MARITIME TECHNICAL JOURNAL
2022 1(224)

S sciendo

DOI:10.2478/sjpna-2022-0001"

IMPACT OF STARTING OUTLIER REMOVAL ON
ACCURACY OF TIME SERIES FORECASTING

Vadim Romanuke ©®

Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Smidowicza 69 Str., 81-127
Gdynia, Poland; e-mail: v.romanuke@amw.gdynia.pl; ORCID ID: 0000-0003-3543-3087

ABSTRACT

The presence of an outlier at the starting point of a univariate time series negatively influences
the forecasting accuracy. The starting outlier is effectively removed only by making it equal to the
second time point value. The forecasting accuracy is significantly improved after the removal.
The favorable impact of the starting outlier removal on the time series forecasting accuracy is
strong. It is the least favorable for time series with exponential rising. In the worst case of a time
series, on average only 7 % to 11 % forecasts after the starting outlier removal are worse than
they would be without the removal.
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INTRODUCTION

In time series analysis and forecasting, data preparation and preprocessing
is a very important phase before obtaining factual forecasts. Raw time series are
usually are subject to low-pass filtering that removes random fluctuations and out-
liers [9, 10, 28]. In addition, this sometimes may help in restoring missed or misin-
terpreted data [2, 16]. Thus the time series is smoothed [12, 26, 27].

Surely, smoothing is not always perfect. Moreover, if the starting point in
the time series is an outlier, the result of smoothing may be unsatisfactory. How
much does it negatively influence the forecasting accuracy? Can the accuracy be
improved by removing the starting outlier in the time series? These questions are
to be studied and answered for further ascertaining the methods of improving the
time series analysis quality.

GOAL

The goal is to determine the impact of the starting outlier removal on the
time series forecasting accuracy. To achieve the goal, the following four tasks are to
be completed:

1. To ascertain the most probable cause of the starting outlier in a prepro-
cessed (smoothed) time series.

2. To suggest a method to remove it (the removal implies an appropriate
modification).

3. To define a set of benchmark time series for testing the forecasting accu-
racy before and after the starting outlier removal.

4. To discuss and conclude on the obtained results.

THE PROBABLE CAUSE OF THE STARTING OUTLIER

Time series are not fitted by curves because then a fitting curve either ap-
proximates the time series average (expected value as a function of time) or leads
to overfitting [20, 21]. In both cases, forecasting by curve-fitting is badly inaccurate.
A time series can be only smoothed with a purpose to eliminate high-frequency
fluctuations which are most probably consequences of true randomness [8, 15, 17,
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27]. There are six basic smoothing methods [3, 4, 7, 13, 26]: moving average (MA),
local regression using weighted linear least squares (LRWLS) and a 1st degree pol-
ynomial model (LRWLS-1), LRWLS and a 2nd degree polynomial model (LRWLS-2),
Savitzky — Golay filter, the robust versions of LRWLS-1 and LRWLS-2. Every meth-
od does have its merits and demerits, but the starting outlier is not properly re-
moved. An example to this is presented in fig. 1, where the starting outlier is clearly
seen. Although the time series without the starting outlier is smoothed well enough
(except for the robust LRWLS-2 method, which is not shown), no one of these
methods removes the outlier appropriately. In the example, the robust LRWLS-1
method is the closest to solve this problem, but its modification of the outlier is
followed by the changed value at the second time point resulting in the difference
between the starting value and the second value becomes positive (whereas it is
expected to be negative due to the starting outlier is likely to be less than the sec-
ond value but just somehow badly “dropped” down). Therefore, even the robust
LRWLS-1 method cannot be generally accepted for removing the starting outlier as
it may generate an “updated” version of the outlier.

= raw time series
MA

LRWLS-1
LRWLS-2
Savitzky — Golay
robust LRWLS-1

0O % O e

Fig. 1. An example of the starting outlier in a raw time series and time series after smoothing

So, smoothing either does not remove the starting outlier or modifies it in-
appropriately. Thus, the most probable cause of the starting outlier in a prepro-
cessed (smoothed) time series is the obvious limitation of the smoothing methods.
This should be rectified by suggesting a simple approach which would deal only
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with the outlier removing it via satisfactory modification of its value. The remaining
time series is left as it is (maybe, for smoothing by the considered methods or other
manipulations).

THE STARTING OUTLIER REMOVAL

Denote by T the amount of a time series data, which are formally denoted

by
e, (1)

where, without losing generality, ¢, =i. Data (1) can be also referred to as the time

series. If y(tl) is the outlier, then it might be removed by just setting

y(e)-masy(e) for y(e,)> () @
or
y(tl):gzil—r,}‘)/(tk) for .V(t1)<y(tz)' (3)

However, if the time series has a trend, either of modifications (2) and (3) is im-
proper. Examples of this are shown in fig. 2.

]

Fig. 2. Examples of the improper removal of the starting outlier by (2) and (3) due to a trend
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Other types of the starting outlier modification involving subsequent time
point values are improper as well unless the time series is detrended. In general
case, determining the trend is influenced by the starting outlier also, so detrending
may cause additional distortions of time series (1). Therefore, the starting outlier
can be removed by simply making it equal to the second time point value:

y(t1)=y(t2). (4)

Although the starting outlier modification by (4) is quite naive, it does not depend
on a trend and thus remaining data

() (5)

are left untouched.

BENCHMARK TIME SERIES

The benchmark time series are based on 12 random-like sequences (12
patterns) with repeatability, where every sequence is a stack of 6, 7, or 8 identical

12
randomly-structured subsequences. These sequences are denoted by {rg (t)} Y
g-

where every sequence is generated by using pseudorandom numbers drawn from
the standard normal distribution (with zero mean and unit variance) [8, 15, 22, 23]

by t=1,T. In addition, vectors {G),(T)}30 of T pseudorandom numbers (these

=1
vectors are used to simulate noise and volatility), a set {ah >0}2:1 of adjustable

coefficients, and factor v >0 indicating an oscillation frequency are used to form an
initial set of benchmark time series.
Thus, a time series pattern without additional properties is

y,(t)=[a,+0.250,(T)|r, (t)+a,0,(T). (6)
A time series pattern with a linear trend is
y,(t)=[a,+0.250,(T) r, (¢)+a,0,(T)+ayt, (7)
and a time series pattern with seasonality is

y;(t)=[a,+0.2504(T) |, (t)+a,0,(T)+[ a, +0.250, (T) Jascos(vt).  (8)
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These three first patterns are then used in various combinations to form the re-
maining nine patterns including exponential extinction and rising properties. Thus,
the nine patterns are formed as follows:

t)=[a, +0.250,(T)|r,(t)+a,0,(T)+ast +[ a, +0.250,,(T)]a, cos(vt), (9)

t)=[a1 +0.25®11(T)]r5 (t)e™ +a,0,(T), (10)
t):[a1 +0.250,, (T)}r6 (t)e“ét +a,0,, (T), (11)
t)=[a,+0.250,;(T)]r,(t)e ™™ +a,0,(T)+ayt, (12)

ys(t)=[a,+0.250,,(T) |, (t)e* +

+,0,4(T)+[ a, +0.250 (T Ja; cos(vt)e ™™, (13)

o (£)=[a, +0.250,,(T) ]r, (t)e

+a,0,, (T)+ast +[ a, +0.250,,(T)]a; cos(vt)e ™™, (14)

Yio(t)=[a, +0.250,, )]rw(t)e“ﬁf+a2®24(T)+a3t, (15)
v (t)=[a,+0.250,4(T) ]r,, (t)e* +

+a2®26(T)+[a4+0.25®27( )]ascos(ut)e"ﬁt, (16)

Yi(t)= [ +0.250,4(T) ]’Ez (t)e™
+,0,5 (T ) +ast +[ a, +0.250,, (T) |as cos(vt)e* . (17)
Initially, a time series is generated by
a,=2,a,=0175, a,=0.01, a, =5, a;=0.18, v=0.02, a,=0.0005, T=1680.

Then the time series is equidistantly downsampled so that 168 time points remain.
These points are smoothed producing thus the benchmark time series. For each of
patterns (6) — (17), 200 series are generated. For each of those 2400 series, ARI-
MA forecasts [2, 14] are made at t =113,168 (i. e, the forecast length is one third of
the available data). The forecasting accuracy is estimated by the corresponding

root-mean-square error (RMSE) and the maximum absolute error (MaxAE) [6, 9,
11, 25] as follows. If

6 Maritime Technical Journal



Impact of starting outlier removal on accuracy of time series forecasting

- 168
{y(t)}t:MB (18)
are forecasted data, they are normalized with respect to the initial data:

y(t)- min_y(k)

i(t)= k=113, 168 by t=113,168. (19)
 ax_y(k)-, min_y(k)
Test data
168
{y(t)}t:113 (20)
are normalized as well:
y(t)— min_y(k
u(t)= Inax()(i)fftzuf )(k) by t=113,168. (21)
k=113,168y k=113, 168y

Then the RMSE is calculated as

pRMSE:\/%f[u(t)_ﬁ(t)]z (22)

and the MaxAE is calculated as

Piaxap = MaX u u(t)|' (23)

t=113,168

Obviously, MaxAE (23) registers information about the worst outlier [6, 11, 17].
Therefore, RMSE (22) and MaxAE (23) are used to see the averaged and worst er-
rors in forecasting.

The 50 series which are forecasted the worst are extracted for each pat-
tern. Their respective RMSEs are sorted in descending order, so each series is
tagged to its number z =1,50 (z=1 corresponds to the maximal RMSE). Finally,

y¥*(1)=y,(1), and the starting outlier is intensified for benchmarking as follows:

Y, (1) =05 (1) =z (5, (2)-y5 (1)) by y,(2)>y5™ (1) (24)
and
7, (1)=y5" (1) +z (55 (1)-,(2) by y,(2)<y5™(1). (25)

Graphical examples of three benchmark time series per pattern forecasted the
worst are presented in fig. 3.

1(224) 2022 7



Vadim Romanuke

il

|

TSN Y N S N

i

WWW\

JARERE]

4

Mf\/\

LRI

Fig. 3. Three benchmark time series per pattern forecasted the worst
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THE FORECASTING ACCURACY IMPROVEMENT

For each of the extracted 600 time series, ARIMA forecasts are made prior
to the starting outlier removal and after it. The difference between the respective
RMSEs (22) of the forecasts is shown in fig. 4 as a polyline. The difference between
the respective MaxAEs (23) is shown in fig. 5. Both plots confirm that the removal
significantly improves the forecasting accuracy. The worst and best forecasts prior

to the removal (squares) and after it (circles) are shown in fig. 6. However, it is

ol
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Fig. 4. The difference between RMSEs (22) of the 600 forecasts prior to the removal and after it
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Fig. 5. The difference between MaxAEs (23) of the 600 forecasts prior to the removal and after it
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Fig. 6. The worst (left) and best (right) forecasts prior to the removal and after it
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worth noting that not all the 1200 differences in fig. 4 and fig. 5 are positive (i.e.,
not every time series is forecasted more accurately after the starting outlier re-
moval). Although the polylines do rarely drop below the horizontal zero level (dif-
ference) lines, there are 56 time series forecasted worse by the RMSE after the
removal. This is 9.33 % of the benchmark volume. Besides, there are 65 time series
forecasted worse by the MaxAE after the removal, which is 10.83 % of the bench-
mark volume. Obviously, a worse RMSE does not imply a worse MaxAE (with re-
spect to forecasts prior to the removal) and vice versa (see fig. 7). If to consider the
RMSE and MaxAE simultaneously, there are 44 time series forecasted worse after
the removal, which is 7.33 % of the benchmark volume (see fig. 8). It is noticeable

OR N WA IO N

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 7. The percentage of worse RMSEs (darker bars) and worse MaxAEs (lighter bars) after the
starting outlier removal per pattern

o B N W A U1 O N ® ©
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Fig. 8. The percentage of simultaneously worse RMSEs and MaxAEs after the removal per pattern
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that the starting outlier removal has not worsened the accuracy for the 50 times
series with exponential extinction by (10). This is seen in both fig. 7 and fig. 8,
where the fifth bar place is empty (i. e., it is zero). On the contrary, the bar plots
allow concluding on that the removal has the weakest favorable impact on the time
series with exponential rising by (11).

DISCUSSION

The results presented in fig. 4 — 8, are obtained under roughly the worst
conditions as the 50 worst-to-forecast time series out of 200 series have been stud-
ied per each pattern. This study approach reminds the maximin method, where an
object or system is improved (“maximized”) under the worst (“minimized”) condi-
tions [17, 18, 19, 24]. Thus, the best-under-worst-conditions behavior of the system
is guaranteed. The results hereinabove obtained can be thought of as an approxi-
mately guaranteed “behavior” of the time series forecasts prior to the starting out-
lier removal and after it.

Based on studying the 600 time series divided into 12 patterns, both fig. 4
and fig. 5 (with the plots of the forecasting accuracy criteria) confirm that the pres-
ence of the starting outlier does negatively influence the forecasting accuracy.
These plots also confirm that the forecasting accuracy is significantly improved by
removing the starting outlier. However, the improvement is “guaranteed” only on
average. Moreover, even if the accuracy is improved after the removal, it still may
be unacceptable. For instance, eight of the worst-of-the-worst forecasts in fig. 6
(left column) have less both RMSE and MaxAE after the removal, but the accuracy is
visibly very poor. The eighth subplot (the fifth from the bottom), by the way, corre-
sponds to that case with the highest peaks of the RMSE (fig. 4) and MaxAE (fig. 5)
differences (i. e., in this case of a time series having seasonality with exponential
extinction the starting outlier removal has improved the accuracy best of all, but
the result is quite unacceptable).

CONCLUSION

The starting outlier in a time series is effectively removed only by making it
equal to the second time point value. In the worst case of a time series, on average
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only 7 % to 11 % forecasts after the starting outlier removal are worse than they
would be without the removal. Therefore, the favorable impact of the starting out-
lier removal on the time series forecasting accuracy is indeed strong. Nevertheless,
the impact on time series with exponential rising is the least favorable. Their rate of
the post-outlier-removal-accuracy drop is about 12 % to 20 %. Roughly speaking,
the same percentage of time series with linear trend and seasonality, after the re-
moval, are forecasted poorer also. Time series without additional properties (trend,
seasonality, exponential, or other) have the post-outlier-removal-accuracy drop at
about 8 % to 12 %.

The research might be furthered by considering a possibility to automati-
cally detect the occurrence of the starting outlier removal. Such a possibility, for
instance, can be based on using the Hampel filtering [1, 5]. The presence of a trend
or other properties, however, may be an obstacle which will require a trickier
Hampel filtering to detect outliers in univariate time series.
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WPLYW USUNIECIA POCZATKOWE] WARTOSCI
ODSTAJACE] NA DOKLADNOSC PROGNOZO-
WANIA SZEREGOW CZASOWYCH

STRESZCZENIE

Warto$¢ odstajgca w punkcie poczatkowym jednowymiarowego szeregu czasowego negatywnie
wptywa na doktadno$é prognozowania. W ramach przeprowadzonych badan dokonano analizy
wplywu usuniecia warto$ci odstajacej poprzez zréwnanie jej z warto$cig drugiego punktu cza-
sowego. Uzyskane wyniki wskazuja, Ze przyjeta metoda znacznie poprawia doktadno$¢ progno-
zowania dla wiekszosSci szeregéw czasowych. Jednak w przypadku szeregdw czasowych z
wyktadniczym wzrostem, metoda okazata sie mniej skuteczna. Minimalny wzrost doktadnos$ci
prognozowania wynosit w tym przypadku od 7 % do 11 %.

Stowa kluczowe:

prognozowanie szeregow czasowych, warto$¢ odstajgca, ARIMA, doktadnos¢ prognozowania,
RMSE, MaxAE.
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