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ABSTRACT
Multi-armed bandit problems pertain to optimal sequential decision making and learning in
unknown environments. Since the first bandit problem posed by Thompson in 1933 for the ap-
plication of clinical trials, bandit problems have enjoyed lasting attention from multiple research
communities and have found a wide range of applications across diverse domains. This book cov-
ers classic results and recent development on both Bayesian and frequentist bandit problems. We
start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two
schools—Bayesian and frequentist—of approaches and highlighting foundational results and
key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist
bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models
that lead to new directions, bring in new techniques, and broaden the applications of this clas-
sical problem. In Chapter 6, we present several representative application examples in commu-
nication networks and social-economic systems, aiming to illuminate the connections between
the Bayesian and the frequentist formulations of bandit problems and how structural results
pertaining to one may be leveraged to obtain solutions under the other.

KEYWORDS
multi-armed bandit, machine learning, online learning, reinforcement learning,
Markov decision processes
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Preface
The term “multi-armed bandit” comes from likening an archetypal online learning problem to
playing a slot machine that has multiple arms (slot machines are also known as bandits due to
their ability to empty the player’s pockets). Each arm, when pulled, generates random rewards
drawn from an unknown distribution or a known distribution with an unknown mean. The
player chooses one arm to pull at each time, with the objective of accumulating, in expectation,
as much reward as possible over a given time horizon. The tradeoff facing the player is a classic
one, that is, to explore a less observed arm which may hold a greater potential for the future or
to exploit an arm with a history of offering good rewards. It is this tension between learning and
earning that lends complexity and richness to the bandit problems.

As in many problems involving unknowns, bandit problems can be treated within the
Bayesian or frequentist frameworks, depending on whether the unknowns are viewed as random
variables with known prior distributions or as deterministic quantities. These two schools have
largely evolved independently. In recent years, we witness increased interests and much success
in cross-pollination between the two schools. It is my hope that by covering both the Bayesian
and frequentist bandit models, this book further stimulates research interests in this direction.

We start in Chapter 1 with an overview on the history and foundational results of the
bandit problems within both frameworks. In Chapters 2 and 4, we devote our attention to the
canonical Bayesian and frequentist formulations. Major results are treated in detail. Proofs for
key theorems are provided.

New and emerging applications in computer science, engineering, and social-economic
systems give rise to a diverse set of variants of the classical models, generating new directions
and bringing in new techniques to this classical problem. We discuss major variants under the
Bayesian framework and the frequentist framework in Chapters 3 and 5, respectively. The cover-
age, inevitably incomplete, focuses on the general formulations and major results with technical
details often omitted. Special attention is given to the unique challenges and additional struc-
tures these variants bring to the original bandit models. Being derivative to the original models,
these variants also offer a deeper appreciation and understanding of the core theory and tech-
niques. In addition to bringing awareness of new bandit models and providing reference points,
these two chapters point out unexplored directions and open questions.

In Chapter 6, we present application examples of the bandit models in communication
networks and social-economic systems. While these examples provide only a glimpse of the
expansive range of potential applications of bandit models, it is my hope that they illustrate two
fruitful research directions: applications with additional structures that admit stronger results
than what can be offered by the general theory, and applications bringing in new objectives and
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constraints that push the boundaries of the bandit models. These examples are chosen also to
show the connections between the Bayesian and frequentist formulations and how structural
results pertaining to one may be leveraged to obtain solutions under the other.

Qing Zhao
Ithaca, NY, August 2019
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