two primary factors: limited indigenous
terminologies in the discipline and English constituting the ‘universal language of science’ in the South
African institutions they investigate. They add that “computing departments face pressure to compete in the
global industry, which can reinforce the idea that English is superior and that African languages cannot make
significant contributions with regard to knowledge building in the global arena” [91, p. 145]. The cyclical
search for global ‘validity’ is, therefore, undermining the process from within.

5.2.3 The Language Teaching Approach

One way to address this is to turn to the language-teaching pedagogic approach outlined by Lau and Yuen
[73]. This approach maps programming knowledge to that of second natural language acquisition. It suggests
that “the value of reading programs before writing, the use of authentic programs, the study of the cultural
milieu of programs, and so forth” needs closer examination [73]. Early proponents of this approach include

14

ACM Trans. Comput. Educ.

Schou and Nord [124], Robertson and Lee [125], Baldwin and Macredie [126], and Deek and Friedman [127].
In more recent work, Cunningham et al. investigate the ways in which Second Language Acquisition (SLA)
theories and pedagogies can strengthen and support programming education [128]. In his article “The
introductory computer programming course is first and foremost a language course”, Scott Portnoff takes this
further, neurologically linking the comprehension of computer programs to the “same regions of the brain
that process natural languages” and argues that introductory programming education often fails as
instructors have not taken into account the linguistic aspects of programming [129]. One of the most prolific
writers on the use of Second Language Acquisition theory in teaching programming is Lulu Sun. Working
with a range of other researchers and co-authors across various studies, they trace the implementation of SLA
in programming courses [130], [131], [132] but also study the possibility of using SLA techniques to increase
student motivation and interest [133].

5.2.4 Translanguaging

Another approach to the problem, in line with the second language acquisition approach to programming
pedagogy, is translanguaging. Translanguaging offers an exciting perspective within multilingual contexts.
Ofelia García simplifies translanguaging as “… the act performed by bilinguals of accessing different linguistic
features or various modes of what are described as autonomous languages, in order to maximise
communicative potential” [134]. García and Kleifgen trace the use of translanguaging theories in literacy
studies and education [135]. They focus on a holistic meaning-making repertoire beyond language,
multilingualism and literacies. The article also presents case studies of the approach in practice.
Ndlangamandla and Chaka build extensive theoretical frameworks for translanguaging and multilingualism
as decolonial practice [119], [121], [136]. Jacob et al. and Vogal et al. expand this position to include Computer
Science education, leveraging translanguaging in their literacies approach to programming [137], [138]. A
video by the Participating in Literacies and Computer Science (PiLa-CS) project is particularly useful. It
demonstrates how translanguaging is already used in classrooms and how educators can support this practice
in their pedagogy [139]. Dalvit et al., Kroeze, and van der Poll et al. all incorporate translanguaging into their
decolonial strategies [59], [91], [92]. Mbirimi-Hungwe and Hungwe also argue for a translanguaging
approach to facilitate multilingual students’ understanding of computer science concepts through two case
studies [140], [141]. The data they present show promising results and fascinating examples, but, as they
point out, far more research is still needed to expand these concepts.

5.3 Turning inward, reading contrapuntally
As decoloniality must be specific, each instance is unique, resulting in a wealth of decolonial approaches. This
overview only scratches the surface of the work toward counter-narratives in computing education. Most of
the approaches outlined here turn to the knowers, their context, their community, their language, but do not
yet describe efforts to turn inwards, facing the discipline itself and reading the core knowledge
contrapuntally. The interest in this article is programming education, specifically teaching students to code.
Projects teaching computational concepts through and with cultural and indigenous knowledges often
employ block-type code, solidifying concepts but not teaching market-relevant skills. As Shahjahan et a. point
out, this could lead to student resistance, as the pressure to participate in the global economy is keenly felt
[8]. They also rely heavily on community engagement, co-creation of curricula, and insider voices, which is
challenging to implement at scale. How do we overcome student resistance, limited institutional capacity, and
large classes?

One possibility is to shift toward an inward-facing approach, interrogating the discipline and identifying
moments of disruption in knowledge formation. We should shift our understanding of what it means to teach
programming and what knowledge is embedded in the discipline itself. The first act of digital coloniality is to
mask itself behind the myth of neutrality. To address this, in its specificity, we need to turn to how
programming is taught in our curricula.

15

ACM Trans. Comput. Educ.

6 CRITICAL (CODE) LITERACIES

6.1 The critical and decoloniality
The relationship between decoloniality and the critical (be it paradigm, theory, consciousness, pedagogy, or
literacies) is contested [11], [12], [13], [14]. Critical theory relies on a deeply colonial discourse, embedding
the human subject in the rationality/modernity/coloniality complex. Bhambra proposes decolonising critical
theory through explicit acknowledgement of colonial histories in the construction of the colonial/modern in
relation to historical progress [15]. Darder investigates approaches to decolonising interprativist research [16]
and the challenges to Freire’s pedagogy when faced with decolonial identity [14]. Zembylas reflects on the
necessity to reinvent critical pedagogy [12]. Darlaston-Jones et al., on the other hand, argue for
conscientization over indigenisation in decolonising the curriculum [13]. Mhandu and Ojong evoke the need
for a Freirean humanising pedagogy as decolonial praxis [143], and hooks describes how, for her,
conscientization and decolonisation are inextricably linked [10]. Zembylas argues that

On the one hand, there are important commonalities in the political project of a ‘critical’ and a
‘decolonising’ [education] that ought to be kept in mind; on the other hand, to acknowledge Tuck
and Yang’s (2012) warning, critical theory and pedagogy may not be always appropriate for making
sense of the colonial condition... [12, p. 6]

Despite this tumultuous relationship, strands of critical theory inhabit the decolonial approaches outlined,
be it in second language acquisition, translanguaging, or contextualisation. Opening this avenue to explicit
engagement provides additional tools for decolonial curricula as it allows us to focus on the underlying
mythologies of digital-coloniality.

6.2 Finding moments of disruption through reading programming knowledge contrapuntally
Some possible alternatives arise when considering the intersections of moments of disruption with the
decolonial strategies of multi- or translanguaging and indigenisation or contextualisation. If we return to the
points raised in sections two and three, we need to follow Pinar and Zembylas and ask ourselves what
programming is and how we read programming knowledge contrapunctually [60], [93].

While the foregrounding of context and language alleviates the alienation of students’ lived reality from
the practice, and develops a critical consciosness of computation, it still re-enacts the perception of ‘coding’ as
something separate, axiologically neutral and hegemonic [143]. This is insufficient to prepare students for
real engagement with an adversarial technology sector and for furthering decoloniality.

An alternative approach is to build on the construction of programming as a literacy, both functional and
critical. This draws from the Language Teaching approach to programming and shares the concerns of
translanguaging and context in curricula. Regarding computational literacy, which she situates as a
comprehensive functional and critical engagement, Vee states that it “enables us to more critically engage
with our software because it highlights the people who write it as well as the historical patterns that precede
it” [87, np]. This is foreshadowed as early as 1988 when Schou and Nord motivated for the application of
Literary Criticism techniques to the teaching of programming, arguing that “programming instructors might
find it useful to examine program texts in the light of other critical approaches” [124]. Understanding our
pedagogy as an introduction to critical literacies offers an entry point into a transformative and decolonial
understanding of programming that aligns with a moment of disruption in programming education: the
recontextualisation from programming skills to programming concepts through reading, tracing, and writing
code [73], [100], [117].

6.3 Critical engagement with computation
Explicit critical engagement with computation has been proposed for decades under various names, each with
a distinct focus but all inextricably interlinked. Many of the decolonial and social justice approaches outlined
earlier speak to the traditions of critical studies. The approach is most certainly not new yet; while more work
is actively being produced, it remains on the fringes of common discourse on programming.

Tissenbaum et al. call for developing Critical Computational Literacy, digital literacies that are integrated
with students' contexts and identities, leading to empowerment [144]. They define digital literacy “as the

16

ACM Trans. Comput. Educ.

ability to share ideas through digital mediums” and identify that a core challenge to how digital literacy is
approached is the separation of the computational from the social. Drawing from Brennan and Resnick, they
break computational thinking into “concepts, the key constructs and ideas that are central to most forms of
computing; practices, the activities people engage in when creating computational projects; and perspectives,
the ways in which individuals see themselves as computational thinkers [5]”[144, p. 1]. For them, Critical
Computational Literacy combines computational thinking and critical pedagogy and “accounts for complex
analytical and interpretive practices that go well beyond the mechanics of learning to code”[144, p. 3]. They
point out that,

Most introductory coding courses and tutorials (e.g. codeacademy.org) aim to teach students a
particular programming language, focusing on teaching students "how to code," rather than
encouraging them to learn to think computationally. If computational thinking is going to have the
transformational effect across all disciplines predicted by Wing [16], and if today's youth are going
to drive this change, we need to radically rethink the contexts we provide students to think
computationally with, both socially and programmatically. [144, p. 4]

To address this, their research focuses on situated connections between the student’s projects and the
socio-cultural contexts they enhance. They work with the MIT App Inventor, a block-based programming
environment, to enable students to translate between ideas and applications quickly “without the need to
understand or wrestle with complicated syntax” [144, p. 3]. This emphasises the connection between critical
thinking and computational thinking but does not yet address the core concern of many students enrolling in
programming education: how to code to gain access to the workforce.

Lee and Soep invert the question, and rather than asking ‘how to code’ or ‘code for all’, they ask ‘code for
what’ [145]? The long-running Youth Radio Interactive project they describe teaches youth to code but
constantly questions “[w]hat investigative, imaginative, critical, and practical problem-solving abilities do
young people need in using code to transform institutions that too often fail them and their communities?”
[146, p. 11]. Like Smith [9], they warn against the failure to interrogate the production of digital tools and
insist that these tools “must be critically examined with the same rigor as literary texts” [146, p. 481].
However, they go further, arguing that youth should not only be prepared to critique these tools but also “to
create and produce their own interactive platforms that support counter-narratives to existing dominant
ideologies. Only through the production of these digital tools will youth develop the agency required to make
the changes they want to see”[146, p. 481]. The Youth Radio Interactive project is expansive. Running outside
of formal education, it is able to inhabit a co-production space where discussion is foregrounded and projects
are selected to have real-world impacts. The curriculum explicitly questions dominant ideologies through the
production of digital multimodal, transmedial products where “participants learn design and coding not as
ends in themselves, but as tools that allow our youth colleagues to make media that matters to them and
makes a difference in their social and civic worlds”[146, p. 482].

6.4 Critical engagement with code
But what of the code itself? Smith argues that engaging with decoloniality, “[w]hile understanding the
outcomes or consequences of tools and techniques is indeed necessary when dealing with technology, one
must also consider how those tools are produced” [9, p. 150]. In the field of Composition Studies, Eyman and
Ball trace “three critical practices for composition that accommodate the many media, modes, and delivery
mechanics in use today: rhetoric, design, and code”[147, p. 114]. Like Bogost [148], they argue that rhetorical
function is inseparable from the code that underpins it; “that is, the rhetorical functions enacted at the level of
code that promote certain user activity over other possibilities. As such, it is equally important for authors of
digital texts to understand and engage with the coding aspects of a webtext with as much rigor as the
rhetorical and design aspects” [147, p. 116]. Much of the work engaged specifically with critical reading of
code is loosely collected under the banner of Software Studies. Marino traces the history of work gesturing
toward this approach, starting with Kittler in 1995 [64], [149]. The Critical Code Studies approach moves
analysis from the point of view of the effects of the software as lived in the world to an understanding of the
“situation more reciprocally: to think about the relationship between the audience’s experience and the
system’s internal operations” [150, p. 11].

17

ACM Trans. Comput. Educ.

Marino argues that
A person writing what to them is ordinary, functional code is making meaning already. Critically
reading code does not depend on the discovery of hidden secrets or unexpected turns, but rather
examining encoded structures, models, and formulations; explicating connotations and denotations
of specific coding choices; and exploring traces of the code’s development that are not apparent in
the functioning of the software alone [64, p. 17]

This is a challenging transition to make. Reading code in this manner requires not only skill but also the
conceptual willingness to explore this option. If we do not prepare students to view code as a system of
signification, as practitioners, they will not be equipped to see the meanings they create in ordinary day-to-
day software development. When approached from a base of purely functional code literacy, these
complexities are obfuscated and, therefore, dismissed [9].

6.5 Literacies
Allan Luke notes that “Definitions of literacy have expanded to include engagement with texts in a range of
semiotic forms: visual, aural, and digital multimodal texts...” [151, p. 8]. To begin applying the concepts of
literacy to yet another semiotic system, code, it is helpful to first briefly set out how it functions in traditional
understanding [75]. Literacy theory is vast and often contested, with a multitude of frameworks and
approaches. Following Bailey and Flower, the Cambridge Assessment report on literacy argues that it is
historically contingent and offers the following insights: literacy is an action, not an ability; it is a discursive
practice; it is dependent on social convention; it starts with expressive and rhetorical practices; and it allows
for metacognitive and social awareness [152]. McLaren breaks literacy into three forms: functional, cultural
and critical [153]. I have drawn on the terms functional and critical literacy.

Functional literacy as a term in itself is deployed in multiple ways, making it hard to define briefly [154].
Levine outlines functional literacy as an assertion that there is a standard of literacy competence that is
fundamental to individual and collective interaction [155], while McLaren narrows it further to mastery of
literacy skills to the level of decoding simple texts [153]. Both McLaren and Levine highlight that, while
literacy has often been reduced to functional literacy, a technical discourse necessary for entry into the
workforce, understandings of the field have broadened significantly to emphasise critical literacies [153],
[155].

Paulo Freire’s seminal work Pedagogy of the Oppressed (1968) [80] outlines the pedagogic act as ideological
and demonstrates it as an imposition on, and overwriting of, subaltern knowledges by the schooling class. In
1987, Freire and Macedo put forward a collection that expands this understanding, touching on literacies, by
arguing that “reading the word” cannot be independent of “reading the world” and that literacy relies on
engaging with context, culture, ideology, and building new ways of knowing [156]. Luke concretises this
when she explains that technical mastery should be a means to an end, used to “analyse, critique and
transform the norms, rule systems and practices governing the social fields of everyday life” [151, p. 2]. A rich
and vast body of theory has emanated from this in the project of critical literacy. Critical literacy is overtly
political, engaging with, decoding, and critiquing the dominant ideological and epistemological frameworks
[151], [157], [158]. “A critical literacy situates itself in the intersection of language, culture, power, and
history — the nexus in which the subjectivities of students are formed through incorporation,
accommodation, and contestation” [153, p. 229]

6.6 Critical Code Literacy
But how do we situate code as a literacy within this framework? Annette Vee puts forward an extensive
argument for the need to view code as a literacy in its own right [76]. Their work draws on various
definitions of literacy and measures code against them. Vee gives a detailed historical account of the parallels
between the development, adoption, and promotion of ‘traditional’ literacy and code literacy. They trace the
use of the terms in conjunction to the 1960s but demonstrate that this was less about applying literacy as a
concept and more as a strategic move to leverage the importance of literacy to promote computing and the
computational sciences overall [75].

18

ACM Trans. Comput. Educ.

Authors like Marc Prensky draw on the broad concepts of literacy to emphasise the pervasiveness of
engagement with computing and the need for programming to become as fundamental as reading and writing
in society [159]. However, as can be seen in Prensky’s article, Vee notes that “unfortunately, when ‘literacy’ is
connected to programming, it is often in unsophisticated ways: literacy as limited to reading and writing text;
literacy divorced from social or historical context; literacy as an unmitigated form of progress” [75, p. 43]. It
is, therefore, deployed in the sense of a functional literacy and, like other functional literacies, connected to
the ability to engage in the workplace.

This reductive view of computational literacy disregards the social, cultural and ideological frameworks in
which texts and code function. Vee notes that code literacy has often been discussed as a subset under other
terms, including procedural literacy and computational literacy. They articulate this as:

… the constellation of abilities to break a complex process down into small procedures and then
express— or “write”—those procedures using the technology of code that may be “read” by a non-
human entity such as a computer. In order to write code, a person must be able to express a process
in terms and procedures that can be evaluated by recourse to explicit rules. In order to read code, a
person must be able to translate those hyper-explicit directions into a working model of what the
computer is doing. [75, p. 47]

The act of coding is then to refocus computational thinking and engage with a specific semiotic system.
Code is the artefact created to translate the authors’ intention to an executable computational process
through the deployment of signs; signifier (the language and syntax) and signified (the procedures executed).
Code is often introduced as a set of instructions that you give a computer, requiring precise encoding within
the parameters of specific rules set out by the programming language [74], [100]. While this is true, it is also
reductive. Vee argues, “We might think of the fallacy of right-or-wrong code as similar to that of literacy’s
mechanistic misrepresentation—that reading and writing are simply a matter of proper grammar and accurate
decoding” [75, p. 56]. This focus on code as a set of instructions supports functional code literacy, an
alphabetised approach leading students to read and write code as an unambiguous, utilitarian system
removed from social systems and free of ideology [75]. This myth, the axiological neutrality of technology
that programming buys into, is built on the ideology of linear progress from the
rationality/coloniality/modernity matrix of power. Smith explains, “... the ways that the code acts to
cryptically represent knowledge ensures that the (re)production of particular forms of representations remain
without critique at the level of its production” [9, p. 147].

Programming languages are higher-level abstractions; the programming idioms are not machine
instructions; they are converted from that language into machine instructions. The languages chosen and the
relationships constructed between them in tech stacks dictate the kinds of operations that can be instructed
and executed. Because of this, programming languages need to signify broadly as well as specifically. Vee
reminds us that code is written for translation by computers but also for other people; it has a dual audience
[75]. While code may be functional, decoded and enacted by the computer, the complexity and expressiveness
of programming languages and idioms exist for the benefit of the author and are born out in its human
reception. This manifests as readability (e.g. the perceptions of ‘good’ vs. ‘bad’ code), or aesthetics (e.g.
‘elegant’ vs. ‘messy’ code), which is context and audience dependant. While it is true that the computer
requires precise expression, the conventions guiding that expression are social:

Strictures such as how to control the program flow, how to name variables, how long functions
should be, and how much code to write per line are established socially to help programmers work
together, especially in very large teams, but they matter little to the computer. In other words, there
are ways of organizing code that the computer understands perfectly well, but that are eschewed by
certain human value systems in programming. [75, p. 56]

Cleaner, more precise code may perform more effectively, but at each level, decisions are being made as to
which performance is being measured. These decisions are made based on the system requirements and
architecture, defining what is ‘important’ to the system being created, what constitutes ‘valid’ behaviour, and
impact the code being written. But, as code is expressive, what is written and how it is written to meet these
requirements reflects back into the system. The selection, therefore, occurs at all levels of the pipeline: from
the implemented technology through the software architecture to the level of code. As at all levels, these are

19

ACM Trans. Comput. Educ.

human decisions made in a social framework, enacted in a semiotic system; they are ideological. When image
recognition software misrecognises race and gender, causing lived harm [55], [56], [160], [161], [162], it may
not be intentional. It may be an artefact of the algorithm and training data, and it may be a difficult problem
to solve, but this does not make it neutral: it stems from an interconnected system of small decisions, a
selection of what is ‘valid’ and what is ‘not valid’, each replicating the decision maker’s ways of knowing and
being in the world, cumulatively reinforcing dominant ideologies. As this interplay is so complex, the
significance of the small moments is lost. They are obfuscated by only being perceivable at extreme levels of
specialisation in the field or, for most, the level of the lived application of the technology and what it does [9].
Marino argues that:

… it is not enough to understand what code does without fully considering what it means. … Like
other systems of signification, code does not signify in any transparent or reducible way. And
because code has so many interoperating systems, human and machine-based, meaning proliferates
in code [64, p. 4].

The proliferation of meaning, the opacity of the underlying systems, combined with the fallacy that you
are coding for a computer and the lingering myth of neutrality, means that these subtleties can be difficult for
students, or even professionals in the field, to engage with. This stems from how practitioners are inducted
into the space from the ground up, reinforced by how programming is taught as a functional literacy. This
approach does not sufficiently prepare students to critically assess the complex systems of signification,
leading to practitioners who are sceptical of, or even aggressively resistant to, critiques of the neutrality of
code [64]. Well before complex analyses can take place, students need to understand that code means, that it
represents. Without that foundation, critical engagement with systems of power embedded in the code cannot
occur, hampering critical reflective practice. Students need to be made aware of the moment-to-moment
meanings, the multiplicity, in the everyday code they write through a continuous reinforcement that, as a
programmer, what you say and how you say it in your code matters.

7 CONCLUSION
This research grew from concerns identified in my own teaching practice. Teaching both programming and
digital art criticism to students revealed a disconnect, and students struggled to see the relationship between
them. Engagement with critical studies and digital-coloniality can not be separated from the nitty gritty
experience of teaching students how to code. Even if the same students are learning the ‘technical’ skills in
parallel to the ‘critical’ skills, not enough was done to bring these together. Efforts to redress this revealed the
scope of the problem, not only in my own courses but also internationally, in research on computer
programming education, digital-coloniality, and decolonial computing education. The problem of bridging
this gap persists. This article presents a broad review of the problem space to identify areas of intersection. It
identifies a moment of disruption in programming curricula and argues for a possible approach to the
problem, teaching computer programming as a critical literacy.

The literature demonstrates that critical and decolonial engagement with computer programming
encounters a significant obstacle in both industry and academia: the prevailing perception that science,
technology, and, by extension, programming are axiologically neutral. This aligns with the colonial logic of
progress. Altering this perception of programming proves challenging. From its initial introduction in many
curricula, programming emphasises mastery of computational thinking, abstraction, logic, and problem-
solving. This is often taught as clear, neutral machine instructions, overlooking the semiotic complexity and
sociocultural entanglements inherent in code. I argue that this creates a blindspot at the level of code itself,
masking the digital-colonial apparatus.

Programming education has a wealth of research to draw from; due to the scale of the field, I primarily
engaged with meta-analyses. Programming is taught across various disciplines, including computer science,
software engineering, sectoral training, and digital arts, albeit differently and to varying ends. However, a
moment of disruption presents itself in one of the most commonly identified bottlenecks: the remapping of
computational models to cross from programming skills to programming concepts. This occurs when moving
from syntax and semantics to problem-solving and high-level concepts through reading, tracing and writing
code. From the literature review on programming pedagogies, the Language Teaching approach may offer

20

ACM Trans. Comput. Educ.

opportunities to challenge the myth of neutrality surrounding programming practice. Language Teaching
incorporates both the Second Language Acquisition and Literacies models of programming pedagogy.

Decoloniality in programming education has also been addressed in various forms but can be roughly
broken into approaches focusing on contextualisation (including localisation, ethnocomputing, and
indigenous knowledge) and ones focusing on language (including the language of instruction, the language
teaching, and translanguaging). Ethnocomputing and Culturally Situated Design are perhaps the best-known
decolonial approaches, as they focus on incorporating disparate knowledge systems into computational
thinking and conceptualise software development as a cultural construct. Most approaches focus on an
outward-facing view, engaging students with communities, cultures, and indigenous knowledge to critically
engage with their own lived experiences. As decoloniality exists in the specificities of the instance,
developing curricula like these in formal educational settings is challenging. It requires community
engagement, affective labour, and emic knowledge, which is not readily accessible given the constraints of
large, traditional higher education. It also faces student resistance, as the perception is that these curricula do
not always readily translate to skill development for industry.

An alternative, inward-facing approach to support decoloniality in programming education is to challenge
the pervasive myth of axiological neutrality in programming practice. To open computer programming to
scrutiny enables us to deconstruct the digital-colonial power structures embedded in it and foster a critical
understanding of how these are reinforced in the code we write. To deconstruct the myth of neutrality,
criticality should be incorporated from the outset in programming education. To investigate this further, I
turn to literacies. Code literacies can be broken into two interrelated areas: functional and critical code
literacies. If functional code literacies are the ability to read and write in a programming language and
construct programmatic logic, critical code literacies would be the ability to situate the act of programming as
a system of signification and power in a broader sociocultural framework.

Research on programming as a literacy primarily adopts a functional perspective, but the use of critical
literacies in programming pedagogy has also been explored. This article argues that deploying critical literacy
pedagogy opens new avenues to explore a decolonial engagement with programming.

Access to critical literacy as powerful knowledge follows the logic of conscientization. While
conscientization, critical pedagogy, and critical theory are in tension with decoloniality and often
problematised, the relationships are complex and entangled. Rather than reading these against each other, if
we read programming education, critical literacies, and digital-coloniality through, with, and in relation to
each other, it opens avenues to hold space for decolonial praxis.

Further research is needed into applying critical literacy pedagogies in computer programming education.
While work in this vein exists, a more concerted focus on decoloniality and the colonial underpinnings of
digital knowledge production is necessary. The first step is for us, as programming educators, to provide
students with the tools to deconstruct the code they write. This requires criticality in how we model and
teach students to program and how they read the resultant code. I argue that opening computer programming
to scrutiny in our curricula enables us to deconstruct the digital-colonial power structures embedded in it and
foster a critical understanding of how these are reinforced in the code we write.

REFERENCES
[1] P. Jandrić and A. Kuzmanić, ‘Digital Postcolonialism’, IADIS International Journal on WWW/Internet, vol. 13, no. 2, p. 18, 2015.
[2] P. Jandrić and A. Kuzmanić, ‘The Wretched Of The Network Society: techno- education and colonisation of the digital’, Out of the

Ruins: The Emergence of Radical Informal Learning Spaces, pp. 86–104, 2017.
[3] M. Kwet, ‘Digital colonialism: US empire and the new imperialism in the Global South’, Race & Class, vol. 60, no. 4, pp. 3–26, Apr.

2019, doi: 10.1177/0306396818823172.
[4] M. Madianou, ‘Technocolonialism: Digital Innovation and Data Practices in the Humanitarian Response to Refugee Crises’, Social

Media + Society, vol. 5, no. 3, p. 2056305119863146, Apr. 2019, doi: 10.1177/2056305119863146.
[5] A. Birhane, ‘Algorithmic Colonization of Africa’, SCRIPT-ed, vol. 17, no. 2, pp. 389–409, Aug. 2020, doi: 10.2966/scrip.170220.389.
[6] G. Verdi, ‘The Road to Technocolonialism’, Institute for Internet & the Just Society. Accessed: May 04, 2021. [Online]. Available:

http://www.internetjustsociety.org/the-road-to-techno-colonialism
[7] A. Bon et al., ‘Decolonizing Technology and Society: A Perspective from the Global South’, in Perspectives on Digital Humanism, H.

Werthner, E. Prem, E. A. Lee, and C. Ghezzi, Eds., Cham: Springer International Publishing, 2022, pp. 61–68. doi: 10.1007/978-3-030-
86144-5.

21

ACM Trans. Comput. Educ.

[8] R. A. Shahjahan, A. L. Estera, K. L. Surla, and K. T. Edwards, ‘“Decolonizing” Curriculum and Pedagogy: A Comparative Review
Across Disciplines and Global Higher Education Contexts’, Review of Educational Research, vol. 92, no. 1, pp. 73–113, Feb. 2022,
doi: 10.3102/00346543211042423.

[9] B. Smith, ‘Mobile applications and decolonization: Cautionary notes about the curriculum of code’, Journal of Curriculum and
Pedagogy, vol. 13, no. 2, pp. 144–163, May 2016, doi: 10.1080/15505170.2016.1196274.

[10] bell hooks, Teaching to transgress: education as the practice of freedom. New York: Routledge, 1994.
[11] E. Tuck and K. W. Yang, ‘Decolonization is not a metaphor’, Decolonization: Indigeneity, Education & Society, vol. 1, no. 1, Art. no.

1, Sep. 2012, Accessed: Sep. 01, 2022. [Online]. Available: https://jps.library.utoronto.ca/index.php/des/article/view/18630
[12] M. Zembylas, ‘Reinventing critical pedagogy as decolonizing pedagogy: The education of empathy’, Review of Education,

Pedagogy, and Cultural Studies, vol. 40, no. 5, pp. 404–421, Oct. 2018, doi: 10.1080/10714413.2019.1570794.
[13] D. Darlaston-Jones, J. Herbert, K. Ryan, W. Darlaston-Jones, J. Harris, and P. Dudgeon, ‘Are We Asking the Right Questions? Why

We Should Have a Decolonizing Discourse Based on Conscientization Rather Than Indigenizing the Curriculum’, Canadian Journal
of Native Education, vol. 37, no. 1, Art. no. 1, 2014, doi: 10.14288/cjne.v37i1.196570.

[14] A. Darder, ‘Paulo Freire and the Continuing Struggle to Decolonize Education’, Counterpoints, vol. 500, pp. 39–54, 2015.
[15] G. K. Bhambra, ‘Decolonizing Critical Theory? Epistemological Justice, Progress, Reparations’, Critical Times, vol. 4, no. 1, pp. 73–

89, Apr. 2021, doi: 10.1215/26410478-8855227.
[16] A. Darder, ‘Decolonizing Interpretive Research: A critical bicultural methodology for social change’, The International Education

Journal: Comparative Perspectives, vol. 14, no. 2, pp. 63–77, 2015.
[17] W. D. Mignolo and C. E. Walsh, On Decoloniality: Concepts, Analytics, Praxis. Duke University Press Books, 2018.
[18] S. Martinot, ‘The Coloniality of Power: Notes Toward De-Colonization’. The Center for Global Justice. [Online]
[19] N. Maldonado-Torres, ‘On the Coloniality of Being’, Cultural Studies, vol. 21, no. 2–3, pp. 240–270, Mar. 2007, doi:

10.1080/09502380601162548.
[20] W. Mignolo, ‘Epistemic Disobedience and the Decolonial Option: A Manifesto’, TRANSMODERNITY: Journal of Peripheral Cultural

Production of the Luso-Hispanic World, vol. 1, no. 2, 2011, doi: 10.5070/T412011807.
[21] A. Quijano and M. Ennis, ‘Coloniality of Power, Eurocentrism, and Latin America’, Nepantla: Views from South, vol. 1, no. 3, pp.

533–580, 2000.
[22] A. Quijano, ‘Coloniality and Modernity/Rationality’, Cultural Studies, vol. 21, no. 2–3, pp. 168–178, Mar. 2007, doi:

10.1080/09502380601164353.
[23] A. Stojnić, ‘Power, Knowledge, and Epistemic Delinking’, AM Journal of Art and Media Studies, no. 14, Art. no. 14, Oct. 2017, doi:

10.25038/am.v0i14.218.
[24] E. Restrepo, ‘Coloniality of Power’, in The International Encyclopedia of Anthropology, 1st ed., H. Callan, Ed., Wiley, 2018, pp. 1–6.

doi: 10.1002/9781118924396.wbiea2118.
[25] B. L. Hall and R. Tandon, ‘Decolonization of knowledge, epistemicide, participatory research and higher education’, Research for

All, vol. 1, no. 1, pp. 6–19, Jan. 2017, doi: 10.18546/RFA.01.1.02.
[26] W. D. Mignolo, ‘DELINKING: The rhetoric of modernity, the logic of coloniality and the grammar of de-coloniality’, Cultural

Studies, vol. 21, no. 2–3, pp. 449–514, Mar. 2007, doi: 10.1080/09502380601162647.
[27] T. Garba and S.-M. Sorentino, ‘Slavery is a Metaphor: A Critical Commentary on Eve Tuck and K. Wayne Yang’s “Decolonization is

Not a Metaphor”’, Antipode, vol. 52, no. 3, pp. 764–782, 2020, doi: 10.1111/anti.12615.
[28] R. J. Horvath, ‘A Definition of Colonialism’, Current Anthropology, vol. 13, no. 1, pp. 45–57, Feb. 1972, doi: 10.1086/201248.
[29] B. Lüthi, F. Falk, and P. Purtschert, ‘Colonialism without colonies: examining blank spaces in colonial studies’, National Identities,

vol. 18, pp. 1–9, Jan. 2016, doi: 10.1080/14608944.2016.1107178.
[30] K. Nkrumah, Neo-Colonialism: The Last Stage of Imperialism, Later Printing edition. New York: International Publishers, 1966.
[31] All-African Peoples’ Conference, ‘Resolution on Neocolonialism’, in Conference Statement, Cairo: Republished by Pambazuka

News, 1961. Accessed: Oct. 07, 2022. [Online].
[32] O. T. Afisi, ‘Neocolonialism’, The Internet Encyclopedia of Philosophy. Accessed: Oct. 24, 2022. [Online].
[33] T. Obadina, ‘The Myth of Neo-Colonialism’, Africa Economic Analysis, 2000, Accessed: Nov. 15, 2022. [Online].
[34] D. Haag, ‘Mechanisms of Neo-Colonialism: Current French and British Influence in Cameroon and Ghana’, SSRN Journal, 2012, doi:

10.2139/ssrn.2033138.
[35] R. Connell, Southern Theory: The global dynamics of knowledge in social science. London: Routledge, 2020. doi:

10.4324/9781003117346.
[36] S. Amrute, ‘Tech Colonialism Today’, RHODE ISLAND, Nov. 10, 2019.
[37] S. Swartz, A. Nyamnjoh, and A. Mahali, ‘Decolonising the Social Sciences Curriculum in the University Classroom: A Pragmatic-

realism Approach’, Alternation, vol. SP36, Dec. 2020, doi: 10/gsqzrp.
[38] R. Grosfoguel, ‘Colonial Difference, Geopolitics of Knowledge, and Global Coloniality in the Modern/Colonial Capitalist World-

System’, Review (Fernand Braudel Center), vol. 25, no. 3, pp. 203–224, 2002.
[39] J. Comaroff and J. L. Comaroff, ‘Theory from the South: Or, how Euro-America is Evolving Toward Africa’, Anthropological Forum,

vol. 22, no. 2, pp. 113–131, Jul. 2012, doi: 10/gf234w.
[40] R. Connell, Southern Theory: The global dynamics of knowledge in social science. London: Routledge, 2020. doi:

10.4324/9781003117346.

22

ACM Trans. Comput. Educ.

[41] S. T. Kloß, ‘The Global South as Subversive Practice: Challenges and Potentials of a Heuristic Concept’, The Global South, vol. 11,
no. 2, pp. 1–17, 2017, doi: 10.2979/globalsouth.11.2.01.

[42] S. U. Noble and B. M. Tynes, Eds., The Intersectional Internet: Race, Sex, Class, and Culture Online, Illustrated Edition. New York:
Peter Lang Inc., International Academic Publishers, 2016.

[43] M. Broussard, Artificial Unintelligence: How Computers Misunderstand the World. Cambridge, Massachusetts: Mit Pr, 2018.
[44] C. O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Reprint Edition. New York:

Broadway Books, 2017.
[45] S. Amrute, Encoding Race, Encoding Class: Indian IT Workers in Berlin. Duke University Press Books, 2016.
[46] M. L. Gray and S. Suri, Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass, Illustrated edition. Boston:

Harper Business, 2019.
[47] W. Nekoto et al., ‘Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages’,

arXiv:2010.02353 [cs], Nov. 2020, Accessed: May 05, 2021. [Online]. Available: http://arxiv.org/abs/2010.02353
[48] P. Chonka, S. Diepeveen, and Y. Haile, ‘Algorithmic power and African indigenous languages: search engine autocomplete and the

global multilingual Internet’, Media, Culture & Society, p. 01634437221104705, Jun. 2022, doi: 10.1177/01634437221104705.
[49] M. Graham, ‘Internet Geographies’, in Society and the Internet: How Networks of Information and Communication are Changing

Our Lives, M. Graham and W. H. Dutton, Eds., Oxford University Press, 2014. doi: 10.1093/acprof:oso/9780199661992.001.0001.
[50] M. Ragnedda, The third digital divide: a Weberian approach to digital inequalities. in Routledge Advances in Sociology. London ;

New York: Routledge, Taylor & Francis Group, 2017.
[51] M. Ragnedda and G. W. Muschert, Eds., Theorizing Digital Divides, 1 edition. London : New York: Routledge, 2017.
[52] M. Graham, S. De Sabbata, and M. A. Zook, ‘Towards a study of information geographies: (im)mutable augmentations and a

mapping of the geographies of information: Towards a study of information geographies’, Geography and Environment, vol. 2, no.
1, pp. 88–105, Jun. 2015, doi: 10.1002/geo2.8.

[53] M. Madianou, ‘A Second-Order Disaster? Digital Technologies During the COVID-19 Pandemic’, Social Media + Society, vol. 6, no.
3, p. 2056305120948168, Jul. 2020, doi: 10.1177/2056305120948168.

[54] N. Couldry and U. A. Mejias, ‘Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject’, Television & New
Media, vol. 20, no. 4, pp. 336–349, May 2019, doi: 10.1177/1527476418796632.

[55] J. Buolamwini and T. Gebru, ‘Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification’, in
Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, Jan. 2018, pp. 77–91. Accessed: Oct. 20,
2021. [Online]. Available: https://proceedings.mlr.press/v81/buolamwini18a.html

[56] I. D. Raji, T. Gebru, M. Mitchell, J. Buolamwini, J. Lee, and E. Denton, ‘Saving Face: Investigating the Ethical Concerns of Facial
Recognition Auditing’, in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, in AIES ’20. New York, NY, USA:
Association for Computing Machinery, Feb. 2020, pp. 145–151. doi: 10.1145/3375627.3375820.

[57] D. Mohan, ‘Promotion of “Modern” Technology: A New Tool for Neo-Colonialism’, Economic and Political Weekly, vol. 24, no. 32,
pp. 1815–1818, 1989.

[58] A. Birhane and O. Guest, ‘Towards decolonising computational sciences’. arXiv, Sep. 29, 2020. Accessed: Sep. 07, 2023. [Online].
Available: http://arxiv.org/abs/2009.14258

[59] J. H. Kroeze, ‘A Framework for the Africanisation of the Information Systems Discipline’, Alternation, Dec. 2019, doi: 10/gs7z3d.
[60] W. F. Pinar, ‘Modernity, Technology, Nationality’, Critical Literacy: Theories and Practices, vol. 7, no. 2, pp. 3–19, 2013.
[61] P. Ricaurte, ‘Data Epistemologies, The Coloniality of Power, and Resistance’, Television & New Media, vol. 20, no. 4, pp. 350–365,

May 2019, doi: 10.1177/1527476419831640.
[62] N. Couldry and U. A. Mejias, ‘The decolonial turn in data and technology research: what is at stake and where is it heading?’,

Information, Communication & Society, pp. 1–17, Nov. 2021, doi: 10.1080/1369118X.2021.1986102.
[63] R. Risam, New Digital Worlds: Postcolonial Digital Humanities in Theory, Praxis, and Pedagogy. Northwestern University Press,

2018.
[64] M. C. Marino, Critical Code Studies. The MIT Press, 2020. doi: 10.7551/mitpress/12122.001.0001.
[65] N. Montfort, Exploratory Programming for the Arts and Humanities, second edition. The MIT Press, 2021.
[66] C. C. Cruz, ‘Decolonizing Philosophy of Technology: Learning from Bottom-Up and Top-Down Approaches to Decolonial Technical

Design’, Philos. Technol., vol. 34, no. 4, pp. 1847–1881, Dec. 2021, doi: 10.1007/s13347-021-00489-w.
[67] I. Kakoma, Science And Technology In Africa. Africa World Press, 2003.
[68] G. Sica, What Mathematics from Africa? Polimetrica s.a.s., 2005.
[69] L. J. F. Green, ‘“Indigenous Knowledge” and “Science”: Reframing the Debate on Knowledge Diversity’, Arch, vol. 4, no. 1, pp. 144–

163, Apr. 2008, doi: 10/dgq6c8.
[70] L. J. Green, ‘Beyond South Africa’s’ indigenous knowledge-science’wars’, South African Journal of Science, vol. 108, no. 7–8, pp.

44–54, 2012.
[71] D. Hess, ‘Science in an Era of Globalization: Alternative Pathways’, in The Postcolonial Science and Technology Studies Reader, S.

Harding, Ed., Duke University Press, 2011.
[72] L. E. Winslow, ‘Programming pedagogy—a psychological overview’, SIGCSE Bull., vol. 28, no. 3, pp. 17–22, Sep. 1996, doi:

10.1145/234867.234872.
[73] W. Lau and H. Yuen, ‘Toward a Framework of Programming Pedagogy’:, in Encyclopedia of Information Science and Technology,

Second Edition, M. Khosrow-Pour, Ed., Hershey, PA: IGI Global, 2009, pp. 3772–3777. doi: 10.4018/978-1-60566-026-4.ch601.

23

ACM Trans. Comput. Educ.

[74] S. Xinogalos, ‘Designing and deploying programming courses: Strategies, tools, difficulties and pedagogy’, Education and
Information Technologies, vol. 21, no. 3, pp. 559–588, May 2016, doi: http://0-dx.doi.org.innopac.wits.ac.za/10.1007/s10639-014-9341-
9.

[75] A. Vee, ‘Understanding Computer Programming as a Literacy’, Literacy in Composition Studies, vol. 1, pp. 42–64, Oct. 2013.
[76] A. Vee, Coding Literacy: How Computer Programming Is Changing Writing. MIT Press, 2017.
[77] C. Marsh, Key Concepts for Understanding Curriculum, 4th ed. London: Routledge, 2008. doi: 10.4324/9780203870457.
[78] B. Madden, ‘Pedagogical pathways for Indigenous education with/in teacher education’, Teaching and Teacher Education, vol. 51,

pp. 1–15, Oct. 2015, doi: 10.1016/j.tate.2015.05.005.
[79] B. Bernstein and J. Solomon, ‘“Pedagogy, Identity and the Construction of a Theory of Symbolic Control”: Basil Bernstein

Questioned by Joseph Solomon’, British Journal of Sociology of Education, vol. 20, no. 2, pp. 265–279, Jun. 1999, doi:
10.1080/01425699995443.

[80] P. Freire, Pedagogy of the Oppressed. London: Penguin, 1996.
[81] M. W. Apple, Ideology and Curriculum. Routledge, 2004.
[82] M. W. Apple, Education and Power. Routledge, 2013.
[83] W. F. Pinar, ‘The Problem with Curriculum and Pedagogy’, Journal of Curriculum & Pedagogy, vol. 2, no. 1, pp. 67–82, Summer

2005, doi: 10.1080/15505170.2005.10411529.
[84] ’M. Monnapula-Mapesela, N. Malebo, and I. Ntshoe, ‘Re-imagining curriculum development and the role of academic developers in

a university of technology in the post-colonial setting’, in Re-imagining Curriculum: Spaces for disruption, L. Quinn, Ed., AFRICAN
SUN MeDIA, 2019.

[85] L. Quinn and J.-A. Vorster, ‘Why the focus on “curriculum”? Why now?’, in Re-imagining Curriculum: Spaces for disruption, L.
Quinn, Ed., AFRICAN SUN MeDIA, 2019.

[86] S. Clarence, ‘Re-imagining knowledge in the curriculum: Creating critical spaces for alternative possibilities in curriculum design’,
in Re-imagining Curriculum: Spaces for disruption, L. Quinn, Ed., AFRICAN SUN MeDIA, 2019.

[87] S. Morreira, K. Luckett, S. H. Kumalo, and M. Ramgotra, ‘Confronting the complexities of decolonising curricula and pedagogy in
higher education’, Third World Thematics: A TWQ Journal, vol. 5, no. 1–2, pp. 1–18, Mar. 2020, doi: 10.1080/23802014.2020.1798278.

[88] C. Boughey and S. McKenna, Eds., Understanding Higher Education: Alternative Perspectives. African Minds, 2021. doi:
10.47622/9781928502210.

[89] B. Bernstein, ‘Codes, Modalities, and the Process of Cultural Reproduction: A Model’, Language in Society, vol. 10, no. 3, pp. 327–
363, 1981.

[90] B. B. Bernstein, Class, codes, and control. London ; New York: Routledge, 2003.
[91] A. van der Poll, I. van Zyl, and J. Kroeze, ‘Towards Decolonisation and Africanisation of Computing Education in South Africa’,

CAIS, vol. 47, no. 1, pp. 140–164, 2020, doi: 10.17705/1CAIS.04707.
[92] L. Dalvit, S. Murray, and A. Terzoli, ‘The role of indigenous knowledge in computer education in Africa’, in Learning to Live in the

Knowledge Society, M. Kendall and B. Samways, Eds., in IFIP – The International Federation for Information Processing. Boston,
MA: Springer US, 2008, pp. 287–294. doi: 10/fjfdbd.

[93] M. Zembylas, ‘Re-contextualising human rights education: some decolonial strategies and pedagogical/curricular possibilities’,
Pedagogy, Culture & Society, vol. 25, no. 4, pp. 487–499, Oct. 2017, doi: 10.1080/14681366.2017.1281834.

[94] A. H. Eden, ‘Three Paradigms of Computer Science’, Minds & Machines, vol. 17, no. 2, pp. 135–167, Aug. 2007, doi: 10.1007/s11023-
007-9060-8.

[95] N. Thota, A. Berglund, and T. Clear, ‘Illustration of Paradigm Pluralism in Computing Education Research’, vol. 123, p. 10, 2012.
[96] T. Clear, ‘Critical Enquiry in Computer Science Education’, in Computer Science Education Research, S. Fincher and M. Petre, Eds.,

CRC Press, 2005, pp. 105–125.
[97] J. Mejia, R. Revelo, I. Villanueva, and J. Mejia, ‘Critical Theoretical Frameworks in Engineering Education: An Anti-Deficit and

Liberative Approach’, Education Sciences, vol. 8, no. 4, Art. no. 4, Sep. 2018, doi: 10.3390/educsci8040158.
[98] G. Cristaldi, K. Quille, A. P. Csizmadia, C. Riedesel, G. M. Richards, and F. Maiorana, ‘The intervention, intersection and impact of

social sciences theories upon computing education’, in 2022 IEEE Global Engineering Education Conference (EDUCON), Tunis,
Tunisia: IEEE, Mar. 2022, pp. 1561–1570. doi: 10/gtkvwd.

[99] M. Apiola and M. Tedre, ‘New perspectives on the pedagogy of programming in a developing country context’, Computer Science
Education, vol. 22, no. 3, pp. 285–313, Sep. 2012, doi: 10.1080/08993408.2012.726871.

[100] C. C. Selby, ‘Relationships: computational thinking, pedagogy of programming, and Bloom’s Taxonomy’, in Proceedings of the
Workshop in Primary and Secondary Computing Education, London United Kingdom: ACM, Nov. 2015, pp. 80–87. doi:
10.1145/2818314.2818315.

[101] E. Sutinen and M. Vesisenaho, ‘Ethnocomputing in Tanzania: Design and Analysis of a Contextualized Ict Course’, Res.
Practice Tech. Enhanced Learning, vol. 01, no. 03, pp. 239–267, Nov. 2006, doi: 10/dpvgbj.

[102] Y. Ayalew, E. Tshukudu, and M. Lefoane, ‘Factors Affecting Programming Performance of First Year Students at a University
in Botswana’, African Journal of Research in Mathematics, Science and Technology Education, vol. 22, no. 3, pp. 363–373, Sep. 2018,
doi: 10.1080/18117295.2018.1540169.

[103] M. Butler and M. Morgan, ‘Learning challenges faced by novice programming students studying high level and low feedback
concepts’, in Proceedings ascilite Singapore, Singapore, 2007, pp. 99–107. Accessed: Aug. 04, 2021. [Online]

[104] M. A. Sokunbi, A. Yekini N., A. F. Akinsola, and Ishola P.E, ‘Pragmatic Approaches to Improve Computer Programming
Pedagogy in Tertiary Institutions’, 2015, doi: 10.13140/RG.2.1.3899.8802.

24

ACM Trans. Comput. Educ.

[105] R. Eglash, A. Bennett, L. Cooke, W. Babbitt, and M. Lachney, ‘Counter-hegemonic Computing: Toward Computer Science
Education for Value Generation and Emancipation’, ACM Trans. Comput. Educ., vol. 21, no. 4, pp. 1–30, Dec. 2021, doi: 10/grm3sp.

[106] R. Eglash, M. Lachney, W. Babbitt, A. Bennett, M. Reinhardt, and J. Davis, ‘Decolonizing education with Anishinaabe arcs:
generative STEM as a path to indigenous futurity’, Education Tech Research Dev, vol. 68, no. 3, pp. 1569–1593, Jun. 2020, doi:
10/fb35.

[107] R. Eglash, A. Bennett, C. O’Donnell, S. Jennings, and M. Cintorino, ‘Culturally Situated Design Tools: Ethnocomputing from
Field Site to Classroom’, American Anthropologist, vol. 108, no. 2, pp. 347–362, Jan. 2008, doi: 10.1525/aa.2006.108.2.347.

[108] M. Lachney, A. G. Bennett, R. Eglash, A. Yadav, and S. Moudgalya, ‘Teaching in an open village: a case study on culturally
responsive computing in compulsory education’, Computer Science Education, vol. 31, no. 4, pp. 462–488, Oct. 2021, doi: 10/gtkvsw.

[109] J. J. Ryoo, A. Morris, and J. Margolis, ‘“What Happens to the Raspado man in a Cash-free Society?”: Teaching and Learning
Socially Responsible Computing’, ACM Trans. Comput. Educ., vol. 21, no. 4, p. 31:1-31:28, Oct. 2021, doi: 10/gtkvzq.

[110] G. Jayathirtha, G. Chapman, and J. Goode, ‘Holding a Safe Space with Mutual Respect and Politicized Trust: Essentials to co-
designing a justice-oriented high school curricular program with teachers’, in Proceedings of the 2024 on RESPECT Annual
Conference, Atlanta GA USA: ACM, May 2024, pp. 215–223. doi: 10.1145/3653666.3656090.

[111] A. López-Quiñones et al., ‘Ancestral Computing for Sustainability: Centering Indigenous Epistemologies in Researching
Computer Science Education’, TechTrends, vol. 67, no. 3, pp. 435–445, May 2023, doi: 10/gtkvq8.

[112] L. Cooke, S. Vogel, M. Lachney, and R. Santo, ‘Culturally Responsive Computing: Supporting Diverse Justice Projects In/As
Computer Science Education’, in 2019 Research on Equity and Sustained Participation in Engineering, Computing, and Technology
(RESPECT), Feb. 2019, pp. 1–2. doi: 10.1109/RESPECT46404.2019.8985928.

[113] W. Yan, J. A. Hovermill, P. Prescott, and A. Amresh, ‘Teaching Computing in Indigenous Schools: An Early Experience
Report’, in Proceedings of the 2024 on RESPECT Annual Conference, Atlanta GA USA: ACM, May 2024, pp. 201–205. doi:
10/g5wj9p.

[114] R. Walker, O. Dias, M. Taylor, and C. Breazeal, ‘Alleviating the Danger Of A Single Story Through Liberatory Computing
Education’, in Proceedings of the 2024 on RESPECT Annual Conference, Atlanta GA USA: ACM, May 2024, pp. 169–178. doi:
10/g5wj8m.

[115] I. Arawjo and A. Mogos, ‘Intercultural Computing Education: Toward Justice Across Difference’, ACM Trans. Comput. Educ.,
vol. 21, no. 4, pp. 1–33, Dec. 2021, doi: 10.1145/3458037.

[116] A. C. Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques, ‘Programmers’ Affinity to Languages’, in Second International
Computer Programming Education Conference, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021, p. 7.

[117] R. Duke, E. Salzman, J. Burmeister, J. Poon, and L. Murray, ‘Teaching programming to beginners - choosing the language is
just the first step’, in Proceedings of the Australasian conference on Computing education - ACSE ’00, in ACSE ’00. Melbourne,
Australia: Association for Computing Machinery, Dec. 2000, pp. 79–86. doi: 10.1145/359369.359381.

[118] bell hooks, ‘this is the oppressor’s language/yet I need it to talk to you”: Language, a place of struggle’, Between languages
and cultures: Translation and cross-cultural texts, pp. 295–301, 1995.

[119] C. Chaka, ‘Translanguaging, Decoloniality, and the Global South: An Integrative Review Study’, Scrutiny2, vol. 25, no. 1, pp.
6–42, Jan. 2020, doi: 10.1080/18125441.2020.1802617.

[120] P. J. Meighan, ‘Decolonizing English: a proposal for implementing alternative ways of knowing and being in education’,
Diaspora, Indigenous, and Minority Education, vol. 15, no. 2, pp. 77–83, Apr. 2021, doi: 10/gtkvwm.

[121] S. C. Ndlangamandla, ‘The Coloniality of English Proficiency and Emi: Decolonization, Language Equity, and Epistemic (in)
Justice.’, International Journal of Language Studies, vol. 18, no. 1, 2024.

[122] W. W. Lau and A. H. Yuen, ‘The impact of the medium of instruction: The case of teaching and learning of computer
programming’, Education and Information Technologies, vol. 16, no. 2, pp. 183–201, Jun. 2011, doi: 10/fdwmpj.

[123] A. G. Soosai Raj, K. Ketsuriyonk, J. M. Patel, and R. Halverson, ‘Does Native Language Play a Role in Learning a Programming
Language?’, in Proceedings of the 49th ACM Technical Symposium on Computer Science Education, in SIGCSE ’18. New York, NY,
USA: Association for Computing Machinery, Feb. 2018, pp. 417–422. doi: 10.1145/3159450.3159531.

[124] C. D. Schou and R. Nord, ‘Literary criticism and programming pedagogy’, in Proceedings of the 1988 ACM sixteenth annual
conference on Computer science, in CSC ’88. New York, NY, USA: Association for Computing Machinery, Feb. 1988, pp. 67–71. doi:
10.1145/322609.322617.

[125] S. A. Robertson and M. P. Lee, ‘The Application of Second Natural Language Acquisition Pedagogy to the Teaching of
Programming Languages; a Research Agenda’, SIGCSE Bull., vol. 27, no. 4, pp. 9–12, Dec. 1995, doi: 10.1145/216511.216517.

[126] L. P. Baldwin and R. D. Macredie, ‘Beginners and programming: insights from second language learning and teaching’,
Education and Information Technologies, vol. 4, no. 2, pp. 167–179, Oct. 1999, doi: 10.1023/A:1009652001566.

[127] F. P. Deek and R. S. Friedman, ‘Computing and Composition: Common Skills, Common Process’, JCSE Online, 2001.
[128] R. Cunningham, P. S. Espejo, C. Frederick, L. Sun, and L. Ding, ‘A Second Language Acquisition Approach to Learning

Programming Languages’, p. 10, 2016.
[129] S. Portnoff, ‘The introductory computer programming course is first and foremost a language course’, ACM Inroads, vol. 9, no.

2, Apr. 2018, doi: 10.1145/3152433.
[130] L. Sun and C. Frederick, ‘Applying Second Language Acquisition to Facilitate a Blended Learning of Programming Languages’,

Publications, Jun. 2015, [Online]. Available: https://commons.erau.edu/publication/172
[131] L. Sun, C. Frederick, P. Sanjuan Espejo, and R. Cunningham, ‘Can We Teach a Programming Language as a Second

Language?’, in 2016 ASEE Annual Conference & Exposition Proceedings, New Orleans, Louisiana: ASEE Conferences, Jun. 2016, p.
26434. doi: 10.18260/p.26434.

25

ACM Trans. Comput. Educ.

[132] L. Sun, C. Frederick, L. Ding, and R. Rohmeyer, ‘The Application of Second Language Acquisition to Programming Language
Study’, Publications, Jan. 2017, [Online]. Available: https://commons.erau.edu/publication/575

[133] L. Sun et al., ‘Motivating Students to Learn a Programming Language: Applying a Second Language Acquisition Approach in a
Blended Learning Environment’, Jun. 2018. Accessed: Aug. 06, 2021. [Online]. Available: https://peer.asee.org/motivating-students-
to-learn-a-programming-language-applying-a-second-language-acquisition-approach-in-a-blended-learning-environment

[134] O. García, ‘Chapter 8 Education, Multilingualism and Translanguaging in the 21st Century’, in Social Justice through
Multilingual Education, Multilingual Matters, 2009, pp. 140–158. doi: 10.21832/9781847691910-011.

[135] O. García and J. A. Kleifgen, ‘Translanguaging and Literacies’, Reading Research Quarterly, vol. 55, no. 4, pp. 553–571, 2020,
doi: 10.1002/rrq.286.

[136] S. C. Ndlangamandla and C. Chaka, ‘The intersection between multilingualism, translanguaging, and decoloniality in the
global south’, Scrutiny2, vol. 25, no. 1, pp. 1–5, Jan. 2020, doi: 10.1080/18125441.2020.1832328.

[137] S. Vogel, C. Hoadley, A. R. Castillo, and L. Ascenzi-Moreno, ‘Languages, literacies and literate programming: can we use the
latest theories on how bilingual people learn to help us teach computational literacies?’, Computer Science Education, vol. 30, no. 4,
pp. 420–443, Oct. 2020, doi: 10.1080/08993408.2020.1751525.

[138] S. R. Jacob, S. Vogel, R. K. Pozos, P. O. Franco, and J. Ryoo, ‘Leveraging Multilingual Students’ Resources for Equitable
Computer Science Instruction’, in 2021 Conference on Research in Equitable and Sustained Participation in Engineering,
Computing, and Technology (RESPECT), Philadelphia, PA, USA: IEEE, May 2021, pp. 1–2. doi: 10/gtkvst.

[139] Translanguaging Pedagogy in CS Ed, (Aug. 2020). Accessed: Oct. 07, 2021. [Online Video]. Available:
http://archive.nyu.edu/handle/2451/61986

[140] V. Mbirimi-Hungwe and T. Hungwe, ‘Translanguaging for epistemic access to computer science concepts : a call for change’,
Per Linguam : a Journal of Language Learning = Per Linguam : Tydskrif vir Taalaanleer, vol. 34, no. 2, pp. 97–111, Dec. 2018, doi:
10.5785/34-2-771.

[141] V. Mbirimi-Hungwe and T. Hungwe, ‘The use of Translanguaging among Speakers of Multually Intelligible Languages to
Understand Computer Science Concepts: A Case of “Sepitori” in South Africa’, in Emerging Perspectives on Translanguaging in
Multilingual University Classrooms, V. Mbirimi-Hungwe, T. Hungwe, and S. M. Seeletse, Eds., Cambridge Scholars Publishing, 2020,
pp. 1–16.

[142] J. Mhandu and V. B. Ojong, ‘Rethinking the Complexities of Decolonising Curricula and Humanising Pedagogy in South
Africa’s Higher Education’, Alternation, vol. SP36, Dec. 2020, doi: 10/gsqzrq.

[143] L. Strate, ‘If It’s Neutral, It’s Not Technology’, Educational Technology, vol. 52, no. 1, pp. 6–9, 2012.
[144] M. Tissenbaum, J. Sheldon, L. Seop, C. H. Lee, and N. Lao, ‘Critical computational empowerment: Engaging youth as shapers

of the digital future’, in 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece: IEEE, Apr. 2017, pp.
1705–1708. doi: 10/gwm4bb.

[145] C. H. Lee and E. Soep, ‘None But Ourselves Can Free Our Minds: Critical Computational Literacy as a Pedagogy of Resistance’,
Equity & Excellence in Education, vol. 49, no. 4, pp. 480–492, Oct. 2016, doi: 10/gqv6c5.

[146] E. Soep, ‘Beyond Coding: Using Critical Computational Literacy to Transform Tech’, 2018, Texas Education Review. doi:
10.15781/T24J0BF37.

[147] D. Eyman and C. Ball, ‘Composing for Digital Publication: Rhetoric, Design, Code’, Composition Studies, vol. 42, no. 1, pp.
114–117, 2014.

[148] I. Bogost, Persuasive games: the expressive power of videogames. Cambridge, MA: MIT Press, 2007.
[149] F. Kittler, ‘There is no software’, ctheory, pp. 10–18, 1995.
[150] N. Wardrip-Fruin, Expressive Processing. MIT Press, 2009.
[151] A. Luke, ‘Critical Literacy: Foundational Notes’, Theory Into Practice, vol. 51, no. 1, pp. 4–11, Jan. 2012, doi:

10.1080/00405841.2012.636324.
[152] Cambridge Assessment, ‘What is literacy? An investigation into definitions of English as a subject and the relationship

between English, literacy and “being literate”’, Cambridge Assessment, Research Report, Jan. 2013. Accessed: May 06, 2021.
[Online].

[153] P. McLaren, ‘Culture or Canon? Critical Pedagogy and the Politics of Literacy’, Harvard Educational Review, vol. 58, no. 26,
pp. 213–235, Jan. 2011, doi: 10.17763/haer.58.2.n106615465585220.

[154] O. Chigisheva, ‘Functional Literacy: Terminological Ambiguity in the Worldwide Educational Context’, Astra Salvensis -
revista de istorie si cultura, vol. VI, no. Special, pp. 963–970, 2018.

[155] K. Levine, ‘Functional Literacy in a Changing World’, in Functional Literacy: Theoretical Issues and Educational Implications,
L. T. Verhoeven, Ed., John Benjamins Publishing, 1994.

[156] P. Freire and D. P. Macedo, Literacy: Reading the Word & the World. Bergin & Garvey Publishers, 1987.
[157] H. Janks, Literacy and Power, 1 edition. New York: Routledge, 2009.
[158] A. Dison and L. Hess-April, ‘Integrating academic literacies into the curriculum in Occupational Therapy’, in Re-imagining

Curriculum: Spaces for disruption, L. Quinn, Ed., AFRICAN SUN MeDIA, 2019.
[159] M. Prensky, ‘Programming: The New Literacy’, Edutopia.org - The George Lucas Education Foundation.
[160] I. D. Raji et al., ‘Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing’, in

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, in FAT* ’20. New York, NY, USA: Association
for Computing Machinery, Jan. 2020, pp. 33–44. doi: 10.1145/3351095.3372873.

26

ACM Trans. Comput. Educ.

[161] T. Simonite, ‘When It Comes to Gorillas, Google Photos Remains Blind’, Wired, Jan. 11, 2018. Accessed: Sep. 14, 2023. [Online].
Available: https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/

[162] D. P. Williams, ‘Fitting the description: historical and sociotechnical elements of facial recognition and anti-black surveillance’,
Journal of Responsible Innovation, vol. 7, no. sup1, pp. 74–83, Dec. 2020, doi: 10.1080/23299460.2020.1831365.

	1 Introduction
	1.1 Aim
	1.2 Structure
	1.3 Positionality

	2 Digital-(De)coloniality
	2.1 What is Decoloniality?
	2.2 What is Digital-Coloniality?
	2.3 Code and the myth of neutrality

	3 Decolonial Curricula
	3.1 Situating the Curriculum
	3.2 Outward and Inward Facing Approaches
	3.3 Reading the discipline contrapuntally

	4 Programming Education
	4.1 Paradigms of Computing Education
	4.2 Approaches to Teaching Programming
	4.3 Identifying moments of disruption

	5 Decolonial Approaches
	5.1 Contextualised curricula
	5.1.1 Localisation
	5.1.2 Ethnocomputing and Indigenous Knowledges
	5.1.3 The drawbacks of hyper-contextual curricula

	5.2 The language problem
	5.2.1 Context and Programming Language
	5.2.2 Language of Instruction
	5.2.3 The Language Teaching Approach
	5.2.4 Translanguaging

	5.3 Turning inward, reading contrapuntally

	6 Critical (Code) literacies
	6.1 The critical and decoloniality
	6.2 Finding moments of disruption through reading programming knowledge contrapuntally
	6.3 Critical engagement with computation
	6.4 Critical engagement with code
	6.5 Literacies
	6.6 Critical Code Literacy

	7 Conclusion

