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Genuine Bianchi modular forms of higher level
at varying weight and discriminant

par Alexander D. RAHM et Panagiotis TSAKNIAS

Résumé. Les formes modulaires de Bianchi sont des formes automorphes
sur un corps quadratique imaginaire associées à un groupe de Bianchi. Nous
appelons formes non génuines les formes de Bianchi qu’on connait relativement
bien, c’est-à-dire les (twists des) formes obtenues par changement de base et
les formes CM. Les autres formes sont appelées génuines. Dans un précédent
article de Rahm et Şengün, il a été constaté que les formes génuines sont
extrêmement rares, mais ces calculs ont été restreints au cas des groupes de
Bianchi entiers. Dans ce travail, nous généralisons les formules pour les formes
de Bianchi non génuines au cas de niveau supérieur, et nous sommes capables
d’observer les premiers, rares exemples de formes génuines de niveau et poids
supérieurs.

Abstract. Bianchi modular forms are automorphic forms over an imag-
inary quadratic field, associated to a Bianchi group. Those of the cuspidal
Bianchi modular forms which are relatively well understood, namely (twists
of) base-change forms and CM-forms, are what we call non-genuine forms; the
remaining forms are what we call genuine. In a preceding paper by Rahm and
Şengün, an extreme paucity of genuine forms has been reported, but those
and other computations were restricted to level One. In this paper, we are
extending the formulas for the non-genuine Bianchi modular forms to higher
levels, and we are able to spot the first, rare instances of genuine forms at
higher level and higher weight.

1. Introduction

Even though modern studies of Bianchi modular forms go back to the mid
1960’s, most of the fundamental problems surrounding their theory are still
wide open. Only for certain types of Bianchi modular forms, which we will
call non-genuine, it is possible at present to develop dimension formulas:
They are (twists of) those forms which arise from elliptic cuspidal modular
forms via the Langlands Base-Change procedure, or arise from a quadratic
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extension of the imaginary quadratic field via automorphic induction (so-
called CM-forms). The remaining Bianchi modular forms are what we call
genuine, and they are of interest for an extension of the modularity theorem
(formerly the Taniyama–Shimura conjecture, crucial in the proof of Femat’s
Last Theorem) to imaginary quadratic fields. Spaces of genuine Bianchi
modular forms have been used Berger, Dembélé, Pacetti and Şengün to
construct evidence for the Brumer–Kramer paramodularity conjecture and
the Eichler–Shimura conjecture [1]. Their evidence however consists so far
in just one Abelian surface (that is paramodular in the Brumer–Kramer
setting; and they deduce from it an Abelian surface satisfying the Eichler–
Shimura conjecture). No other non-trivial example for the Eichler–Shimura
conjecture in dimension 2 based on Bianchi modular forms is present in the
literature. This is due to the limitations of the database of genuine weight 2
Bianchi modular forms that was available to the four above-named authors.
That database [11] did treat only level One Bianchi modular forms, yielding
extremely few genuine forms. So in order to systematically build up more
evidence based on Bianchi modular forms (other types of evidence, which
exist, will not be discussed here) for the Brumer–Kramer paramodularity
conjecture and the Eichler–Shimura conjecture in dimension 2, it will not be
enough to simply continue on a larger database of level One genuine Bianchi
modular forms, but rather one should use a database of higher level genuine
Bianchi modular forms. The latter type of database is provided with the
homepage accompanying the present paper [12]. Again, as for level One, the
higher weight spaces of genuine forms are very rare, but the weight 2 spaces
in our database are more abundant, so they could be used systematically
to produce the desired Abelian surfaces.

In order to find the spaces of genuine Bianchi modular forms in the
present database, a major task was to establish dimension formulas for
the non-genuine forms: For level One, formulas were already established
by Finis and Grunewald [7], yielding the dimensions of Langlands Base-
Change forms and Complex Multiplication (CM) forms outside the Base-
Change space. These dimensions of the non-genuine subspace did, in [11],
only need to be subtracted from the full dimension of the Bianchi modular
forms space, which was computed on the machine from the geometry of the
Bianchi modular group. The latter machine computations extend to higher
level via the Eckmann–Shapiro lemma, which is implemented for calculat-
ing the cohomology that corresponds to the Bianchi modular forms space
through the Eichler–Shimura(–Harder) isomorphism. The Base-Change di-
mension formulas however did require a greater effort for their extension
to higher level. What added a particular additional challenge here, is that
at higher levels, also twists of Base-Change appear, and have to be taken
care of as part of the non-genuine space.
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Result 1.1. Let K be an imaginary quadratic field of discriminant DK ,
odd class number hK and ring of integers OK . Let N ≥ 1 be a square-
free integer, coprime to DK . Then we provide an explicit formula for the
dimension of the space SnG

k (NOK) of non-genuine modular newforms of
level NOK and arbitrary weight k in Theorem 5.1. This formula comes
with instructions (Section 6) on how to evaluate it on a computer.

We also provide such formulas for class number 1, K = Q(
√
−p) for some

prime p ≡ 3 mod 4 and level p or p2 where p2 = (p) (see Section 6.3). But
our dimension formulas need to be explicit enough to be evaluable on the
machine, so they involve a lot of case distinctions, and consequently are
provided only for a part of the levels. The authors hope that it should
however become clear for experts how to obtain formulas for the missing
levels. For instance, for some theorems we assume that the class number is
odd, which is equivalent to the discriminant being −4 or −8 or −p, where
p is a prime congruent to 3 modulo 4. However, for even discriminants
and class numbers, one should proceed analogously (see the remarks in
Section 7).

In conclusion, we hope that the formulas established with the present
paper and accompanying database [12] constitute a significant progress on
the question raised in Section 9.1 of [2] on the exhaustion of spaces of
newforms by non-genuine forms.

Organization of the paper. In Section 2, we fix the notation and as-
sumptions that we will use throughout the paper. We also derive a first
quantitative expression for the dimension of the Base-Change space. In
Section 3, we take the twists of Base-Change into account. In Section 4, we
establish formulas for the dimension of the space of CM-forms that are not
Base-Change. In Section 5, we provide a formula for the total dimension of
the space generated by newforms that are non-genuine, i.e. of any of the
three types mentioned above. This formula is made explicit in Section 6, in
a way that it can be evaluated on the machine. We make some concluding
remarks on our formulas in Section 7. In Section 8, we present our ma-
chine results, in which the non-genuine dimension is subtracted from the
full dimension of the newforms space, the latter being computed from the
geometry of the Bianchi modular group. Due to the sparsity of the genuine
forms, those results can be considered as a treasure map to the conditions
under which they exist.

Acknowledgements. We would like to thank John Cremona, Lassina
Dembélé, Aurel Page and GaborWiese for helpful discussions. Our very spe-
cial thanks go to M. Haluk Şengün, for having initiated this research project,
contributed helpful advice and having designed the MAGMA source code
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for computing the relevant cohomology of congruence subgroups via a ver-
sion of the Eckmann-Shapiro lemma.

2. Setting

Let D > 1 be a square-free integer and let K = Q(
√
−D) and denote

its ring of integers by OK . For any ideal n of OK and integer k ≥ 2 we let
SKk,k(Γ0(n)) denote the space of Cuspidal Bianchi modular forms over K of
weight k, k, level n and trivial Nebentypus. This space admits an action of
a Hecke algebra generated by operators indexed by the prime ideals of OK .
Each eigenvector F of this algebra corresponds to an automorphic repre-
sentation ΠF in A2(K), the set of all cuspidal automorphic representations
of GL(2,AK). We are interested in the ones appearing in the image of the
Base-Change operator defined by Langlands [8],

BCK
Q : A2(Q)→ A2(K),

along with their twists. Here we generalise the formula of [7] to arbitrary
level n coprime to the discriminant DK of K. More precisely, we provide an
algorithm computing the dimension of this space without really computing
the spaces in hand. In some simple cases we also provide explicit formulas.
We also provide an algorithm for level (p) = p2, where p is a rational prime
that ramifies in K. We hope that our proposed strategy outlines a complete
plan for the interested reader to fill out the missing level cases without much
effort.

It is clear that without loss of generality it is enough to study the Base-
Change image problem on the new subspace of SKk,k(Γ0(n)), which we will
denote by Sk(n) in the rest of this paper. A necessary condition for Base-
Change to have non-trivial image is that the level is Galois stable; assuming
that the level is prime to the discriminant of the field, this means that it
is an ideal generated by a rational number. Let n = NOK for some N ≥ 1
coprime to DK . The first crucial observation is that one can consider the
Base-Change operator locally. Let Π = BCK

Q (π) be an automorphic repre-
sentation in the Base-Change image. Then for any prime ideal p coprime
to DK , the conductor of Πp is the extension to OK of the conductor of
πp, where p is the prime below p. We therefore get that if π contributes to
the Base-Change subspace of Sk(n), then its conductor away from DK is
exactly N .

This leaves us with the primes dividing the discriminant. Let p divide
DK . Then Πp is a principal unramified series, since we required that the
level is coprime to the discriminant. Let ωp be the quadratic character of
conductor p. A complete list of all the possible local components πp of π at
p is provided in [7] which we also provide here for convenience:

• unramified Principal Series.
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• 1⊕ ωp.
• A certain supercuspidal representation (of conductor p2 for p > 2).

We now have a complete description of the inverse image of the Base-
Change operator in terms of its inertial type at the primes p|NDK : If
p|N , then the type can be anything of conductor equal to the power of p
dividing N . And if p|DK , then it is one of the types mentioned above. In
order to compute the dimension of the Base-Change subspace, we would
have to keep in mind that the Base-Change map is one-to-one when the
component at a ramified prime is of the first kind, and two-to-one if it is of
the other two. Moreover, if a newform in the preimage spaces has CM by
K, then its image is Eisenstein, so it does not contribute to the dimension.
The above discussion yields the following formula.

Proposition 2.1. Let S(d) be the set of prime divisors of d. Let ωd be the
quadratic character of conductor d, under the convention that ωd is trivial
at a prime p|d if and only if p2||d. Then we obtain

dimSBC
k (NOK) =

∑
d|D2

K

1
2|S(d)|

(
dimSd-sc,newk (Γ0(Nd), ωd)

− dimSd-sc,newk (Γ0(Nd), ωd)CMK

)
,

where for each d, the space Sd−sc,newk (Γ0(Nd), ωd) is the subspace of
Snew
k (Γ0(Nd), ωd) spanned by newforms whose local type at every p2||d is

the supercuspidal representation mentioned above. And Sd-sc,newk (Γ0(Nd),
ωd)CMK is the CM subspace.

Of course many of the spaces appearing on the right hand side are trivial
since the parity of their nebentypus does not match that of the weight k.
The final key observation is that we have formulas for all of the spaces
appearing on the right hand side of the above formula (see [6] or [7]).

3. Twists of Base-Change

It is fairly easy to see that it is possible to obtain non Base-Change
forms just by twisting a Base-Change one by a suitable non Base-Change
character. We would like to count these forms out of our genuine forms
subspace and therefore we would like to find the dimension of the subspace
they span as well. Let us denote by StBC

k (n) the subspace of Sk(n) generated
by those newforms that are twists of Base-Change. For this purpose, we say
that f ∈ Sk(n) is twist of Base-Change, if there exists a classical weight k
modular form g of levelM ∈ N withM dividing n, such that f = BCK

Q (g)⊗c
for some non-trivial character c. We first prove the following:
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Theorem 3.1. Let K be an imaginary quadratic field of discriminant DK

and class number hK . Let N ≥ 1 be a square-free integer, coprime to DK .
Let n = NOK . Then for all k ≥ 2,

dimStBC
k (n) = (hK − 1) dimSBC

k (n).

Proof. Since we are interested in newforms of square-free level, we get that
the local type at any prime p is Steinberg or unramified principal series,
depending on whether p|n or not. Let ε be a non Base-Change character
of O∗K and assume it has non-trivial conductor c(ε). Let p|c(ε) be a prime
ideal of K. Even though f ⊗ ε does not have square-free level, it has to be
excluded that this twisted form is Base-Change. This is done by analysing
the type at p as follows. We observe that f ⊗ ε has level divisible by p2,
and its type at p is ε ⊗ St or ε ⊕ ε. In both of the latter cases, the type
comes from Base-Change if and only if ε does. This shows that such an ε
cannot be used to twist a non Base-Change form to a Base-Change one
and vice versa. The only option left for ε is to be non Base-Change and to
have trivial conductor. There are precisely hk − 1 many such characters.
Indeed each such character has the desired property which gives the desired
result. �

4. CM-Forms

Another subspace we would like to exclude as non-genuine is the one
generated by CM-newforms. They are the ones whose corresponding auto-
morphic representation occurs as the automorphic induction of a suitable
Hecke character of a quadratic extension M/K. Let us denote this sub-
space by SCM

k (n). It is quite often the case that SCM
k (n) ⊆ SBC

k (n), but not
always. Nevertheless one can easily prove the following:

Theorem 4.1. Let K and n be as in Theorem 3.1. Moreover assume that
hK is odd. Then for all k ≥ 2,

dimSCM
k (n) = 0.

Proof. Let f be a newform that supposedly lies in SCM
k (n). Let ψ be the

Hecke character of some extension M/K whose automorphic induction is
f . We then have that L(f, s) = L(ψ, s). Equating local components at any
prime p dividing the discriminant dM/K , we see that p2 should divide n.
Since n is assumed to be square-free, no such p should exist and thus the
extensionM/K is unramified. This provides the desired contradiction since
the class number of K is assumed to be odd. �

5. Total non-genuine subspace

In this section we provide a formula for the total dimension of the space
generated by newforms that are “non-genuine” in any of the three notions
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discussed above, i.e. a formula for
dim

(
SBC
k (n) + StBC

k (n) + SCM
k (n)

)
.

Let us denote this space by SnG
k (n). Then combining Theorem 3.1, Theo-

rem 4.1 and Proposition 2.1 yields the following:

Theorem 5.1. Let K be an imaginary quadratic field of discriminant DK

and odd class number hK , and N ≥ 1 be a square-free integer, coprime to
DK . Let n = NOK . Then

(5.1) dimSnG
k (n) = hK dimSBC

k (n)

= hK
∑
d|D2

K

1
2|S(d)|

(
dimSd-sc,newk (Γ0(Nd), ωd)

− dimSd-sc,newk (Γ0(Nd), ωd)CMK

)
.

6. Dimension formulas

In this section we provide explicit formulas/algorithms for the right hand
side of the formula in Theorem 5.1. We split the computation into two parts,
each involving one of the two main ingredients of each summand in the right
hand side of (5.1).

6.1. Computing dim Sd-sc,new
k (Γ0(Nd), ωd). Our starting point is

Proposition 4.18 in [7] which we provide here for convenience. Here, we
denote by Sk(Γ(N)) the space of weight k elliptic modular forms for the
principal congruence subgroup Γ(N) ⊆ SL(2,Z) of level N .

Proposition 6.1 (Finis, Grunewald, Tirao). Let N ≥ 1 and k ≥ 2 be
integers and σ a representation of GN = SL(2,Z/NZ) such that σ(−I2)
is the scalar (−1)k. Let UN ⊆ GN be the subgroup of all upper triangular
unipotent elements and S3 and S4 the images in GN of elements of SL(2,Z)
of order 3 and 4, respectively. Then,

dim HomGN
(Sk(Γ(N)), σ)

= k − 1
12 dim σ − 1

2 dim σUN + εk trσ(S3) + µk trσ(S4) + δk,2 dim σGN .

The constants εk and µk are explicit functions of k, and δk,2 is the usual
Kronecker delta notation. In what follows, given a subspace of newforms
B ⊆ Sk(Γ(N)), we will say that σ defines B if HomGN

(Sk(Γ(N)), σ) ∼= B.
We thus need to identify a suitable σ for each subspace involved in the last
line of (5.1). In fact we only need to compute the following five invariants
associated to such σ:

dim σ, dim σUN , trσ(S3), trσ(S4), dim σGN .
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We will denote them by Ii(σ), i ∈ {1, 2, 3, 4, 5} respectively. It is important
to notice that σ, and therefore the five invariants associated with it, depends
only on the level structure of the subspace that is of interest to us and not
the weight. It is also clear that the following properties hold:

Ii(σ ⊕ σ′) = Ii(σ) + Ii(σ′)

and
Ii(⊗pσp) =

∏
p

Ii(σp)

for all σ = ⊗pσp, σ′ and for all i ∈ {1, 2, 3, 4, 5}.
Let us fix one of the spaces in the right hand side of the formula in

Theorem 5.1, Sd-sc,newk (Γ0(Nd), ωd) say, and let σ be the representation
defining it. In view of the properties just mentioned, we will compute the
Ii(σ) by determining the N -part and the d-part separately.

In order to compute the N -part, it is enough to notice that it corresponds
to the one defining Snew

k (Γ0(N)). Given an integer N ≥ 1, let σN = ⊗pσNp
and σN,new = ⊗pσN,newp be the representation of GN defining Sk(Γ0(N))
and Snew

k (Γ0(N)) respectively. It is immediate then that σNp = σp
e and

σN,newp = σp
e,new, where pe||N . Moreover it is easy to see that

dimSnew
k (Γ0(pe))

= dimSk(Γ0(pe))− 2 dimSk(Γ0(pe−1)) + dimSk(Γ0(pe−2)),

for any e ≥ 0, with the understanding that the dimensions mentioned are
0 if the exponent of p becomes negative. This in turn implies the following
formula:

(6.1) Ii(σp
e,new) = Ii(σp

e)− 2Ii(σp
e−1) + Ii(σp

e−2).

As before, the Ii’s involved are 0 if the corresponding exponent of p is
negative. Formulas for the right hand side are provided in [6] and we also
state them in Table 6.1 for convenience for the cases where e can be odd (the
full formulas are recalled in the preprint version of this paper). Using (6.1)
and Table 6.1, one easily gets Table 6.2.

Let τd, where d|D2
K , be the d-part of the representation DK . The Ii’s for

each τd` , with `|d, have already been determined in [7]. We then have that
σ = σN ⊗ τd defines Sk(Γ0(Nd), ωd). Moreover Ii(σN ⊗ τd) = Ii(σN )Ii(τd)
and we have explicit formulas for both terms in the right hand side.

dimSk(Γ0(Nd), ωd) = k − 1
12 I1(σN )I1(τd) + · · · .

If one lets Ii(σp) = 1 for all i and all p - DK then one gets the formulas
derived in [7].
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Table 6.1. Formulas for Ii(σp
e) in the cases where e can

be odd, where λ(srp, sp, p) is the one defined in [6].

I1(σpe) = pe−1(p+ 1), e ≥ 1;
I2(σpe) = λ(e, 0, p) = 2pn, e = 2n+ 1;

I3(σpe) = #{x mod pe | x2 + x+ 1 = 0} =
{

1 e = 0 or pe = 3,

1 +
(

−3
p

)
e ≥ 1 and p 6= 3,

0 e ≥ 2 and p = 3;

I4(σpe) = #{x mod pe | x2 + 1 = 0} =
{

1 e = 0 or pe = 2,

1 +
(

−1
p

)
e ≥ 1 and p 6= 2,

0 e > 1 and p = 2;

I5(σpe) = 1.

Table 6.2. Formulas for Ii(σp
e,new) in the cases where e

can be odd.

I1(σpe,new) =
{

p− 1 e = 1,

pe−3(p− 1)2(p + 1) e ≥ 3;

I2(σpe,new) = 0, e = 2n+ 1;

I3(σpe,new) =


1 e = 0 or pe = 33,(

−3
p

)
− 1 e = 1 and p 6= 3,

−
(

−3
p

)
e = 2 and p 6= 3,

−1 pe = 3 or 32,

0 otherwise;

I4(σpe,new) =


1 e = 0 or pe = 23,(

−1
p

)
− 1 e = 1 and p 6= 2,

−
(

−1
p

)
e = 2 and p 6= 2,

−1 pe = 2 or 22,

0 otherwise;

I5(σpe,new) =
{
−1 e = 1,

0 e ≥ 2.

6.2. Computing dim Sd-sc,new
k (Γ0(Nd), ωd)CMK . We follow the

method used in [14] to count CM newforms of a given level, weight and
Nebentypus. As explained there, every newform has associated to it a pair
of characters (ψf , ψ∞) that satisfies a certain compatibility condition. More-
over, for every such compatible pair, there are hK many newforms associ-
ated with it. The problem is thus reduced to counting compatible pairs
that match the prescribed level, weight and Nebentypus. The infinity com-
ponent is always uniquely determined by the weight, so we only have to
count all the ψf ’s that correspond to the given level and Nebentypus and
are compatible with the given weight. Finally every such ψf is determined
by its local components at every prime p of OK , so we count the possible
choices for each of those and multiply them to get the final answer.
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Recall that Nd = N(m)|DK |, where m is the conductor of ψf . Since N
andDK are coprime, every prime dividing N should divide N(m) too. More-
over, a prime `|d divides N(m) if and only if `2|DK . We will treat primes
p separately, depending on their ramification and residue class degree, ep
and fp respectively. We start with primes p whose residue characteristic is
greater than 2.

6.2.1. p inert. In this case p = p and N(p) = p2, so the exponent of
p in N should be even. Assume that this is the case: p2n||N , for some
n ≥ 1. We then get that the conductor of ψf has to be divisible exactly
by pn. As we can see in [13], (O/pn)∗ is generated by three independent
generators: ξ, 1 + p and 1 + pω of order p2− 1, pn−1 and pn−1 respectively.
The residues of rational integers form a subgroup isomorphic to (Z/pnZ)∗
which is generated by ξp+1 and 1 + p. Since the restriction of ψf on Z∗
is predetermined by the nebentypus, we have unique choices for ξp+1 and
1 + p. In our case the nebentypus is trivial and therefore ψf (ξp+1) = 1 and
ψf (1 + p) = 1. If n = 1, then the only generator to consider is ξ and since
we need the conductor at p to be p we have to exclude 1 from the possible
values of ψf (ξ), which leaves p choices in total. If however n > 1 then in
order for the conductor at p to be pn we need either ψf (1+p) or ψf (1+pω)
to be a primitive pn−1-th root of unity. Since ψf (1 + p) = 1 we get that
ψf (1 + pω) must satisfy this condition which leaves ϕ(pn−1) = pn−2(p− 1)
choices. In this case all p+ 1 choices for ψf (ξ) are permitted, so we get in
total pn−2(p2 − 1) many choices.

6.2.2. p split. In this case p = pp̄ and N(p) = N(p̄) = p. Let pt||N for
some t ≥ 1. Then the p-part of the conductor of ψf is apriori of the form
pαp̄β for any 0 ≤ α, β ≤ t such that α+β = t. We will first show that in our
case α = β = n ≥ 1 and therefore t must be even. We have the following
group homomorphisms:

(Z/pmax{a,b}Z)∗ ↪→ (OK/pαp̄β)∗

and
(OK/pαp̄β)∗ ∼= (OK/pα)∗ × (OK/p̄β)∗.

Notice that 1 + p will map to (1 + p, 1 + p) after composing the two maps
above. Since we assume that the p-part of the conductor of ψf is pαp̄β, we
get that ψf (1 + p) must be a primitive pα−1-th root of unity, as well as a
pβ−1-th one. This can of course only happen if α = β = n.

Let’s go back to counting all possible characters of O∗K of conductor pnp̄n.
Having in mind the isomorphism above, any such character is completely
determined by the images of the generators of (OK/pα)∗ and (OK/p̄β)∗.
Without loss of generality, we can pick 1 + p and δ, of order pn−1 and p− 1
respectively, to generate both groups. Like before, the restriction of ψf to
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Z is determined by the nebentypus. For the p-part we have that the two are
in fact equal and since the nebentypus has trivial p-part we get the same
for the p-part of ψf |Z. This means that (1 + p, 1 + p) and (δ, δ) should map
to 1 and we therefore have that

ψf ((1 + p, 1)) = ψf ((1, 1 + p))−1

and
ψf ((δ, 1)) = ψf ((1, δ))−1.

A priori, ψf ((δ, 1)) has p−1 choices. If however n = 1, then this δ is the only
generator; and if it has trivial image, the conductor then becomes lower,
which leaves p− 2 choices. If n > 1, the conductor condition is satisfied by
restricting ψf ((1 + p, 1)) to be a primitive pn−1-th root of unity. This gives
p − 1 choices for the image of δ and ϕ(pn−1) = pn−2(p − 1) many choices
for that of 1 + p.

6.2.3. p ramified. In this case p = p2 and N(p) = p. Assume that pt||d
(remember that N and DK are coprime). Assuming that pu||DK (and since
p is ramified we also have that u ≥ 1), we get that pt−u||N(m) so the p-part
of the conductor of ψf should be pt−u. If t = 1, we clearly have a unique
choice for the p-part of ψf which happens to match the Nebentypus too.
If t = 2, we are looking for non-trivial characters of (OK/p)∗, which are
apriori p− 2 many. The nebentypus condition determines these characters
uniquely on (Z/pZ)∗, which happens to be isomorphic to (OK/p)∗. The
unique character that is left is actually non-trivial so we have a unique
choice.

Summarizing all of the above:

CM(pt) =



1 t = 0,
1 t = 1 and p ramified,
0 t = 1 and p unramified,
1 t = 2 and p ramified,
p− 2 t = 2 and p split,
p t = 2 and p inert,
0 t = 2n+ 1 ≥ 3,
pn(p− 1)2 t = 2n ≥ 4 and p split,
pn(p2 − 1) t = 2n ≥ 4 and p inert.

Recall that it is easy to determine whether a prime is split, inert or ramified
in K simply computing

(
DK
p

)
. Putting everything together we get:

(6.2) dimSd-sc,newk (Γ0(Nd), ωd)CMK =
∏

pt||Nd
CM(pt).
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Notice that the formula above works for any N coprime to DK , not just
square-free. Specializing to square-free N we get:

dimSd-sc,newk (Γ0(Nd), ωd)CMK =
{

1 N = 1 and rad(DK)|d,
0 otherwise,

where rad(DK) is the product of all primes dividing DK .
Hopefully it should be obvious by now that we have sketched an algo-

rithm that computes dimSnG
k (n) in an elementary way.

6.3. The case K = Q(
√
−p), p ≡ 3 mod 4 and n = (p). Let p ≡ 3

mod 4 be a prime number, and (p) = p2 in OK for K = Q(
√
−p). In this

section, we essentially describe all the ingredients for a dimension formula
in the cases where the level n is p or p2. For this purpose, we determine
the parameters Ii(σp) for all the suitable σp in these two cases, further the
twists of Base-Change, and show that there is no CM outside Base-Change.
For simplicity, we restrict ourselves to the case where the class number hK
of K is 1.

Let us begin with n = p. In this case, the only possible type over K of
level p is unramified Steinberg. It is fairly easy to see that the only type
over Q that can base-change to this is unramified Steinberg at p. This space
over Q coincides with the new Γ0(p) space and the σ-parameters can be
computed using Table 6.2:

I1 = p− 1, I2 = 0, I3 =
(−3
p

)
− 1, I4 = −2, I5 = −1.

Notice that the new Γ0(p) space over Q contains no CM forms. Using the
same arguments as in Theorem 3.1 we see that there are no twists of Base-
Change in Γ0(p). We also claim that there are no CM forms: Indeed, assume
there exists one of level Γ0(p), f say. Then f is automorphic induction of
ψ from L to K, where L/K is a quadratic extension and ψ is a Hecke
character over L. We get that L must be ramified at p only. This is absurd
since class field theory for K tells us that it does not have any even degree
abelian extensions ramified only at p. Summing everything up:

dimSnG
k (p) = dimSnew

k (Γ0(p)).

One can then use the Ii parameters given above or use classical dimension
formulas to compute the right hand side.

We move to the n = p2 = (p) case. Let ωp, respectively ωp, be the
quadratic character of conductor p, respectively p. The following list sum-
marizes the possible types over K of level p2 and for each one gives the
possible types over Q that base-change to them:

• All the spaces listed in the trivial level case: After twisting their
Base-Change by a quadratic character of conductor p they become
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of level p2. The type at p after Base-Change is again Principal Series,
I(ωp, ωp).
• Principal Series I(χ, χ−1), where χ is of conductor p, non quadratic.
Their Base-Change (or their twist by a suitable character of con-
ductor p) becomes a newform of level p2 and trivial nebentypus.
The type at p after Base-Change is again Principal Series, I(η, η−1)
with η 6= ωp.
• Unramified Steinberg Series St(p). As mentioned in the level n = p
case, their Base-Change image are the Unramified Steinberg Series
St(p) over K. After twisting by a quadratic character of conductor
p they become newforms of level p2 and trivial nebentypus. The
type at p after Base-Change is ramified Steinberg, ωp ⊗ St(p).
• Finally all Supercuspidal series of level p2 that are not part of the
third case described in the trivial level situation. Their Base-Change
image (and their twists by ωp) are Supercuspidal Series of level p2

and trivial nebentypus. The type at p after Base-Change is again
Supercuspidal Series.

These four components comprise all the possible Base-Change as well as
twists of it that can occur for level p2 and trivial nebentypus. Table 6.3
provides the formulas to compute the parameters Ii(σ) in each case, which
one needs in order to use Proposition 6.1 to compute the corresponding
dimensions. Here CPS(p) is defined by

CPS(p) =
{
−2, if p ≡ 1 mod 3,
0, otherwise;

and SC3(p) and SC4(p) are the traces trσp(S3), respectively trσp(S4) that
are defined in the statement of Lemma 4.19 of [7], as follows. For any
rational prime p ramified in K, let νp be the exact power of p dividing the
discriminant of K. Then we set

SC3(p) =



0, if p ≡ 1 mod 3,
−2, if p ≡ 2 mod 3, p > 2,

or p = 2, νp = 3,
−1, if p = 3,
2, if p = 2, νp = 2;

and SC4(p) =
{

2(−1)(p−3)/4, if p ≡ 3 mod 4,
0, otherwise.

Finally we need to account for any CM forms not already present in
the Base-Change subspace. In fact one can easily see that there are none.
The argument is almost identical to the one given for the level p case: The
existence of any such CM form would imply the existence of a quadratic
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Table 6.3. Parameter values for the types contributing to
Base-Change of level p2

Type dim σ dim σUN trS3 trS4 dim σGN

I(ωp, ωp) p+1
2 p− 3 1 + 1

2SC3(p) 0 0

I(η, η−1), η 6= ωp
(p−3)(p+1)

2 1 + hK CPS(p) 1 + 1
2SC4(p) 0

ωp ⊗ St(p) p− 1 0
(
−3
p

)
− 1

(
−1
p

)
− 1 −1

Supercuspidal (p−3)(p−1)
2 p− 2 + hK

−2
(
−3
p

)
−CPS(p)
−SC3(p)

−1
−1

2

(
−1
p

) 0

extension of K ramified only at p, but no such extension exists. At this
point, anyone wanting to compute dimSnG

k (p2) has everything needed to
do so.

7. Final Remarks

We would like to sum up here the cases for which we provide a com-
plete answer to the question of how the dimension formulas for non-genuine
Bianchi modular forms look like:

• Odd Class Number, square-free level, coprime to the discriminant,
trivial nebentypus.
• Class Number 1, K = Q(

√
−p) for some prime p ≡ 3 mod 4 and

level p or p2 where p2 = (p).
Many of our arguments however provide partial answers to a broader

range of cases:
• We have a complete description in Table 6.2 of the σ parameters
away from the discriminant as long as the nebentypus is trivial
for any level, not just square-free ones. The generalization to non-
trivial nebentypus should be quite straightforward but even more
cumbersome to write down as single formulas.
• For primes p dividing the discriminant, the 0 exponent case is the
one treated in [7] and we provide an answer for exponents 1 and 2
and trivial nebentypus in the case p ≡ 3 mod 4.
• Theorem 3.1 applies to imaginary quadratic fields of even class num-
ber too, not only to the ones with an odd class number.
• Finally the formula in (6.2) allows one to compute the dimension
of the classical newforms that base-change to Eisenstein forms for
any N coprime to the discriminant and trivial nebentypus, not just
for the square-free levels.
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Table 8.1. Level One cases where there are genuine classes

|D| 7 11 71 87 91 155 199 223 231 339 344
k + 2 14 12 3 4 8 6 3 2 6 3 3
dim 2 2 2 2 2 2 4 2 2 2 2

|D| 407 415 455 483 571 571 643 760 1003 1003 1051
k + 2 2 2 2 3 2 3 2 4 2 3 2
dim 2 2 2 2 2 2 2 2 2 2 2

8. Computational results for the spaces of genuine forms

The authors have used the software Bianchi.gp ([9, 10]) to compute
the necessary geometric-topological information about the whole Bianchi
group, and then applied a MAGMA [3] implementation by Şengün (for
which we provide the algorithm in [12]) to deduce the dimension of the rel-
evant cohomology space for the congruence subgroup at level n, passing by
the Eckmann–Shapiro lemma. They have then substracted the Eisenstein
series space to get the cuspidal cohomology space, which by the Eichler–
Shimura(–Harder) isomorphism yields the cuspidal forms space. Then they
did substract the oldforms using a well-known recursive formula, to get the
dimensions of the newforms spaces Sk(n) defined in Section 2. Note that
we are considering here only levels that are of interest. If, for instance, we
would look at prime levels p with p 6= p, then there is no base change in
the considered space.

8.1. Level One. We recall here a dimension computation of 4986 different
spaces of cuspidal newforms at level 1, at varying discriminant D (over 186
different imaginary quadratic fields) and varying weight k+ 2. The precise
scope of our computations is given in [11]. In only 22 of these spaces were
we able to observe genuine forms. The precise data about these exceptional
cases is provided in Table 8.1. We note that in [11], some further subspaces
are tabulated, which are in fact populated by CM-forms (arising through
automorphic induction). We need this table in order to spot the twists of
genuine level One forms to higher levels.

8.2. Levels dividing p at discriminant −p. We have compared the
evaluation of our above formulas against our numerical results for the full
space of cuspidal newforms.

In order to specify an individual level unambiguously, we make use of the
following Hermite Normal Form (HNF) description of an ideal, which was
suggested to us by John Cremona, and the reliability of which is guaranteed
by papers of Cohen [5] and Bosma and Pohst [4]. We fix a Z-module basis
{1, ρ} for the ring of imaginary quadratic integers. Then we bring the 2×2-
matrix describing our ideal over that basis into lower triangular Hermite



42 Alexander D. Rahm, Panagiotis Tsaknias

Normal Form, so we can write it as
(
a 0
b c

)
. If the lower right entry of this

lower triangular matrix is negative, then we multiply its bottom row by
−1, and overwrite its entries b and c accordingly. Furthermore, we reduce b
modulo a, so to force it into the set {0, 1, . . . , a−1}. Because the first basis
element is 1, the entry product a · c is the norm of our ideal. Then we call
the triplet [a · c, b, c] “the HNF” of the ideal. In order to get the ideal back
from the HNF triplet, we generate the ideal 〈a, b + c · ρ〉 in the imaginary
quadratic ring.

At discriminant −p, at level (p) (of norm p2 and HNF [p2, 0, p]) and its
divisors, we have carried out this computation from (automorphic form)
weight 2 up to the following upper limits for the weight.

Discriminant −7 −11 −19 −43 −67
weight up to 25 21 11 4 2

The result is that of these 83 cuspidal newforms spaces, all are completely
exhausted by (twists of) Base-Change, except for the following.

Discriminant −7 −7 −11 −11 −11 −43
weight 6 14 12 3 5 2

genuine /twist of genuine space dimension 2 2 2 4 4 2

Out of these, the forms at discriminant −7, weight 14 and at discriminant
−11, weight 12 are twists of the genuine level One Bianchi modular forms
already found by Grunewald [7]. In the other cases, there are no level One
forms that could be twisted [11]. That there are no CM-forms in the cases p
congruent to 3 mod 4, is guaranteed for arbitrary weight by Theorem 2.1.
So the remaining spaces must be genuine, and we print them in boldface.

8.3. Square-free levels. Let n ∈ Z be square-free and coprime to the dis-
criminant of the imaginary quadratic field in question. Consider the level
(n) of HNF [n2, 0, n]. Then we have the formulas of Section 6 for the di-
mension of the space of base-changed forms of level (n). We have compared
them against the machine computed dimension of the space of cuspidal
newforms. At discriminant -19, the range of this machine computation was
as follows.

Levels n 2, 3 6 11 13 5 7, 15 14, 17 23 10 30 22, 31, 33
weight up to 22 21 15 13 12 11 10 8 5 4 2

Out of these 154 spaces, only the following six spaces can admit genuine
forms:

Level 6 6 11 15 17 30
weight 3 4 2 2 2 2

genuine space dimension 2 2 2 2 2 4
As the level is square-free and the class group of the imaginary quadratic
field is trivial, there are no twists of base-change forms. By Theorem 3.1,
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Table 8.2. Overview of the sample presented in the Ap-
pendix. Under “# spaces”, we count the newforms spaces
that have been computed at the specified discriminant and
varying level, and under “# genuine spaces”, we count those
of them which admit a non-trivial genuine subspace.

Weight 2 Higher weight (at least 3)
Discriminant # spaces # genuine spaces # spaces # genuine spaces

-7 1174 355 556 17
-11 1307 353 683 14
-19 504 151 531 6
-43 318 61 103 1
-67 123 17 33 1
-163 24 4 3 0

there are no CM forms. So the above six spaces must be constituted of
genuine forms.

The above sample of 154 spaces allows us to guess that genuine forms
are more likely to occur at low weights than at high weights (supported by
Table 8.2); and that levels which admit genuine forms at some low weights
are rather unlikely to admit more of them at higher weights (supported by
the Appendix).

Appendix A. Detailed results in the square-free level case

In addition to the sample of Section 8.3, we include in the following tables
a range of square-free ideals which are not Galois-stable (in our setting
of imaginary quadratic fields, not totally real). At each discriminant, we
first specify the range of the pertinent machine computation, and then
in a separate table the spaces with a non-trivial genuine subspace. The
computation usually was run also at the Galois-conjugated level, but in the
range tables, we print only one HNF per pair of Galois-conjugate levels.
We omit the details for weight 2, and outsource them to [12]. A statistical
overview is given in Table 8.2. The bottleneck for the computations were the
memory requirements; processor time aspects were completely eclipsed by
them. With the quadratic (in the weight) growth of the coefficient modules,
the MAGMA program did grow its memory requirements quadratically.
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Range at discriminant −19. Level HNFs, up to Galois conjugacy weights
164 levels of norm up to 1145 and their Galois conjugates only 2

[140, 10, 2], [140, 30, 2], [153, 39, 3], [161, 12, 1], [161, 127, 1], [172, 28, 2], [175, 25, 5],
[187, 13, 1], [187, 156, 1], [188, 12, 2], [191, 154, 1], [197, 150, 1], [199, 128, 1], [207, 30, 3],
[215, 100, 1], [215, 14, 1], [220, 38, 2], [220, 48, 2], [229, 139, 1], [233, 166, 1], [235, 100, 1],
[235, 194, 1], [239, 204, 1], [244, 106, 2], [245, 0, 7], [251, 198, 1], [252, 30, 6], [253, 173, 1],
[253, 217, 1], [263, 113, 1], [271, 227, 1], [275, 10, 5], [277, 16, 1], [283, 183, 1], [289, 207, 1],
[292, 100, 2], [301, 229, 1], [301, 243, 1], [305, 114, 1], [305, 129, 1], [311, 17, 1], [313, 273, 1],

[347, 18, 1], [349, 110, 1], [353, 131, 1], [359, 140, 1], [367, 303, 1], [389, 168, 1],

up to 3

[101, 26, 1], [115, 10, 1], [115, 35, 1], [119, 47, 1], [119, 54, 1], [121, 24, 1], [131, 105, 1], [137, 11, 1],
[139, 56, 1], [149, 58, 1], [157, 115, 1], [163, 75, 1], [68, 26, 2], [77, 19, 1], [77, 68, 1], [83, 37, 1],

[85, 20, 1], [85, 30, 1], [900, 0, 30], [92, 20, 2], [99, 24, 3],
up to 4

[100, 0, 10], [180, 0, 6], [35, 15, 1], [35, 29, 1], [43, 14, 1], [44, 16, 2], [47, 40, 1], [49, 15, 1],
[55, 19, 1], [55, 24, 1], [61, 53, 1], [63, 15, 3], [73, 22, 1], up to 5

[20, 0, 2], [25, 20, 1], up to 6
[23, 10, 1], [529, 0, 23], up to 8
[196, 0, 14], [289, 0, 17], up to 10

[17, 13, 1], [225, 0, 15], [28, 10, 2], [49, 0, 7], [7, 1, 1], up to 11
[25, 0, 5], [45, 0, 3], [5, 0, 1], up to 12

[169, 0, 13], up to 13
[121, 0, 11], up to 15
[11, 2, 1], up to 16
[36, 0, 6], up to 21

[4, 0, 2], [9, 0, 3]. up to 22

Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −19 with genuine space of dim. d
2 1 73 levels of norm up to 1145
2 2 31 levels of norm up to 1099
2 3 16 levels of norm up to 935
2 4 17 levels of norm up to 1081
2 5 6 levels of norm up to 932
2 6 6 levels of norm up to 940
2 7 2 levels of norm up to 955
3 2 [289, 207, 1], [289, 81, 1], [36, 0, 6], [49, 15, 1], [49, 33, 1],
4 2 [36, 0, 6].

That is, the genuine spaces at level (6) = [36, 0, 6] already observed in
Section 8.3, as well as two further two-dimensional weight 3 spaces and
their Galois conjugates.

Range at discriminant −43. Level HNFs, up to Galois conjugacy weights
133 levels of norm up to 787 and their Galois conjugates only 2

[52, 22, 2], [59, 31, 1], [67, 7, 1], [79, 42, 1], [68, 28, 2], [83, 74, 1], [103, 69, 1], [109, 71, 1],
[97, 64, 1], [107, 49, 1], [121, 110, 1], [100, 0, 10], [101, 9, 1], [117, 33, 3], [92, 38, 2], [127, 40, 1],

[99, 30, 3], [121, 0, 11], [139, 48, 1], [167, 154, 1],
up to 3

[53, 46, 1], [31, 4, 1], [41, 5, 1], [49, 0, 7], [44, 0, 2], [47, 22, 1], up to 4
[17, 2, 1], [23, 3, 1], [25, 0, 5], up to 5

[13, 11, 1], [11, 0, 1], up to 6
[9, 0, 3], up to 7
[4, 0, 2]. up to 8
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Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −43 with genuine space of dim. d
2 1 32 levels of norm up to 737
2 2 18 levels of norm up to 713
2 3 4 levels of norm up to 719
2 4 7 levels of norm up to 572
6 2 [9, 0, 3].

Range at discriminant −67. Level HNFs, up to Galois conjugacy weights
54 levels of norm up to 361 and their Galois conjugates only 2

[29, 3, 1], [37, 4, 1], [36, 0, 6], [49, 0, 7], [47, 41, 1], [59, 6, 1], [71, 36, 1], up to 3
[17, 0, 1], [19, 1, 1], [23, 2, 1], [25, 0, 5], up to 4

[9, 0, 3], up to 5
[4, 0, 2]. up to 6

Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −67 with genuine space of dim. d
2 1 6 levels of norm up to 323
2 2 3 levels of norm up to 289
2 3 6 levels of norm up to 289
2 4 one level of norm 121
2 8 one level of norm 196
3 2 [36, 0, 6].

Range at discriminant −163. Level HNFs, up to Galois conjugacy weights
[25, 0, 5], [36, 0, 6], [41, 40, 1], [43, 41, 1], [49, 0, 7], [47, 2, 1], [53, 49, 1], [61, 4, 1],

[71, 5, 1], [83, 6, 1], [97, 7, 1], [121, 0, 11], [113, 8, 1], 2

[9, 0, 3], up to 3
[4, 0, 2]. up to 4

Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −163 with genuine space of dim. d
2 2 3 levels of norm up to 47
2 4 [49, 0, 7]
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Range at discriminant −7. Level HNFs, up to Galois conjugacy weights
460 levels of norm up to 2767 and their Galois conjugates only 2

[148, 16, 2], [172, 36, 2], [198, 12, 3], [198, 18, 3], [212, 28, 2], [214, 155, 1],
[214, 165, 1], [218, 188, 1], [218, 79, 1], [226, 42, 1], [226, 70, 1], [242, 0, 11],
[253, 147, 1], [253, 59, 1], [254, 104, 1], [254, 231, 1], [261, 21, 3], [268, 22, 2],
[274, 153, 1], [274, 16, 1], [275, 20, 5], [277, 253, 1], [281, 33, 1], [284, 78, 2],

[289, 0, 17], [298, 183, 1], [298, 34, 1], [302, 220, 1], [302, 232, 1],
[317, 233, 1], [319, 268, 1], [319, 94, 1], [326, 137, 1], [326, 25, 1], [331, 174, 1],
[333, 24, 3], [337, 212, 1], [338, 0, 13], [347, 272, 1], [358, 125, 1], [358, 304, 1],
[359, 128, 1], [361, 0, 19], [373, 154, 1], [379, 27, 1], [382, 19, 1], [382, 210, 1],
[386, 119, 1], [386, 73, 1], [387, 72, 3], [389, 296, 1], [394, 144, 1], [394, 341, 1],

[401, 248, 1], [407, 193, 1], [407, 378, 1], [421, 244, 1], [422, 190, 1], [422, 401, 1],
[431, 389, 1], [443, 285, 1], [449, 196, 1], [457, 85, 1], [463, 80, 1], [473, 147, 1],
[473, 61, 1], [477, 114, 3], [487, 103, 1], [491, 234, 1], [499, 151, 1], [529, 0, 23],
[529, 32, 1], [541, 46, 1], [547, 459, 1], [557, 133, 1], [569, 178, 1], [571, 158, 1],

[575, 45, 5], [599, 129, 1], [613, 563, 1]

up to 3

[100, 0, 10], [106, 14, 1], [106, 38, 1], [116, 14, 2], [121, 0, 11], [121, 105, 1],
[127, 104, 1], [134, 122, 1], [134, 78, 1], [137, 16, 1], [142, 31, 1], [142, 39, 1],
[149, 114, 1], [151, 81, 1], [158, 145, 1], [158, 91, 1], [163, 25, 1], [169, 0, 13],
[179, 53, 1], [191, 19, 1], [193, 119, 1], [197, 144, 1], [207, 27, 3], [211, 190, 1],

[225, 0, 15], [233, 30, 1], [239, 72, 1], [263, 123, 1], [86, 18, 1], [86, 61, 1], [92, 26, 2]

up to 4

[107, 48, 1], [109, 29, 1], [113, 70, 1], [36, 0, 6], [44, 8, 2], [46, 32, 1],
[46, 36, 1], [50, 5, 5], [58, 36, 1], [58, 7, 1], [67, 55, 1], [71, 31, 1],

[74, 45, 1], [74, 65, 1], [79, 66, 1], [99, 12, 3]
up to 5

[43, 18, 1], [53, 14, 1], up to 6
[29, 7, 1], [22, 17, 1], [22, 15, 1], [18, 3, 3], [37, 28, 1], up to 7

[25, 0, 5], [23, 13, 1], up to 8
[11, 4, 1], up to 11
[4, 0, 2], up to 12
[4, 2, 1], up to 15
[2, 0, 1], up to 19
[9, 0, 3]. up to 20

Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −7 with genuine space of dim. d
2 1 200 levels of norm up to 2657
2 2 100 levels of norm up to 1913
2 3 30 levels of norm up to 1814
2 4 15 levels of norm up to 2563
2 5 6 levels of norm up to 1439
2 6 4 levels of norm up to 1702
3 2 [225, 0, 15],

4 1 [11, 6, 1], [11, 4, 1], [22, 17, 1], [22, 4, 1], [46, 36, 1], [46, 9, 1], [92, 26, 2],
[92, 18, 2], [121, 105, 1], [121, 15, 1], [116, 14, 2], [116, 42, 2],

4 2 [22, 15, 1], [22, 6, 1], [58, 50, 1], [58, 7, 1].



Genuine Bianchi modular forms of higher level 47

Range at discriminant −11. Level HNFs, up to Galois conjugacy weights
507 levels of norm up to 2803 and their Galois conjugates only 2

[180, 18, 6], [207, 12, 3], [213, 14, 1], [213, 156, 1], [225, 0, 15], [235, 161, 1],
[235, 208, 1], [236, 102, 2], [245, 21, 7], [265, 118, 1], [265, 171, 1], [267, 125, 1],
[267, 230, 1], [268, 48, 2], [276, 100, 2], [276, 54, 2], [279, 27, 3], [284, 112, 2],

[289, 0, 17], [291, 126, 1], [291, 261, 1], [295, 228, 1], [295, 243, 1], [309, 120, 1],
[309, 17, 1], [311, 280, 1], [313, 244, 1], [317, 224, 1], [331, 104, 1], [333, 39, 3],
[335, 158, 1], [335, 243, 1], [339, 102, 1], [339, 123, 1], [345, 156, 1], [345, 18, 1],
[345, 248, 1], [345, 303, 1], [353, 320, 1], [355, 156, 1], [355, 298, 1], [356, 104, 2],
[361, 0, 19], [367, 128, 1], [372, 142, 2], [372, 166, 2], [379, 335, 1], [383, 19, 1],

[388, 134, 2], [389, 177, 1], [397, 165, 1], [401, 148, 1], [411, 195, 1], [411, 332, 1],
[412, 170, 2], [419, 124, 1], [421, 35, 1], [433, 386, 1], [443, 361, 1], [445, 141, 1],
[445, 36, 1], [449, 183, 1], [452, 20, 2], [463, 207, 1], [467, 179, 1], [471, 422, 1],

[485, 126, 1], [485, 223, 1], [487, 169, 1], [489, 134, 1], [489, 191, 1], [499, 412, 1],
[509, 22, 1], [515, 188, 1], [515, 223, 1], [521, 39, 1], [529, 0, 23], [529, 119, 1],

[577, 184, 1], [587, 281, 1], [599, 181, 1], [619, 536, 1], [631, 168, 1], [643, 283, 1]

up to 3

[100, 0, 10], [111, 23, 1], [111, 50, 1], [115, 18, 1], [115, 41, 1], [124, 18, 2],
[137, 58, 1], [141, 114, 1], [141, 120, 1], [147, 0, 7], [148, 26, 2], [155, 133, 1],
[155, 71, 1], [157, 108, 1], [159, 12, 1], [159, 65, 1], [163, 134, 1], [177, 110, 1],
[177, 125, 1], [179, 109, 1], [181, 116, 1], [185, 13, 1], [185, 161, 1], [188, 40, 2],
[191, 137, 1], [196, 0, 14], [199, 167, 1], [201, 158, 1], [201, 176, 1], [212, 24, 2],
[223, 173, 1], [229, 101, 1], [251, 203, 1], [257, 159, 1], [269, 205, 1], [75, 0, 5],

[93, 21, 1], [93, 83, 1]

up to 4

[103, 17, 1], [113, 10, 1], [1521, 0, 39], [15, 8, 1], [169, 0, 13], [36, 0, 6],
[45, 3, 3], [507, 0, 13], [60, 12, 2], [60, 22, 2], [67, 24, 1], [69, 18, 1],

[69, 27, 1], [71, 14, 1], [89, 36, 1], [92, 36, 2], [97, 29, 1]
up to 5

[47, 20, 1], [49, 0, 7], [53, 12, 1], [59, 51, 1], up to 6
[2209, 0, 47], [20, 2, 2], [31, 21, 1], [37, 13, 1], up to 7

[15, 11, 1], [23, 18, 1], up to 8
[12, 0, 2], up to 9
[25, 0, 5], up to 10
[9, 2, 1], up to 11
[9, 0, 3], up to 12
[4, 0, 2], up to 15
[3, 0, 1], up to 17

[25, 16, 1], [5, 1, 1]. up to 20

Out of these, we get the following genuine spaces:

Weight d Level HNFs at discriminant −11 with genuine space of dim. d
2 1 178 levels of norm up to 2491
2 2 107 levels of norm up to 2621
2 3 32 levels of norm up to 2689
2 4 18 levels of norm up to 2201
2 5 4 levels of norm up to 1335
2 6 6 levels of norm up to 2597
2 7 4 levels of norm up to 1035
2 12 4 levels of norm up to 2209

4 1 [15, 6, 1], [15, 8, 1], [185, 161, 1], [185, 23, 1], [20, 2, 2], [20, 6, 2], [45, 3, 3],
[45, 9, 3],

4 2 [100, 0, 10], [92, 36, 2], [92, 8, 2],
4 5 [60, 12, 2], [60, 16, 2],
6 2 [25, 0, 5].
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