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Raman amplifier is an open area of research in telecommunication field. This paper discusses the performance of 64 channels of
10 Gbps WDM systems with backward multipump Raman amplifier. The main goal of this paper is the optimization of Raman
amplifier to minimize its gain variation without using any gain flattening techniques. To increase the transmission capacity of
DWDM system, Raman amplifier with backward multipump configuration is implemented. The optimized parameters such as
pump power and frequencies are used to deliver both ground and excited state absorption for amplification in S+C and C+L band
region. The pump power and frequencies are optimized through multitarget and multiparameter optimization tool available in
OptiSystem software. Gain ripple was achieved <0.5 dB for this simulation setup. The maximum flat gain achieved is 8.6 dB and
noise figure of <8 dB was achieved for this wide bandwidth without using gain flattening techniques. This amplifier design will be

helpful for CATV applications and telecommunication networks.

1. Introduction

Optical fiber communication supplies the demand of future
communication and achieved low attenuation loss as com-
pared to copper and coaxial cable. In the 1980s, the erbium
doped fiber amplifier operated as vital role for the amplifica-
tion in ¢ band [1]. A single wavelength 1310 nm is analyzed
with different length as a function of wavelength and the
amplifier bandwidth is found 14 nm -16 nm. It was also
compared with 1310 nm Raman amplifier with SOA resulting
in wavelength as 1310nm with bandwidth 85 nm [2]. We
demonstrate C band wavelength Raman amplifier from 1530-
1624.4 nm in this paper. The maximum gain and noise figure
achieved for C band are 53.3 dB and 9 dB, respectively [3].
In recent years Raman amplifiers are widely used due to wide
amplification bandwidth [4]. The paper demonstrated the L
band remote pumped EDFA/Raman amplifier using 1480 nm
pump utilizing effect of Raman scattering [5]. The perfor-
mance analysis of EYDFA and Raman amplifier is analyzed
with the help of 110 x 40 Gbps data rate NRZ format. Different
pumping schemes are employed with EYDFA+DFA. It is
reported that forward pumping scheme is superior to all other

experiments [6]. The gain ripple was 2.09 dB and OSNR is
34.23 dB of the work proposed RA with TDM pumps using
analytical model. We already reported the performance of
hybrid amplifier Raman +EDFA in DWDM system using RZ
and NRZ format [7]. Gain flattening filter optimization has
been proposed in 320 channels’ broadband DWDM system
at reduced channel spacing is about 25 GHZ to achieve gain
ripple less than 0.5 Db [8]. Optimization tools greatly reduce
the design time for required work and fiber Raman amplifier
pumped at multiwavelength and frequency reported [9].
Optimization is not done by broad band Raman amplifier
[10]. Raman amplifier optimization is done by using particle
swarm optimization achieved gain ripple less than 0.5 db [11].
Multiparameter optimization procedure was implemented
for the Raman amplifier by particle swarm optimizer [12, 13].
The implementation of Raman amplifier based on genetic
algorithm can be found in [14]. Multiparameter optimization
of Raman amplifier is essential to improve the gain spectrum
of Raman amplifier which is not presented in [15-17]. The
Raman amplifier can provide the better amplification and
gain flattening in L band to reduce the influence of fiber
nonlinearity [18]. The S+C+L band Raman amplifier was
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FIGURE 1: Simulation setup of counterpropagation multipump Raman amplifier.

experimented over 100 nm gain bandwidth of 1520-1620 nm
with gain ripple 1.1 dB [19]. The wideband Raman amplifier
over 98 nm gain bandwidth of 1520-1620 nm has been
demonstrated with gain flatness 1 dB [20]. The flat gain
wideband cascaded TDFA and Raman hybrid amplifier is the
present requirement of DWDM system [21, 22].

For the first time we have reported reduced gain ripple of
0.2 dB and 0.5 dB for S+C band and C+L band, respectively.
This new design of optimum gain flattening performance
of Raman amplifier will be useful for telecommunication
networks.

The rest of the paper is organized as follows: Section 2
explains simulation setup and analysis of Raman amplifier;
Section 3 ends with concluding remarks.

2. Characteristics of Multipump
Raman Amplifier

The aim behind the optimization of multipump Raman
amplifier is to get better gain flatness and reduce ripples
instead of utilizing any gain flattening techniques. Gain
bandwidth can be improved by Raman amplifier by efficient
utilization of DWDM system. In Section 1, we adopted the
MPO optimization using OptiSystem simulation software.
The optimized four pump powers are utilized to transfer
energy from pumps to the signal to provide better gain
flatness with less gain variation. MPO tools are available in
OptiSystem software to optimize the pump powers and fre-
quencies to achieve the target gain to keep the DWDM system
with 0.8 nm channel spacing. This multipump optimization
is based on nonlinear least square (LSQ) algorithm. For the
initial stage the four types of pumps are randomly chosen
with input power -174 dBm for 64 channels of DWDM
system. The MPO is executed with several iterations for the
goal attainment of gain flatness to achieve high gain. The
signal power was at length L to amplify the continuous wave
signal [23].

P, (L) = P, (0) exp <§—RP0LeE - (st> )
P

where L.g = [1—-exp(—apL)]/ap represent the effective length
of the Raman fiber amplifier, where gy represents Raman gain
coefficients, a, is the pump cross-sectional area, a is the fiber
loss, P, is the input power, and P,(0) is the signal power a L
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FIGURE 2: Signal of 64-channel WDM system.

= 0. The basic simulation setup in Figure 1 shows 64 channels
where each channel is spaced with 0.8 nm and output signal
power to the Raman amplifier is -17.4 dBm.

DWDM system transmitting several optical channels
on to the single fiber is specially designed with non-zero-
dispersion shifted fiber (NZDSF) which is simulated. NZDSF
has the zero-dispersion crossing at wavelengths <1530 nm
and >1560 nm. We describe the Raman fiber simulation
model in detail that enables the shifting of gain band in
both S+C band and C+L band region. The simulation setup
is established in Figure 1 using OptiSystem software. We
have investigated the system with -30 dBm/channel. The
simulation setup consists of 64 channels with 10 Gbps data
rate/channel in a 100 GHz (0.8 nm) interval shown in
Figure 2. Figure 3 shows the RFA flattened gain has length 25
km employing four pump lasers operating at pump powers
which are 101 mW, 136.5 mW, 90.1 mW, and 186.07 mW and
frequencies are 1406 nm, 1416 nm,1434 nm, and 1461 nm,
respectively.

Table 1 summarizes the various simulation parameters
applied to the NZDSF fiber. The experiment is carried out
with both of 25 km and 50 km of fiber length employing
optimized pump power and frequencies.

2.1. Results and Discussion. Here NRZ modulation format is
used covering bandwidth starting from 1530 to 1581.3 nm as
shown in Figures 4(a) and 4(b) where first channel is 1581.3
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FIGURE 3: Signal of 64-channel WDM system after 25 km of fiber length.
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FIGURE 4: (a) Gain, noise figure, and OSNR versus signal wavelength using counterpropagating pumping scheme at 25 km length. (b) 50 km

of multipump Raman amplifier in C+L band.

TABLE 1: Raman fiber amplifier.

Parameter Value
Length 25 km, 50 km
Attenuation 0.2 dB/km
Dispersion 16.75 ps/nm/km
Dispersion Slope 0.075 ps/nm2/km
Effective Area 55 um2
Fiber Type NZDSF

nm (189 THz), second channel is 1578 nm (190THz), and last
channel is 1530 nm (196 THz) and also described 1512-1563

nm as shown in Figures 4(a) and 4(b) where first channel is
1563 nm (191 THz), second channel is 1561.4 (192 THz), and
last channel is 1512 nm (198 THz).

Figures 4(a) and 4(b) show the values of Raman amplifier
for the length of 25 km and 50 km, respectively. The
wavelength range is taken from 1530 nm to 1581.3 nm in both
cases. The NRZ modulation format is used for both cases. It is
evident from Figures 4(a) and 4(b) that bandwidth utilization
is 51 nm. The value maximum gain G, is taken as 8.7 dB and
minimum gain is taken as G,;, 5.8 dB and for 25 km of fiber
length. The values of G,,,, and G,,;,, are taken as 8.7dB and
5.2 dB, respectively, for 50 km of fiber length. The aim of this
work is to minimize noise figure (NF) and to maximize OSNR
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FIGURE 5: (a) Gain, noise figure, and OSNR versus signal wavelength using counterpropagating pumping scheme at 25 km length. (b) 50 km

of multipump Raman amplifier in S+C band.

to optimize the multipump Raman amplifier. The maximum
OSNR, noise figure, and gain for 25 km fiber length are found
to be 29.9 dB, 8 dB, and 8.7 dB, respectively. The maximum
gain ripple is obtained at -17.4 dBm for output power of 0.5 dB
and 0.67 dB for 25 km and 50km of fiber length, respectively.
This is evident for C+L band as shown in Figures 4(a) and
4(b), respectively. The variations in the power levels are due to
the pump signals and do not impart energy to all the channels.
From the figures it is clearly observed that a smooth power
spectrum is obtained with using any gain flattening filter.
The variations of power levels are observed across a wide
bandwidth being 1.6 dB and 2.9 dB for S+C and C+L band,
respectively.

Figures 5(a) and 5(b) illustrate Raman amplifier for the
length of 25 km and 50 km, respectively, for the wavelength
range of 1512-1563 nm with NRZ modulation format. The
bandwidth of input channel is taken as 51 nm. The simulation
is carried out for G,,, of 87 dB and G,;, as 71 dB,
respectively, for 25 km of fiber length. For 50 kms length G,
and G, are taken as 8.8 dB and 5.1 dB, respectively, for 50
km of fiber length. The maximum OSNR, noise figure, and
gain for 25 km fiber length are found as 29.5 dB, 8.3 dB, and
8.7 dB, respectively. The maximum gain ripple is obtained at
-17.4 dBm for output power of 0.2 dB and 0.7 dB for 25 km
and 50 km of fiber length, respectively, in S+C band as shown
in Figures 5(a) and 5(b).

We have considered NRZ modulation format only for
64 channels DWDM system. Figure 6 shows the graphical
representation of Q value as a function of fiber length varies
from 10 km to 50 km. The maximum quality factor and
maximum output power obtained are 13.4 dB and 5.9 dBm,
respectively, in S+C band DWDM system. Due to the fiber
nonlinearities the Q factor decreased. Figure 7 shows the
graphical representation of BER as a function of signal
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FIGURE 6: Quality factor and output power versus fiber length of
multipump Raman amplifier.

wavelength. As shown in the figure the BER is increased as
we increase the signal wavelength. The least BER is obtained
(1.93453E-39) by NRZ modulation format and for 1600 nm
signal wavelength it becomes 4.53553E-5 dB.

Figure 8 illustrates the graphical representation of BER
as a function of transmission distance. The length has lowest
BER of 2.2¢ 7" for 25 km of fiber length and highest BER
is obtained about 7.6e** for 50 km of fiber length. Figures
9(d) and 9(i) show the eye diagrams for 64 channels DWDM
system. The intersymbol interference which is introduced due
to transmission loss influenced nonlinear effect in the fiber



Advances in OptoElectronics 5
TABLE 2: Response of the multipumping Raman fiber amplifier configuration.
Fiber Configuration C+L Band S+C Band
NZDSF Length = 25 km Length = 50 km Length = 25 km Length = 50 km
G,,., (dB) 8.7 8.7 8.7 8.8
G, (dB) 5.8 5.2 71 5.1
Noise Figure (dB) 8 10.8 8.3 10
Gain variation (dB) 2.9 3.5 1.6 3.6
Gain Ripple (dB) 0.5 0.67 0.2 0.7
OSNR (dB) 271 29.9 295 26.8
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FIGURE 7: BER versus signal wavelength of multipump Raman amplifier.
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FIGURE 8: BER versus fiber length of multipump Raman amplifier.

due to impulse width being the largest in NRZ modulation
format. The eye is more open in case of 25 km fiber length as
compared to all other lengths of fiber with good extinction
ratio.

Table 2 shows that Raman amplifier configuration has a
ripple of 0.2 dB and 0.5 dB for S+C band and C+L band,
respectively. The maximum OSNR is observed at 50 km of
fiber length as compared to 25 km of fiber length in case of

C+L band for S+C band the maximum OSNR is at 25 km of
fiber length than 50 km of fiber length.

3. Conclusion

We present cost effective system with only four utilized
pumps (see Table 3). This wideband flat gain amplification
is implemented by multipump Raman amplifier without
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TaBLE 3: Comparison of the proposed investigation with the previous reported system.
Previous Operating No. of Channel o Optimization
reported System band Channels spacing Gain ripple of amplifier No. of Pumps
4 backward
pumping Cband 45 100 GHz - No 4
schemes [3]
160 = 10 Gbps
DWDM system L band 160 25 GHz 45dB No 2
(4]
8 backward
pumping S band 14 764.7 GHz <0.4dB Yes 8
scheme [10]
64 = 10 Gbps
and 96 * 10
Gbps DWDM C+L band 96,64 100 Ghz - No 1
system [17]
320 Channel S(:A([:l:th Gb:innd
DWDM system . 320 25 Ghz <0.5dB Yes 2
(] Flattening

Filter)

S+C and C+L

band
64 channel (Without Current
DWDM system Gain 64 100 GHz <0.5dB Investigation 4

Flattening
Filter)
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FIGURE 9: Eye diagram for 64-channel DWDM system. (a) 10 km at 10 Gbps. (b) 15 km at 10 Gbps. (c) 20 km at 10 Gbps. (d) 25 km at 10 Gbps.
(e) 30 km at 10 Gbps. (f) 35 km at 10 Gbps. (g) 40 km at 10 Gbps. (h) 45 km at 10 Gbps. (i) 50 km at 10 Gbps.

using gain flattening filter. The optimized parameters are
used for counterpropagating Raman amplifier. The S+C band
and C+L band with 50 nm wide amplification window
cover 1512-1563 nm and 1530-1580.3 nm. The gain ripple
for S+C band is found to be 0.2 dB and 0.7 dB for 25

km and 50km length of fiber, respectively. The gain ripple
for C+L band is found to be 0.5 dB and 0.67 dB for 25
km and 50 km length of fiber, respectively. Better results
are observed for S+C band than C+L bands by Raman
amplifier.
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