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Thermal Behaviour of PrCo;_,Fe,O3 Probed
by X-ray Synchrotron Powder Diffraction
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Crystal structure and transport properties of the mixed praseodymium cobaltites-ferrites PrCoq—_;Fe, O3 have
been studied in the temperature range of 298-1173 K by a combination of in situ X-ray synchrotron powder
diffraction and temperature dependent impedance spectroscopy measurements. In situ high temperature powder
diffraction examination of PrCo;_,Fe, O3 series revealed considerable anomalies in the lattice expansion which are
especially pronounced for the cobalt-rich specimens. These anomalies, which are reflected in a sigmoidal dependence
of the unit cell dimensions and in the considerable increase of the thermal expansion coefficients, are obviously
associated with transitions of Co®T ions from low spin to the higher spin states and the coupled metal-insulator
transitions, occurring in in rare earth cobaltites at the elevated temperatures. Indeed, the temperature-dependent
impedance measurements clearly prove the change of conductivity type from dielectric to the metallic behaviour
in the mixed cobaltite-ferrites PrCo;_,Fe, O3 at the elevated temperatures.
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1. Introduction

The interest in the rare earth perovskite cobaltites
RCo0O3 and ferrites RFeOg3 is stimulated by their unique
properties, such as high electrical conductivity, signifi-
cant electrochemical, and catalytic activity. Complemen-
tary, cobaltites RCoOg3 possess attractive fundamental
physical properties, such as temperature induced metal—
insulator transitions and different types of magnetic or-
dering, which are strongly dependent on the spin state
of Co3* cations. The latter undergo a thermally driven
transition from a low-spin (LS) to intermediate-spin (IS)
and high-spin (HS) states [1-3]. Stabilization and pur-
poseful tuning of the different spin states of Co3t can
be achieved by a mutual substitution of cations and they
can be controlled by probing of thermal expansion, which
is very sensitive to spin-state transitions and crystal-field
excitations as well as their coupling to the lattice.

2. Experimental

Mixed praseodymium cobaltites-ferrites
PrCo;_,Fe, O3 (x = 0.1, 0.2...0.8, 0.9), as well as
the “pure” PrCoOs and PrFeOs compounds were ob-
tained from the oxides PrgO711, Co304, and Fe;O3 by
solid-state reactions in air at the temperature of 1573 K.
X-ray phase and structural characterization of the
samples at room temperature was performed by using
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Huber imaging plate Guinier camera G670 (Cu K,
radiation, A = 1.54056 AA). Temperature evolution of
the crystal structure has been studied in situ in the
temperature range of 298-1173 K by means of X-ray
powder diffraction applying synchrotron radiation. The
experiments were performed at the powder diffrac-
tometer at beamline B2 of HASYLABQDESY [4, 5]
during beamtimes allocated to the HASYLAB projects
1-20110214 and 1-20110837. Analysis of the diffraction
data was carried out using the WinCSD program pack-
age [6]. The investigation of the electrical conductivity
was performed at the Clausthal University of Technology
by AC impedance measurements in the frequency range
from 1 Hz to 1 MHz using the impedance/gain-phase
analyzer (Solartron 1260).

3. Results and discussion

X-ray powder diffraction examination revealed that
all samples synthesised possess orthorhombic perovskite
structure isotypic with GdFeOs. Full profile Ri-
etveld refinement, performed in space group Pbnm, con-
firms isostructurality of the mixed cobaltites-ferrites
PrCo;_,Fe, O3 with the parent compounds PrCoO3 and
PrFeOs3. Peculiarity of the PrCoO3;—PrFeO3; system is
a lattice parameter crossover [7], which results in four
regions of PrCo;y_,Fe, O3 solid solution with different re-
lations of the cell dimensions (Fig. 1, top part). The
reason for this phenomenon, which was also observed
in the related NdCoj_,Fe,O3 system [8], as well as
in some mixed aluminates Sm;_,R,AlO3 and gallates
La;_,R,GaO3 [9-12], is that the isotypic end members
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of the corresponding systems display different cell pa-
rameters ratio within the same GdFeOgs type of struc-
ture. In spite of formation of dimensionally cubic lat-
tice at certain compositions of PrCo;_,Fe,O3 solid solu-
tion (Fig. 1), the symmetry of the structure remains or-
thorhombic. This is confirmed by an analysis of concen-
tration dependences of the selected interatomic distances
with show a divergent behaviour, indicating systematic
increase of orthorhombic perovskite deformation in the
PrCo;_,Fe, O3 series (Fig. 1, bottom part).
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Fig. 1. Concentration dependences of the normalized

unit cell dimensions (top part) and the selected inter-
atomic distances Pr-Pr and Pr-M (M = Coi_,Fe,,
bottom part) in PrCoi—.Fe;Og3 solid solution The or-
thorhombic lattice parameters are normalized to the
perovskite cell as follows: a, = ao/V2, b, = bo/V/2,
cp =co/2, Vp, = Vo/4.

In situ high-temperature X-ray synchrotron powder
diffraction investigation revealed that all PrCo;_,Fe,Og3
samples remain orthorhombic in the temperature range
of 298-1173 K. No structural phase transitions were de-
tected. As an example, Fig. 2 demonstrates graphical re-
sults of full profile Rietveld refinement of PrCoq 3Feqg 703
structure at 1173 K. Crystal structure parameters of two
representatives of PrCo;_,Fe, O3 series at room temper-
ature and 1173 K derived from high-resolution X-ray syn-
chrotron powder diffraction data are collected in Table I.

Analysis of the temperature dependence of unit cell
dimensions of all PrCo;_,Fe, O3 samples synthesized re-
vealed considerable anomalies in the lattice expansion,
which are especially pronounced for the cobalt-rich spec-
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Fig. 2. X-ray synchrotron powder diffraction pattern
of PrCog.3Fep.703 (A = 0.53833 A) recorded at 1173 K,
in comparison with calculated pattern. Difference curve
between measured and calculated profiles is shown be-
low the diagrams, reflection positions are indicated by
ticks.

imens. The observed anomalies in PrCo;_,Fe,O3 se-
ries, which are reflected in a sigmoidal dependence of
the unit cell dimensions and in the considerable increase
of the thermal expansion coefficients, TECs (Fig. 3),
are obviously associated with the transition of Co3*
ions from low spin to the higher spin states and the
coupled metal-insulator transitions, similar as it occurs
in the “pure” praseodymium cobaltite at the elevated
temperatures [1-3].
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Fig. 3. Temperature dependence of the normalized lat-

tice parameters of PrCog.g9Fep.103 and corresponding
linear thermal expansion coefficients (inset).

Observed deviations in the lattice expansion in the
PrCo;_,Fe, O3 series become less pronounced with the
decreasing cobalt content, but they are clearly detectable
even in the iron-richest PrCoq 1Fep 9O3 specimen (Fig. 4).

The temperature-dependent impedance measurements
clearly prove the change of conductivity type from di-
electric to the metallic behaviour in the mixed cobaltite-
ferrites PrCo;_,Fe,O3 at the elevated temperatures
(Fig. 5). The temperature of insulator—metal transition
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in PrCoq_,Fe O3 series increases from 723 K for x = 0.4
to 1100 K for x = 0.8 (Fig. 5, inset), which is in a good

agreement with the results obtained from the analysis of
thermal expansion data.
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Fig. 4. Temperature dependence of the volumetric
thermal expansion coefficients in PrCo;_,Fe,Os series.

Activation energy of electrical conductivity in the
PrCoy_,Fe, O3 series derived from the Arrhenius plots
(Fig. 6) increases systematically with increasing iron con-
tent from 0.56 eV for x = 0.4 to 0.93 eV for z = 0.8 sam-
ples, being in good agreement with the literature data
for the parent PrCoOj3 [13] and PrFeOs [14]compounds
(Fig. 6, inset).

Lattice parameters, coordinates and displacement parameters of atoms TABLE 1
in PrCog.7Fep.3503 and PrCog.3sFeg.703 structures at 300 K and 1173 K.
Lattice param. [A] Atoms [sites] x ‘ y ‘ z ‘ Biso |A?]
PrCop.7Feo 303, T = 300 K, Pbnm, Rr = 0.066, Rp = 0.156
Pr, 4a 0.5073(3) 0.0303(2) 1/4 0.890(7)
a = 5.4086(8) Fe/Co, 4b 0 0 1/2 0.47(2)
b = 5.4002(4) 01, 4c 0.070(5) -0.015(2) 1/4 0.8(4)
c=7.639(1) 02, 8d 0.295(3) 0.219(4) 0.525(3) 0.9(2)
PrCog.7Feo.303, T = 1173 K, Pbnm, R; = 0.081, Rp = 0.178
Pr, 4a 0.5146(3) 0.0288(3) 1/4 1.14(1)
a = 5.5062(8) Fe/Co, 4b 0 0 1/2 0.98(5)
b = 5.5020(6) 01, 4c 0.086(8) 0.014(4)) 1/4 2.4(5)
c="7.783(1) 02, 8d 0.252(6) 0.201(5) 0.504(4) 2.4(5)
PrCop.3Fep.7O3, T' = 300 K, Pbnm, Ry = 0.058, Rp = 0.130
Pr, 4a 0.0384(1) 1/4 0.881(9)
o = 5.4551(2) Fe,/Co, 4b 0?8;8%” 0 1/2 0.50(3)
b= 5.5036(2) 01, 4c 0'285(2) -0.0059(15) 1/4 1.4(3)
¢ =17.7288(2) 02, 8d ' 0.209(2) 0.5336(13) 0.48(15)
PrCog.3Feo 703, T = 1173 K, Pbnm, R; = 0.067, Rp = 0.158
Pr, 4a 0.5041(7) 0.0334(2) 1/4 2.25(3)
a = 5.5275(2) Fe/Co, 4b 0 0 1/2 0.99(4)
b = 5.5626(2) 01, 4c 0.074(4) -0.009(2) 1/4 1.8(5)
¢ =7.8333(3) 02, 8d 0.295(2) 0.215(2) 0.530(2) 1.1(3)
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PrCoi_,Fe,O3 series. The data for PrCoO3 are taken
from [2].

4. Conclusions

Series of microcrystalline powders of PrCo;_,Fe,Og3
were obtained by solid-state reactions technique in air
at 1473 K. Concentration dependence of the unit cell di-
mensions of PrCoq_,Fe, O3 proves a formation of con-
tinuous solid solution, peculiarity of which is the lattice
parameters crossover. In situ high temperature powder
diffraction examination of PrCoj_,Fe,O3 series revealed
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Fig. 6. Arrhenius plot of electrical conductivity of

PrCo;_,Fe, O3 samples. Inset shows concentration de-
pendences of the activation energy in PrCoj_,Fe; O3
series.

considerable anomalies in the lattice expansion which are
especially pronounced for the cobalt-rich specimens. The
temperature-dependent impedance measurements clearly
prove the change of conductivity type from dielectric
to the metallic behaviour in the mixed cobaltite-ferrites
PrCo;_,Fe, O3 at the elevated temperatures. Activation
energy of electrical conductivity in the PrCo;_,Fe,Og3
series derived from the Arrhenius plots increases system-
atically with increasing Fe content.
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