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Abstract: In recent neuroimaging research, there has been considerable interest in identifying neuromarkers of sleep.
Automatic slow wave sleep (SWS) and rapid eye movement (REM) are two known phases of sleep. However, the level
by which those changes contribute to brain interactions has not been well characterized. In recent years, it has been
shown that brain connectivity measuring can be helpful in investigation of behavioral states of the brain. By considering
the fact that brains have different states in different stages of sleep, the present work employs effective connectivity and
machine-learning analysis to quantify and classify SWS and REM stages of sleep. We examine low-density 12-channel
EEG data from 8 healthy participants during a full night of sleep. Data were epoched into 30-s windows and SWS and
REM stages were labeled by a sleep consultant. Effective connectivity was quantified using a directed metric, generalized
partial directed coherence, and measures were used as input features for a machine-learning system. A support vector
machine classifier was used to solve 2 binary problems of REM vs. nREM and SWS vs. nSWS. Findings revealed an
excellent balanced accuracy of 89.80% in REM detection and 87.32% in SWS detection. Overall, our work demonstrates
a successful application of effective connectivity analysis and machine learning for sleep neuromarkers in EEG.
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1. Introduction
Electroencephalography (EEG) provides a valuable tool for the study of spontaneous brain activity. Scalp
potentials measured with EEG allow the classification of sleep into some categorical stages. Human sleep can
be divided into rapid eye movement (REM) sleep and nonrapid eye movement (non-REM) sleep. Non-REM
sleep can be further classified into Stage 1 (N1), Stage 2 (N2), and slow wave sleep (SWS or N3) according to the
American Academy of Sleep Medicine (AASM) rules[1]. Among these sleep stages, SWS has been considered
to be the most restorative sleep stage [2]. However, as sleep quality declines with aging, the total amount of
SWS decreases drastically [3]. In addition, abnormal SWS has also been found to be correlated with a variety
of clinical problems including acute-phase immune system response [4], diabetes risk [5], memory consolidation
[6], psychiatric disorders [7], and hypertension [8].

In-depth understanding of these SWS-related problems can be gained by performing long-term sleep ar-
chitecture monitoring on a large population. Conventionally, sleep stages are scored using the electroencephalo-
∗Correspondence: sheikhani_al_81@srbiau.ac.ir
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gram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals obtained by a polysomnography
(PSG) study. Thus, a large-scale sleep architecture monitoring study would require an intensive amount of
work. Manual sleep staging is also tedious, time-consuming, and error-prone. In response to these challenges,
many automatic sleep staging methods using statistical learning or artificial intelligence techniques have been
developed [9–15].

Sleep staging also can be used as a part of sleep studies. For example, many researchers try to improve
some function of sleep such as long-term memory consolidation [16], homeostatic regulation of synaptic connec-
tivity [17], and synaptic potentials triggered by learning [18]. Recent studies try to improve these functionality
by stimulating the brain including sleep slow waves induction [19–22], memory consolidation [23–25], and sleep
spindles enhancement [26, 27]. In many of these studies it is necessary to detect the SWS or REM sleep stage,
which is basis of the presented study.

In some studies, it is shown that brain connectivity changes by changing the state of brain [28–30]. There
are three levels of brain connectivity: structural, functional, and effective connectivity. Structural connectivity
refers to the pattern of anatomical links in the brain, functional connectivity refers to statistical dependencies
of different regions of the brain, and effective connectivity refers to causal interactions between distinct units
within a nervous system. The units correspond to individual neurons, neuronal populations, or anatomically
segregated brain regions. Thus, tracking brain connectivity may help in designing a sleep staging system and
this study is focused on REM and SWS sleep stages. There are some basic methods to estimate brain effective
connectivity, such as the Granger causality index (GCI)[31], directed transfer function (DTF)[32], and partial
directed coherence (PDC)[33]. GC is a time domain effective connectivity measure that is defined as the
logarithm of the ratio of residual variance for one channel to the residual variance of the two-channel model.
Information that can be extracted from spectral characteristics of EEG signals, especially in sleep studies such
as sleep staging, plays important roles. DTF and PDC are the effective connectivity estimators that are defined
in the frequency domain. This study uses generalized partial directed coherence (GPDC) [34], which is a
multivariate directed measure that assumes a multivariate autoregressive (MVAR) model for the data and only
measures direct connections.

Many other studies tried to detect different sleep stages by using a wide range of features of EEG signals,
such as time-domain features, frequency-domain features, and nonlinear features. This study tries to show that
there are significant changes in effective connectivities of different areas of the brain by changing sleep states
and also it uses effective connectivity values as a feature set to detect some specified sleep states.

2. Materials and methods
2.1. Participants and EEG recordings
For this study, EEG signals are recorded from eight male participants. This recording is a part of a project that
tries to investigate the effect of acoustic stimuli in the SWS stage in sleep quality. None of the participants had
any medical disorders or neurological disorders, nor were they taking any drugs to sleep. The data are recorded
in two nights and only the data from the second night are used. EEG signals are recorded in 12 channels (Fp1,
Fp2, Fz, T7, T8, C3, C4, Cz, Pz, FO7, FO8, and Oz) and referenced to an average of electrodes attached to
both earlobes or mastoids. Electrode placement was done for each participant 1 h before their usual sleep time.
The sampling rate for the EEG recording was 250 Hz and EEG signals were filtered by a high-pass filter of 0.3
Hz and a low-pass filter of 50 Hz. All 30-s epochs of 12-channel EEG signals were sleep scored by an expert
according to the AASM criteria.
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Table 1 presents EEG recorded information about the number of all epochs for each participant and
number of sleep stages epochs for each of them.

Table 1. Information of recorded EEG dataset.

Subject Number of 30-s epochs Epochs in each stage
Wake N1 N2 SWS REM

1 896 95 102 348 242 109
2 889 201 72 333 152 131
3 726 16 81 293 233 103
4 986 105 131 352 249 149
5 847 183 59 253 188 164
6 721 52 87 306 123 153
7 959 84 99 352 257 167
8 818 10 62 314 305 127

Total 6842 787 652 2551 1749 1103

Two approaches are considered to divide the dataset into train and test subsets: subject-based and not
subject-based. In the subject-based approach all of the dataset is randomly divided into two subsets of train and
test subsets with population of 3421, and in not subject-based approach the data of four subjects are randomly
selected for training the classifier and data of the others are selected for testing (this approach is repeated
until all possible combinations are achieved). Because of the unequal size of samples in each stage of sleep it is
common that the whole sample is randomly divided into train and test subsets without considering the number
of samples in each stage [35, 36].

2.2. Effective connectivity estimation

Partial directed coherence (PDC) is a frequency domain description of the directed linear relationship between
pairs of time series xi(n) and xj(n) . GPDC is defined to circumvent the numerical problem associated with time
series scaling in PDC. For simultaneous EEG recordings from m channels, x(n) is represented by a multivariate
time series as in Eq. (1).

x(n) =


x1(n)
x2(n)

...
xm(n)

 (1)

Effective connectivity estimators usually use a MVAR to model multivariate time series as in Eq. (2).

x(n) =
p∑

l=1

A(l)x(n− l) + w(n) (2)

Here, p is the model order, w(n) is a Gaussian stationary innovation process, and A(.) is an m ×m matrix
that includes coefficients of the MVAR model. Matrix A and σw (which is the covariance matrix of w) are
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used in the GPDC method to estimate effective connectivity in the frequency domain via Eq. (3).

πi,j(f) =
1
σii

Āij(f)√√√√ m∑
k=1

1

σ2
kk

|Ākj(f)|2
(3)

Here, σii is the ith element in the main diagonal of σw and Āij(f) is the Fourier transform of A ’s elements
as in Eq. (4).

Āij(f) =


1−

p∑
l=1

aij(l)e
−j2πfl, where i = j

−
p∑

l=1

aij(l)e
−j2πfl, otherwise

(4)

Here, j =
√
−1 , f is frequency, and aij(l) is element (i,j) of matrix (A)(l) . πi,j(f) indicates effective

connectivity (or Granger causality) from signal xj(n) to xi(n) at the frequency of f . To extract connectivity
from multichannel EEG signals, the value of some parameters must be initialized, such as model order (p) and
length of window. The reliable value of these two parameters is dependent on the significance of the MVAR
model. The most common approach for model order selection involves selecting a model order that minimizes
the information criteria evaluated over a range of model orders. The Akaike information criterion (AIC) [37]
is one of the commonly used information criteria and it is used in this study to select the model order. Local
stationarity of the EEG signal and a sufficient amount of data for model fitting must be considered in selecting
the length of the window. By using the SIFT toolbox [38], proper values are set as window length of 1 with
0.5 second overlap and model order of 15 is selected.

2.3. Channel selection and classification

After fitting the model, effective connectivity of each 30 s (epoch) of 12-channel EEG signals are extracted using
Eq. (3). For each epoch there is a 4-dimensional GPDC connectivity tensor (CT) with size of m×m×nw×nf ,
where m is number of channels (m = 12), nw is number of windows (nw = 59), and nf is number of frequencies
that are discretized between 0.3 and 50 Hz (nf = 101, f = {0, 0.5, 1, ...., 50}).

Frequency subband power of EEG signals is one of the most important features used in manual sleep
staging. This study uses the average of estimated connectivity in the delta (<4 Hz), theta (4–7 Hz), alpha
(8–15 Hz), and beta (16–31 Hz) subband frequencies. By this averaging, the CT tensor is divided into four
3-dimensional tensors, CTDelta , CTTheta , CTAlpha , and CTBeta , with size of m × m × nw . Also, there are
two important concepts of connectivity that are considered in this study: magnitude and variation through
time. By averaging and calculating the standard deviation of four presented tensors through time, eight new
connectivity matrices (CMs) are extracted for each of the 30-s epochs of EEG signals using Eq. (6).
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CTsubband(i,j,w) =

∑
f∈subband

πw
i,j(f)

nf subband

CMsubband(i,j) =

nw∑
w=1

CTsubband(i,j,w)

nw

CMσ
subband(i,j) =

√√√√√√
nw∑
w=1

(CTsubband(i,j,w) − CMsubband(i,j))
2

nw

(5)

Here, πw
i,j(f) is GPDC connectivity estimation of xj to xi in frequency of f for the w th window of the epoch

and nf subband is number of frequencies in the specified subband. CMsubband(i,j) and CMσ
subband(i,j) are

calculated for all four subbands. For each 30-s epoch there is a feature vector that consists of 1152 features
(m ×m × number of subbands × 2(CM and CMσ )) and it is necessary to select some best features to feed
the classifier. To select the best features, the t-statistic is employed as in Eq. (6).

t(d1,d2) =
md1

−md2√
σ2
d1

nd1
+

σ2
d2

nd2

(6)

Here, md , σd , and nd are the average, standard deviation, and population size of the distribution of d ,
respectively.

The greater value of t presents more separability of a feature. To select the channels that are significantly
varied by changing the sleep stages, the t -value is used while considering the P-value. Figure 1 shows estimated
connectivity averages of CM that are significantly varied in different sleep stages (P-value <0.05) and 20 greater
t -values. In this figure and in Figure 2, line color is related to magnitude of connectivity and arrows show the
direction.

The feature vector for each 30-s epoch is constructed by 160 connectivity values that consist of 20 greater
t -values extracted from CM and CMσ in each of four EEG subbands. A support vector machine (SVM)
classifier with error-correcting output codes (ECOCs) [39] is used in this study to classify EEG epochs into two
binary sets of sleep stages (non-REM vs. REM and non-SWS vs. SWS stage). The results in this study are
presented by three measures as sensitivity, accuracy, and Cohen’s kappa [40]. The sensitivity of a specific stage
measures the proportion of the stage that is correctly identified and accuracy measures the proportion of all
stages that are correctly identified. In classification problems, when classes have the same number of samples,
accuracy can evaluate the classifier effectively. However, if classes have an unequal number of samples, the
accuracy will be biased. Cohen’s kappa coefficient (k ) is a more robust measure than accuracy and takes into
account the possibility of agreement occurring by chance. In a two-class problem, k can be computed as in Eq.
(7).

k =
po − pe
1− pe

pe =
1

N2

∑
m

nm,1nm,2

(7)
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Figure 1. The 20 greater t -value connectivities between channels that are significantly different in two sets of sleep
stages. The two left columns present the connectivities between channels whose values are significantly (P-value <0.05)
different in non-REM and REM stages and the two right columns present the connectivities between channels whose
values are significantly different in non-SWS (N1 and N2 stages) and SWS in four EEG subbands. The color of presented
connectivities is related to magnitude of connectivities (red, blue, and green color is high(>0.03), medium (<0.03 and
>0.015), and low (<0.015) strength, respectively).

Here, po is accuracy and pe is the hypothetical probability of chance agreement. For class m , nm,i is
the number of times rater i predicted m . N is the number of samples.

3. Results and discussion
Figure 1 shows that there are significant changes in magnitude of effective connectivity between some channels
and it can be shown that there are also significant changes in variation of connectivities in different sleep stages.
Figure 2 presents top 20 t -value standard deviations of channels’ effective connectivity. In this figure line color
is related to the value of standard deviation of connectivities and just the top 20 significant connectivities are
presented.
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Figure 2. The 20 greater t -value standard deviations of connectivity between channels that are significantly different
in two sets of sleep stage. The two left columns present the standard deviation of connectivities between channels whose
values are significantly (P-value <0.05) different in non-REM and REM stages and the two right columns present the
standard deviation of connectivities between channels whose values are significantly different in non-SWS and SWS in
four EEG subbands. The color of presented connectivities is related to the standard deviation of connectivities (red,
blue, and green color is high(>0.15), medium (<0.15 and >0.075), and low (<0.075) standard deviation, respectively).

Changes in magnitude of connectivities between channels of EEG signals are notable. In the non-
REM stage, magnitudes of connectivities are significantly less than in the REM stage. On the other hand,
connectivities in the non-SWS stage have greater magnitude than in the SWS stage (Figure 1). Conversely,
connectivities in non-REM and SWS stages have more variation (standard deviation) than REM and non-SWS,
respectively (Figure 2). By comparing Figure 1 and Figure 2 it is inferable that in these stages, magnitude and
variation of connectivities have an inverse relationship. The connectivities that have greater magnitude in REM
and non-SWS stages versus non-REM and SWS have less variation.

As mentioned, the value of connectivities (magnitude and standard deviation) that are used in Figure
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1 and 2 (CM and CMσ ) are considered as the feature vector to train a SVM classifier. The SVM classifiers
have some hyperparameters that must be set in the training phase. In this study these hyperparameters are
set practically as kernel function of Gaussian, kernel scale of 24, and box constraint of one. Also, all elements
of CM and CMσ are normalized by standard score method [41] using the average and standard deviation of
each element over the training subset.

The built-in SVM classifier of MATLAB 2017 software is used to train SVM classifiers. In each of the
following experiments, to find the best value of hyperparameters such as kernel scale and box constraint (C) of
a RBF based SVM classifier, 10-fold cross-validation is performed on the training set of data. First, the training
set is used to find the best value of hyperparameters by performing a 10-fold cross-validation experiment and
then the whole training set is used to train the optimized SVM classifier. Two SVM classifiers are trained to
classify the 30-s epochs of EEG signals into non-REM and REM stages and then into non-SWS and SWS stages
for both subject-based and not subject-based approaches. Table 2 presents the results of testing the trained
and optimized classifier to detect REM stage for the not subject-based approach.

Table 2. Confusion matrix and result of classifying epochs into non-REM and REM stages for not subject-based
approach.

Expert’s score
Non-REM REM

Classifier’s score Non-REM 2809 147
REM 42 423

Sensitivity 98.52% 74.21%
Accuracy 94.48%
Kappa 0.76

Table 2 shows the confusion matrix of testing the SVM classifier, sensitivity of REM and non-REM
detection, accuracy, and kappa coefficient. It can be seen that, because of the unequal number of samples in
each class, the ratio of accuracy and kappa present different values and accuracy is biased to the non-REM
stage. The trained SVM classifier achieves accuracy of 94.48% with Cohen’s kappa of 0.76.

In Table 3 results of testing the second SVM classifier to classify epochs into SWS and non-SWS stages
are presented for the not subject-based approach.

Table 3. Confusion matrix and result of classifying epochs into non-SWS and SWS stages for not subject-based approach.

Expert’s score
Non-SWS SWS

Classifier’s score Non-SWS 1488 116
SWS 83 789

Sensitivity 94.72% 87.18%
Accuracy 91.96%
Kappa 0.83

The second SVM classifier can detect the SWS stage by sensitivity of 87.18%. The accuracy and Cohen’s
kappa of the classification are 91.96% and 0.83, respectively. In the second case (SWS detection), the kappa
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value is closer to the accuracy than in the first case (REM detection) because of less difference between the
number of samples in two classes (in the first case, the number of samples in the two classes is 2851 (non-REM)
and 570 (REM); in the second case, the number of samples in the two classes is 1571 (non-SWS) and 905(SWS)).
Thus, the accuracy is less biased to one class.

Also, in the subject-based approach, two previous experiments are repeated for all possible combinations
of selecting subjects for training and testing, and Tables 4 and 5 present the results of REM and SWS detection.
In the confusion matrix of these tables the average and standard deviation values for all possible combinations
are presented (Average ± standard deviation) and all evaluation metrics are presented according to average
confusion matrices.

Table 4. Confusion matrix and result of classifying epochs into non-REM and REM stages for subject-based approach.

Expert’s score
Non-REM REM

Classifier’s score Non-REM 2736.81 ± 53.32 175.81 ± 12.66
REM 126.23 ± 25.83 389.39 ± 18.25

Sensitivity 95.59% 68.89%
Accuracy 91.19%
Kappa 0.67

Table 5. Confusion matrix and result of classifying epochs into non-SWS and SWS stages for subject-based approach.

Expert’s score
Non-SWS SWS

Classifier’s score Non-SWS 1463.55 ± 13.22 176.51 ± 7.81
SWS 73.68 ± 25.24 732.14 ± 8.63

Sensitivity 95.21% 80.57%
Accuracy 89.74%
Kappa 0.78

The lower value of accuracy and Cohen’s kappa shows that the estimated effective connectivities using
GPDC in different sleep stages are not subject-invariant and connectivities in specific sleep stages vary by
changing the subject, especially in the REM stage.

Table 6 presents results of some studies that tried to detect REM or SWS stages. Each of these studies
used a variant method to detect SWS or REM, such as time and frequency domain. Not all of these studies
used the same measures for evaluation. For those studies for which it was possible, accuracy and Cohen’s kappa
are calculated and presented.

In the proposed cases (SWS and REM detection), because of the unequal number of samples for classes,
Cohen’s kappa is an efficient measure to evaluate the efficiency of the method. In the case of SWS detection,
the accuracy is less than in some other studies and the value of Cohen’s kappa of this study is greater than in
other studies.

In the case of REM detection, just as in Imtiaz et al.’s study, kappa and accuracy are presented and the
result of the proposed study is better than that study. However, sensitivity (Sen) and selectivity (Sel) (also

2787



GOLROU et. al./Turk J Elec Eng & Comp Sci

Table 6. Performance comparison with other studies.

REM /Non-REM SWS /Non-SWSStudy Method
Accuracy Kappa Accuracy Kappa

Kubicki et al. [42] _ _ _ 92 0.62
Durka et al. [43] Adaptive time-frequency approximation _ _ 88 0.72
Virkkala et al. [44] Cross-correlation of EOG channels and beta power _ _ 93 0.70
Su et al. [45] The waveform pattern of the EEG _ _ 97.2 0.66
Imtiaz et al. [46] Spectral edge frequency and power of signals 88.52 0.61 _ _

80.6(Sen) 74.8(Sel) _ _
Liang et al. [47] MSE, AR model 85.4(Sen) 78.8(Sel) _ _
Ronzhina et al. [48] Spectral power 82.3(Sen) _ _
Berthomier et al. [35] Spectral and temporal features 63.0(Sen) 91.7(Sel) _ _
This study Average and STD of effective connectivities 94.48 0.76 91.96 0.83
(not subject-based) 74.21(Sen) 90.97(Sel)
This study Average and STD of effective connectivities 91.19 0.97 89.74 0.78
(subject-based) 68.89(Sen) 75.52(Sel)

known as positive predictive value or PPV) of the proposed study in the case of REM detection are comparable
to those of other studies.

Also, to show the potential of the effective connectivity values as a feature set, the same procedure is
done to classify EEG epochs into four classes as sleep stage N1, N2, SWS, and REM. The SVM classifier with
an ECOC model is used for multiclass classification and the same as previous routine optimum hyperparameters
are found by evaluating the classifier using 10-fold cross-validation on the training set. The results of testing
the final classifiers in the subject-based and not subject-based approaches are presented in Tables 7 and 8.

Table 7. Confusion matrix and result of classifying epochs into four stages for not subject-based approach.

Expert’s score
N1 N2 SWS REM

Classifier’s score

N1 183 42 41 41
N2 26 1118 34 33
SWS 23 83 742 17
REM 86 35 34 489

Sensitivity 57.55% 87.48% 86.91% 84.31%
Accuracy 83.55%
Kappa 0.76

The main objective of this study is considering effective connectivity in SWS and REM sleep stages.
However, just to show the potential of effective connectivity as a feature set, multiclass classification of other
sleep stages is done. The provided results in multiclass classification are compared to some other recent studies
in Table 9. By comparing the results in Table 9 it can be seen that although the efficiency of this study is lower
than some others, the result is in an acceptable range in comparison to other studies.

3.1. Conclusion
The GPDC method was used in this study to estimate the effective connectivity of the brain from EEG signals.
The estimated effective connectivities that are extracted from 12-channel EEG signals recorded from eight
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Table 8. Confusion matrix and result of classifying epochs into four stages for subject-based approach.

Expert’s score
N1 N2 SWS REM

Classifier’s score

N1 178.26± 17.33 40.56±8.7 42.02±4.21 39.98±3.14
N2 28.11±2.8 1114.16±83.12 36.78±9.12 34.15±5.60
SWS 25.12±3.54 84.16±10.10 731.15±40.12 19.87±13.2
REM 88.87±13.12 37.16±16.78 45.84±9.49 471.12±48.64

Sensitivity 55.64% 87.31% 85.44% 83.37%
Accuracy 82.72%
Kappa 0.75

Table 9. Comparison of the results with some other studies in multiclass classification sleep staging.

Study Year Accuracy Kappa
Berthomier et al, [35] 2007 71.2 0.61
Liang et al. [47] 2012 78.0 0.68
Hsu et al. [49] 2013 87.2 0.80
Bajaj & Pachori [50] 2013 92.9 0.90
Zhu et al. [51] 2014 88.9 0.83
Hassan & Bhuiyan [52] 2017 83.5 0.84
This study 83.5 0.76

healthy subjects were used to extract SWS and REM sleep stages. First, it has been shown that there are some
effective connectivities and their variations between channels that significantly vary by changing sleep stages as
SWS versus non-SWS and REM versus non-REM. On the other hand, the results showed that the magnitude
of the GPDC measure of significance in REM and non-SWS is greater than in the non-REM and SWS sleep
stages, respectively. Also, the variation of the GPDC measure of brain connectivity in presented channels in
REM and non-SWS is less than in non-REM and SWS sleep stages. This magnitude and the variation of GPDC
were used as a feature vector to train the SVM classifier. The results of evaluation showed an acceptable and
in some cases higher performance for the proposed method than other studies.

In many studies, effective connectivity methods are used to investigate brain function and the relation
of brain regions. However, in this study, as an engineering research, an effective connectivity method was used
as a feature extraction method from EEG signals and the proposed results as shown in Figures 1 and 2 can
be considered in future studies to investigate the relation of brain regions in different sleep stages and their
significations. The proposed method to detect SWS and REM can be used in other future works and other
studies that need to indicate SWS or REM stage starts to trigger any stimulation system.
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