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ON THE MOTIVE OF THE QUOT SCHEME OF FINITE QUOTIENTS

OF A LOCALLY FREE SHEAF

ANDREA T. RICOLFI

ABSTRACT. Let X be a smooth variety, E a locally free sheaf on X . We express the generating

function of the motives [QuotX (E , n )] in terms of the power structure on the Grothendieck

ring of varieties. This extends a recent result of Bagnarol, Fantechi and Perroni for curves, and

a result of Gusein-Zade, Luengo and Melle-Hernández for Hilbert schemes. We compute this

generating function for curves and we express the relative motive [QuotAd (O ⊕r )→ SymAd ] as

a plethystic exponential.
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0. INTRODUCTION

Let X be a smooth quasi-projective variety over C, and let E be a locally free sheaf of rank

r on X . The Quot scheme QuotX (E , n ) parameterises quotients E ։Q such that Q is a zero-

dimensional sheaf of length n . Recently Bagnarol, Fantechi and Perroni [1] have shown that

if C is a smooth proper curve, the class

�
QuotC (E , n )
�
∈ K0(VarC)

in the Grothendieck ring of varieties does not depend on E . We use the theory of power struc-

tures [9] to extend their result to arbitrary dimension. Roughly speaking, a power structure

on a ring R is a way of making sense of expressions A(t )m , where A(t ) = 1+A1t +A2t 2+ · · · is

a power series with coefficients in R and m ∈ R .

For (X , E ) as above, we form the generating function

ZE (t ) =
∑

n≥0

�
QuotX (E , n )
�
t n ,

and we denote byPr,n ∈ K0(VarC) the motive of the punctual Quot scheme, namely the closed

subscheme Pr,n ⊂QuotX (E , n ) parameterising quotients that are entirely supported at a sin-

gle (fixed) point in X .

Our first main result (proved in Theorem 2.3) is the following.

Key words and phrases. Quot schemes, Moduli spaces of sheaves, Grothendieck ring of varieties.
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2 A. T. RICOLFI

Theorem A. There is an identity

ZE (t ) =

�∑

n≥0

Pr,n t n

�[X ]
.

Since the punctual Quot scheme only depends on r , n and dim X , it follows that the same

holds true for the motive of QuotX (E , n ). Note that this was proved for r = 1 (the Hilbert

scheme case) by Gusein-Zade, Luengo and Melle-Hernández [10].

Our second main result is of relative nature and concerns X = Ad . The Quot-to-Chow

morphism

QuotX (E , n )→ Symn X

sends a quotient E ։Q to the support of Q , viewed as a zero-cycle with multiplicities. We

consider the relative motive

Z
rel(Ad , r ) =
∑

n≥0

�
QuotAd (O

⊕r , n )→ Symn
A

d
�
∈ K0(VarSymAd )

over the symmetric product of Ad . We define classes Ωr,n ∈ K0(VarC) by

∑

n≥0

Pr,n t n = Exp

�∑

n>0

Ωr,n t n

�

where Exp is the motivic exponential (see Section 1.5) induced by the lambda ring structure

on K0(VarC). For Ad , we refine Theorem A by showing (see Theorem 2.9) that Zrel(Ad , r ) is

generated on the small diagonal by the absolute motives Ωr,n .

Theorem B. There is an identity

Z
rel(Ad , r ) = Exp∪

�∑

n>0

Ωr,n ⊠
�
A

d ∆n
−→ Symn

A
d
�
�

.

See [6, 14] for analogues of this result in the context of motivic Donaldson–Thomas theory

and [3] for the calculation of the (absolute) virtual motive of Hilbn (A3).

Finally, our last result (see Section 3.1) is the full “solution” of the motivic theory of the

Quot scheme of a smooth curve, which can be summarised by the identities

Ωr,n =

(
[Pr−1] if n = 1

0 if n > 1.

Theorem C. If E is a locally free sheaf on a smooth curve C , there is an identity

ZE (t ) = Exp
��

C ×Pr−1
�
t
�

.

Moreover, in K0(VarSymA1 ) there is an identity

Z
rel(A1, r ) = Exp∪

��
P

r−1
�
⊠
�
A

1 id
−→A1
��

.

We use the first relation to compute the Hodge–Deligne polynomial of the smooth space

QuotC (E , n ) for a proper curve C (Proposition 3.5). We stress that the formula for ZE in the

proper case was already implicit in the calculation of [1, Prop. 4.5].

In Section 3.3 we discuss the case r = 1 on a surface, where we findΩ1,n =L
n−1 according to

Göttsche’s formula [7]. Finally, we conclude by proposing a geometric open problem related

to punctual Quot schemes on curves.
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We work over the field of complex numbers throughout.
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1. MOTIVIC PRELIMINARIES

In this section we recall a few motivic constructions that will be needed later. Most of this

material is a simplified version of [6, Section 1], adapted to suit the purposes of this paper.

1.1. The Grothendieck ring of varieties. Fix a complex scheme S locally of finite type over

C. The Grothendieck ring of S-varieties

K0(VarS )

is the free abelian group generated by isomorphism classes [X → S ] of S-varieties modulo

the scissor relations, namely the identities

�
X

f
−→ S
�
=
�
Y

f |Y
−→ S
�
+
�
X \ Y

f |X \Y
−−−→ S
�

imposed whenever Y ⊂ X is a closed S-subvariety of X . The ring structure is given on gener-

ators by fibre product over S ,

(1.1) [X → S ] · [Y → S ] = [X ×S Y → S ].

The element

L= [A1 ×C S → S ] ∈ K0(VarS )

is called the Lefschetz motive (over S ). If S ′ is another complex scheme, there is an external

product

(1.2) K0(VarS )×K0(VarS ′ )
⊠
−→ K0(VarS×S ′ )

defined on generators by sending ([ f : X → S ], [g : X ′→ S ′]) 7→ [ f × g : X ×X ′→ S ×S ′].

A morphism f : S → T induces a ring homomorphism f ∗ : K0(VarT ) → K0(VarS ) by base

change and a K0(VarT )-linear map f! : K0(VarS )→ K0(VarT ) defined on generators by compo-

sition with f .

Definition 1.1. We denote by S0(VarS ) the semigroup of effective motives, i.e. the semigroup

generated by isomorphism classes [X → S ] of complex quasi-projective S-varieties modulo

the scissor relations. The product (1.1) turns S0(VarS ) into a semiring. There is a natural semir-

ing map S0(VarS )→ K0(VarS ), and we say that α ∈ K0(VarS ) is effective if it lies in the image of

this map.

1.2. Equivariant motives and the quotient map. Recall that if S is a scheme with a good

action by a finite group G (i.e. an action such that every point of S has an affine G -invariant

open neighborhood), the quotient S/G exists as a scheme. For instance, finite group actions

on quasi-projective varieties are good.
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Definition 1.2. Let G be a finite group, S a scheme with good G -action. We denote by eK G
0 (VarS )

the free abelian group generated by isomorphism classes [X → S ]of G -equivariant S-varieties

with good action, modulo the G -equivariant scissor relations. We denote by K G
0 (VarS ) the

quotient of eK G
0 (VarS ) by the relations

[V → X → S ] = [Ar
X → S ],

where V → X is a G -equivariant vector bundle of rank r over a G -equivariant S-variety X .

There is a natural ring structure on eK G
0 (VarS ), where the product of two classes [X → S ]

and [Y → S ] is given by taking the diagonal action on X ×S Y . The structures f ∗, f! and ⊠ nat-

urally extend to the equivariant setting, along with their basic compatibilities. For instance,

if f : S → T (resp. g : S ′ → T ′) is a G -equivariant (resp. G ′-equivariant) map, and u , v are

equivariant motives over S , S ′, then

(1.3) ( f × g )!(u ⊠ v ) = f!u ⊠ g !v

in the (G ×G ′)-equivariant K -group over T ×T ′.

One can define a K0(VarS/G )-linear map (cf. [6, Lemma 1.5])

(1.4) πG : eK G
0 (VarS )→ K0(VarS/G )

given on generators by taking the orbit space,

πG [X → S ] = [X /G → S/G ].

This map does not always extend to K G
0 (VarS ). It does when G acts freely on S , by [5, Lemma

3.2].

1.3. Lambda ring structures. Let n > 0 be an integer, and let Sn be the symmetric group

of n elements. By [6, Lemma 1.6], namely the relative version of [3, Lemma 2.4], there exist

“n-th power” maps

(1.5) ( · )⊗n : K0(VarS )→ eK Sn

0 (VarSn )

where S n = S×· · ·×S is endowed with the naturalSn -action. The power map takes [ f : X → S ]

to the class of the equivariant function f n : X n → S n . For A ∈ K0(VarS ), consider the classes

πSn
(A⊗n ) ∈ K0(VarSn /Sn

).

The lambda ring operations on K0(VarC) are defined by

A 7→σn (A) =πSn
(A⊗n ) ∈ K0(VarC)

for effective classes A ∈ K0(VarC), and then taking the unique extension to a lambda ring

structure on K0(VarC), determined by the relation

(1.6)

n∑

i=0

σi ([X ]− [Y ])σn−i [Y ] =σn [X ].

If S comes with a commutative associative map ν: S ×S→ S , we likewise define

σn
ν (A) = ν!πSn

(A⊗n ) ∈ K0(VarS )

on effective classes A = [X → S ], where ν is the map S n/Sn → S . One then uses the analogue

of the relation (1.6) to find a unique set of lambda ring operatorsσn
ν restricting to the previous

identity on effective motives.
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As a special case, one can consider (S ,ν) = (N,+), viewed as a symmetric monoid in the

category of schemes. We obtain lambda operations σn =σn
+

on K0(VarC)Jt K via the isomor-

phism

(1.7) K0(VarC)Jt K e→K0(VarN)

defined by sending
∑

n≥0[Yn ]t
n 7→
�∐

n∈N Yn →{n }
�
.

1.4. Power structures. The main references for power structures are [9, 10].

Definition 1.3 ([9]). A power structure on a (semi)ring R is a map

(1+ t R Jt K)×R → 1+ t R Jt K

(A(t ), m ) 7→ A(t )m

satisfying the following conditions:

(1) A(t )0 = 1,

(2) A(t )1 = A(t ),

(3) (A(t ) ·B (t ))m = A(t )m ·B (t )m ,

(4) A(t )m+m ′
= A(t )m ·A(t )m

′
,

(5) A(t )m m ′
= (A(t )m )m

′
,

(6) (1+ t )m = 1+m t +O (t 2),

(7) A(t )m
��
t→t e = A(t e )m .

Throughout we use the following:

Notation 1.4. Partitions α ⊢ n are written as α = (1α1 · · · iαi · · · sαs ), meaning that there are

αi parts of size i . In particular we recover n =
∑

i iαi . The automorphism group of α is the

product of symmetric groups Gα =
∏

i Sαi
.

Example 1.5. If R =Z, A(t ) = 1+
∑

n>0 An t n ∈ZJt K and m ∈N, the known formula [16, p. 40]

A(t )m = 1+
∑

n≥0

∑

α⊢n

�
||α||−1∏

i=0

(m − i ) ·

∏
i A
αi

i∏
i αi !

�
t n

defines a power structure on Z, where we have set ||α||=
∑

i αi .

Gusein-Zade, Luengo and Melle-Hernández have proved [9, Thm. 2] that there is a unique

power structure

(A(t ), m ) 7→ A(t )m

on K0(VarC) extending the one defined in loc. cit. on the semiring S0(VarC)of effective motives.

The latter is given by the formula

(1.8) A(t )[X ] = 1+
∑

n≥0

∑

α⊢n

πGα

��∏

i

X αi \∆

�
·
∏

i

A
⊗αi

i

�
t n .

Here, ∆ ⊂
∏

i X αi is the “big diagonal” (the locus in the product where at least two entries

are equal), and the product in big round brackets is a Gα-equivariant motive in eK Gα
0 (VarC),

thanks to the power map (1.5).

Remark 1.6. We will not encounter non-effective coefficients in this paper, so we will have

direct access to Formula (1.8).
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1.5. Motivic exponential. The motivic exponential is a group isomorphism

Exp: t K0(VarC)Jt K e→1+ t K0(VarC)Jt K,

converting sums into products and preserving effectiveness. If A =
∑

n>0 An t n is an effective

power series, one has by definition

Exp

�∑

n>0

An t n

�
=
∏

n>0

�
1− t n
�−An ,

and if A and B are effective, one sets

(1.9) Exp(A−B ) =
∏

n>0

�
1− t n
�−An ·

�∏

n>0

�
1− t n
�−Bn

�−1

.

More generally, if (S ,ν: S ×S → S ) is a commutative monoid in the category of schemes, with

a submonoid S+ ⊂ S such that the induced map
∐

n≥1 S×n
+
→ S is of finite type, we similarly

define

Expν(A) =
∑

n≥0

σn
ν (A)

on effective classes, and for A and B two effective classes, we define Expν(A− B ) by the ana-

logue of (1.9), i.e. by Expν(A) ·Expν(B )
−1.

1.6. Motives over symmetric products. The machinery described so far will be applied to

the following situation. For a variety X , we will consider (Sym(X ),∪), where

Sym(X ) =
∐

n≥0

Symn (X )

can be viewed as a monoid via the morphism

Sym(X )×Sym(X )
∪
−→ Sym(X )

sending two zero-cycles (with multiplicities) on X to their union. The submonoid Sym(X )+ =∐
n>0 Symn (X ) allows one to construct the map Exp∪ as in Section 1.5.

In order to recover a formal power series in K0(VarC)Jt K from a relative motive over Sym(X ),

we consider the operation

(1.10) #!

�∑

n≥0

�
Yn → Symn X
�
�
=
∑

n≥0

[Yn ]t
n .

In other words we take the direct image along the “tautological” map #: Sym(X )→ N which

collapses Symn (X ) onto the point n . In the right hand side of (1.10), we use the isomorphism

(1.7) to identify relative motives overN and formal power series with coefficients in K0(VarC).

The following result, a special case of [6, Prop. 1.12], will be needed in the proof of Theorem

2.9.

Lemma 1.7. Let U be a variety and let ∆n : U → Symn U be the small diagonal. Let A =∑
n>0 An be an effective motive over N>0 and set B = Exp(A) = 1+

∑
n>0 Bn . Define

Z=
∑

n≥0

∑

α⊢n

∪!πGα j ∗α

�
⊠

i |αi 6=0
∆i !

��
U

id
−→U
�
⊠Bi

�⊗αi

�
∈ K0(VarSymU ),
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where jα is the Gα-equivariant open immersion
∏

i Symi (U )αi \∆ ,→
∏

i Symi (U )αi . Then

there is an identity

Z= Exp∪

�∑

n>0

An ⊠
�
U
∆n
−→ Symn U
�
�

Moreover,

#! Exp∪

�∑

n>0

An ⊠
�
U
∆n
−→ Symn U
�
�
= B [U ] ∈ K0(VarC)Jt K.

We briefly explain how to read the right hand side of the first equation of the lemma. First

of all, we view ∪ as a map Sym(U )b → Sym(U ) for any b > 0. The map πGα
appearing in

the definition of Z sends a Gα-equivariant relative motive over
∏

i Symi (U )αi \∆ to a relative

motive over
∏

i Symiαi (U ) \∆, therefore we can apply the direct image ∪! to get a relative

motive over Symn U , where n =
∑

i iαi .

2. THE MOTIVE OF THE QUOT SCHEME

2.1. Main characters. Let X be a smooth quasi-projective variety of dimension d . Let E be

a rank r locally free sheaf on X . For a given integer n ≥ 0, the Quot scheme

QuotX (E , n )

parameterises quotients E ։Q such that

dim (Supp Q ) = 0, χ (Q ) = n .

The Quot-to-Chow map

σn : QuotX (E , n )→ Symn X

constructed in [8, Section 6] (see also [15, Cor. 7.15] for a modern treatment) takes a quotient

E ։ Q to the zero-cycle (with multiplicities) determined by the set-theoretic support of Q .

We define the punctual Quot scheme to be the preimage

QuotX (E , n )p =σ
−1
n (n ·p )

of the cycle n ·p ∈ Symn X , where p ∈ X is a point. This is easily seen to only depend on a

formal neighborhood of p ∈ X (but not on p , X or E ). In particular, one has isomorphisms

(2.1) QuotX (E , n )p
∼=QuotX (O

⊕r
X , n )p

∼=QuotAd (O
⊕r
Ad , n )0

where 0 is the origin inAd . This scheme will be denoted Pr,n from now on, and

Pr,n =
�
Pr,n

�
∈ K0(VarC)

will denote its motive.

We pause for a second to explain how to prove the second isomorphism in (2.1). Using

smoothness of X , we can fix étale coordinates around p ∈ X . This means we can find a pair

(U ,ϕ) where p ∈ U ⊂ X is an open neighborhood and ϕ : U → Ad is an étale map such

that ϕ(p ) = 0 ∈ Ad . As in the proof of [2, Lemma A.1], we can further shrink U until U ∩

ϕ−1(0) is the single point p . Then, we consider the open subscheme W ⊂ QuotU (O
⊕r

U , n ) ⊂

QuotX (O
⊕r
X , n ) consisting of quotients O ⊕r

U ։Q such that ϕ|Supp Q is injective. Note that W

contains QuotU (O
⊕r

U , n )p = QuotX (O
⊕r
X , n )p as a closed subscheme. By [2, Proposition A.3],

sending �
O ⊕r

U ։Q
�
7→
�
O ⊕r
Ad →ϕ∗ϕ

∗O ⊕r
Ad =ϕ∗O

⊕r
U ։ϕ∗Q
�
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defines an étale morphism Φ: W →QuotAd (O ⊕r
Ad , n ). Its restriction

(2.2) Φ
−1
�
QuotAd (O

⊕r
Ad , n )0
�
→QuotAd (O

⊕r
Ad , n )0

to the punctual Quot scheme of Ad is étale and bijective, hence an isomorphism. For sur-

jectivity, use that p is the only point in U ∩ϕ−1(0), and for injectivity use that ϕ|U is an im-

mersion around p , so that ϕ∗ϕ∗Q e→Q is an isomorphism for all Q supported entirely at p .

Finally, again by our choice of U , the source of the morphism (2.2) is naturally identified with

QuotU (O
⊕r

U , n )p .

Remark 2.1. The punctual motives Pr,n clearly depend on the dimension d = dim X , but we

omit d from the notation.

Example 2.2. On a curve (i.e. if d = 1), by [1, Prop. 2.6]we have

(2.3) Pr,1 =
�
P

r−1
�
.

2.2. Absolute motives. Let X and E be as in the previous section. Define the generating

functions

Pr (t ) =
∑

n≥0

Pr,n t n ,

ZE (t ) =
∑

n≥0

�
QuotX (E , n )
�
t n

in the power series ring K0(VarC)Jt K. The following result (namely Theorem A from the Intro-

duction) is the higher rank analogue of the corresponding statement for the Hilbert scheme

of points [10, Thm. 1], obtained by setting r = 1.

Theorem 2.3. Let X be a smooth quasi-projective variety. Let E be a rank r locally free sheaf

on X . There is an identity

(2.4) ZE (t ) =Pr (t )
[X ].

Proof. For α a partition of n , let SymαX ⊂ Symn X be the locally closed subvariety parame-

terising zero-cycles whose support is distributed according to α. We get a motivic decompo-

sition

(2.5)
�
QuotX (E , n )
�
=
∑

α⊢n

�
QuotX (E , n )α
�
,

where we have set QuotX (E , n )α = σ
−1
n (SymαX ). By standard arguments (see e.g. [4, Sec. 4]

and [13, Sec. 3]), one sees that the deepest stratum of the Quot-to-Chow map

σ(n ) : QuotX (E , n )(n )→ X

is a Zariski locally trivial fibration with fibre Pr,n . This relies on the local case X =Ad , where

one has a global decomposition

QuotAd (O
⊕r , n )(n )

∼=Ad ×Pr,n

under whichσ(n ) is identified with the first projection.

For a fixed partition α ⊢ n , let

Vα ,→
∏

i

QuotX (E , i )αi
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be the open subscheme parameterising finite quotients with disjoint supports. By [2, Prop. A.3]

(but see also [4, Lemma 4.10] for the Hilbert scheme version), taking the union of points gives

an étale map

uα : Vα→QuotX (E , n )

and we let Uα denote its image. The stratum QuotX (E , n )α sits inside Uα as a closed sub-

scheme. We let the cartesian diagram

(2.6)

Zα Vα

QuotX (E , n )α Uα

�

←- →

←

→euα

←

→ uα

←- →

define the scheme Zα. The map euα is a finite étale cover with Galois group Gα, in particular

we have

(2.7) QuotX (E , n )α = Zα/Gα.

In fact, Zα can also be realised as the fibre product

(2.8)

Zα
∏

i QuotX (E , i )
αi

(i )

∏
i X αi \∆

∏
i X αi

�

←- →

←

→fα

←

→

←- →

where the bottom open immersion is the complement of the big diagonal and the map fα is

a Gα-equivariant piecewise trivial fibration with fibre
∏

i P
αi

r,i . This implies the identity

�
Zα
�
=

�∏

i

X αi \∆

�
·
∏

i

P
⊗αi

r,i

in K
Gα
0 (VarC). Using (2.7), it follows that

�
QuotX (E , n )α
�
= πGα

�
Zα
�

= πGα

��∏

i

X αi \∆

�
·
∏

i

P
⊗αi

r,i

�
,

where πGα : K
Gα
0 (VarC)→ K0(VarC) is the quotient map extending (1.4). Since the classes Pr,i

are effective, combining the decomposition (2.5) with the power structure formula (1.8) and

summing over n proves the result.

The following is a generalisation of [1, Thm. 4.1] to arbitrary varieties.

Corollary 2.4. The series ZE (t ) does not depend on E . In particular, the identity
�
QuotX (E , n )
�
=
�
QuotX (O

⊕r
X , n )
�

holds in K0(VarC) for all locally free sheaves E of rank r on X .

Definition 2.5. Define absolute classes Ωr,n ∈ K0(VarC) via

(2.9) Exp

�∑

n>0

Ωr,n t n

�
=Pr (t ).
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Remark 2.6. In terms of the motivic exponential, we can rephrase Equation (2.4) as

(2.10) ZE (t ) = Exp

�
[X ]
∑

n>0

Ωr,n t n

�
.

It is then clear that to determine the series ZE one has to compute the fully punctual classes

Ωr,n . We will do this in the case of curves (for arbitrary r ) in Section 3.1, and for surfaces (only

for r = 1) in Section 3.3.

2.3. Relative motives. Let (X , E ) be as in the previous sections. Consider the relative motive

Z
rel
E =
∑

n≥0

�
QuotX (E , n )

σn
−→ Symn X
�
∈ K0(VarSym X ).

In other words, Zrel
E = [QuotX (E ) → Sym X ], the class of QuotX (E ) =

∐
n QuotX (E , n ) over

Sym X . Note that Zrel
E is a refinement of ZE , in the sense that

#!Z
rel
E =ZE (t ),

where #! is the operation introduced in (1.10).

We simply write

Z
rel(X , r ) =Zrel

O ⊕r

when E =O ⊕r is the trivial bundle over X . We will show below (Theorem 2.9) that the relative

motiveZrel(Ad , r ) ∈ K0(VarSymAd ) is generated under Exp∪ by the motivesΩr,n defined in (2.9),

extended on the small diagonal

A
d ∆n
−→ Symn

A
d .

Example 2.7. Set r = 1, d = 1 (i.e. we consider line bundles on curves). Then QuotX (L , n ) =

Hilbn X = Symn X for all line bundles L on X , and

Z
rel(X , 1) =Zrel

OX
=
�
Sym X

id
−→ Sym X
�
= 1 ∈ K0(VarSym X ).

Pushing this forward via # yields

ZOX
(t ) =
∑

n≥0

�
Symn X
�
t n = ζX (t ),

the Kapranov motivic zeta function of the curve X .

Remark 2.8. By definition of the power structure and of the motivic exponential, one has

ζY (t ) = (1− t )−[Y ] = Exp([Y ]t ),

for every variety Y . Moreover, the identities

(2.11) ζY (L
s t ) = ζAs×Y (t ) = Exp(Ls [Y ]t )

hold in K0(VarC)Jt K for every s ∈N.

We now prove Theorem B from the Introduction.

Before we begin, let us observe that for a morphism of varieties f : S → T and an integer

n > 0, there is a commutative diagram

(2.12)

K0(VarS ) K0(VarT )

eK Sn

0 (VarSn ) eK Sn

0 (VarT n )

�

←

→
f!

←

→( · )⊗n

←

→ ( · )⊗n

←

→
f n

!
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where ( · )⊗n is the power map (1.5).

Theorem 2.9. There is an identity

Z
rel(Ad , r ) = Exp∪

�∑

n>0

Ωr,n ⊠
�
A

d ∆n
−→ Symn

A
d
�
�
∈ K0(VarSymAd ).

Proof. For a partition α ⊢ n , set Q n
α =QuotAd (O ⊕r , n )α. One has a decomposition

Z
rel(Ad , r ) =
∑

n≥0

∑

α⊢n

�
Q n
α → Symn

A
d
�
.

Let us consider the Gα-equivariant cartesian diagram

(2.13)

Zα
∏

i Q
αi

(i )

∏
i (A

d )αi \∆
∏

i (A
d )αi

∏
i Symi (Ad )αi \∆

∏
i Symi (Ad )αi

�

←

→

←- →

←

→

�

←- →
ια

←
-

→ ∆
←
-

→ ∆

←- →
jα

where the top square is Diagram (2.8), the horizontal maps are open immersions (the com-

plements of the big diagonals) and the vertical inclusions are products of small diagonals.

We have a base change identity

(2.14) j ∗α∆! =∆!ι
∗
α.

On the deepest stratum, we have a commutative diagram

Q n
(n )

Ad ×Pr,n

A
d

←→σ(n )

←

→
∼

←

→ pr1

inducing an identity

(2.15)
�
Q n
(n )→A

d
�
=
�
A

d id
−→Ad
�
⊠Pr,n ∈ K0(VarAd ).

For a general partition α of n , consider the equivariant motives

�
Q i
(i )→A

d
�⊗αi ∈ eK Sαi

0

�
Var(Ad )αi

�
.

If ια is as in Diagram (2.13), one has

∆!

�
Zα→
∏

i

(Ad )αi \∆

�
=∆!ι

∗
α

�
⊠

i |αi 6=0

�
Q i
(i )→A

d
�⊗αi

�
∈ eK Gα

0

�
Var∏

i Symi (Ad )αi \∆

�
.
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Applying the quotient map πGα to the last identity, followed by the pushforward along the

union of points map, we obtain

�
Q n
α → Symn

A
d
�
= ∪!πGα∆!ι

∗
α

�
⊠

i |αi 6=0

�
Q i
(i )→A

d
�⊗αi

�

= ∪!πGα j ∗α∆!

�
⊠

i |αi 6=0

�
Q i
(i )→A

d
�⊗αi

�
by (2.14)

= ∪!πGα j ∗α

�
⊠

i |αi 6=0
(∆
αi

i )!
�
Q i
(i )→A

d
�⊗αi

�
by (1.3)

= ∪!πGα j ∗α

�
⊠

i |αi 6=0

�
∆i !

�
Q i
(i )→A

d
��⊗αi

�
by (2.12)

= ∪!πGα j ∗α

�
⊠

i |αi 6=0
∆i !

��
A

d id
−→Ad
�
⊠Pr,i

�⊗αi
�

by (2.15)

so that summing these classes over all partitions of integers and noting thatΩr,n are effective

(because Pr,n are effective) yields precisely

Exp∪

�∑

n>0

Ωr,n ⊠
�
A

d ∆n
−→ Symn

A
d
�
�

by an application of Lemma 1.7.

Remark 2.10. By the last part of Lemma 1.7, the theorem implies the formula

ZO ⊕r (t ) =Pr (t )
L

d

of Theorem 2.3 for X =Ad .

2.4. Related work on more general Quot schemes. The theory developed so far relies cru-

cially on the locally free assumption on E . Indeed, the isomorphisms (2.1) fail even if E is,

say, reflexive but not locally free. However, the geometry of the Quot scheme can be interest-

ing also in the non-locally free case. For instance, the Quot scheme of finite quotients of the

ideal sheafIC ⊂OY of a smooth curve in a 3-fold Y has been studied in [13], where essential

local triviality statements on the Quot-to-Chow morphism were proved (see e.g. Corollary 3.2

in loc. cit.). Moreover, in [12, Thm. 2.1] it is proven that QuotY (IC , n ) appears as the typical

(scheme-theoretic) fibre of the Hilbert–Chow morphism Hilb(Y )→ Chow(Y ) in a neighbor-

hood of the cycle of the smooth curve C . (This holds in all dimensions, not just 3-folds.) This

was used to prove the C -local DT/PT correspondence for Calabi–Yau 3-folds [12, Thm. 1.1].

The (virtual) motivic theory of QuotY (IC , n )was developed in [6].

The enumerative geometry of QuotX (E , n ), for E a sheaf of homological dimension at most

one on a 3-fold, was studied in [2] and related to the local Pandharipande–Thomas theory of

X . The Appendix in loc. cit. develops the abstract theory comparing various Quot schemes of

smooth quasi-projective varieties, and implicitly shows that the singularities of QuotX (E , n )

only depend on n and dim X . The (virtual) motivic theory in the locally free case for 3-folds

was developed in [14], along with a construction of a virtual fundamental class on the Quot

scheme.

3. CALCULATIONS: CURVES AND SURFACES

In this section we compute the fully punctual motives

Ωr,n
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in the case of curves, for all r > 0 and n > 0, and in the case of surfaces for r = 1 and all n > 0.

3.1. The class of the Quot scheme on a curve. We fix a locally free sheaf E of rank r on a

smooth quasi-projective curve C .

Lemma 3.1. On a curve, we have

Ωr,1 =
�
P

r−1
�
.

Proof. By the properties of the power structure, one has

Pr (t ) =
∏

n≥1

(1− t n )−Ωr,n

=
∏

n≥1

(1− t )−Ωr,n
��

t→t n

=
∏

n≥1

(1+Ωr,n t + · · · )
��
t→t n

=
∏

n≥1

(1+Ωr,n t n + · · · ),

which immediately implies

Ωr,1 =Pr,1.

On the other hand, the equality Pr,1 = [P
r−1] holds by (2.3).

We now reformulate (and generalise to the quasi-projective case) the main formula proved

in [1, Prop. 4.5]. The following is Theorem C from the Introduction.

Theorem 3.2. There is an identity

(3.1) ZE (t ) = Exp
��

C ×Pr−1
�

t
�

in K0(VarC)Jt K. Moreover, in K0(VarSymA1 ) there is an identity

Z
rel(A1, r ) = Exp∪

��
P

r−1
�
⊠
�
A

1 id
−→A1
��

.

Proof. By [1, Prop. 4.5], for projective C one has

(3.2)
�
QuotC (E , n )
�
=
∑

n1+···+nr=n

�
Symn1 C
�
· · ·
�
Symnr C
�
·L
∑r−1

i=0 (i−1)ni .

and it is clear that the generating function ZE (t ) of these motives can be expanded as a prod-

uct of shifted motivic zeta functions. More precisely, one has

∑

n≥0

�
QuotC (E , n )
�
t n =

r∏

i=1

ζC (L
i−1t )

=

r∏

i=1

Exp([C ]Li−i · t )

= Exp

�
[C ]

r∑

i=1

L
i−i ·

�

= Exp
��

C ×Pr−1
�
t
�

,
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where the second equality follows by (2.11). So the statement is true when C is projective. In

this case, comparing (3.1) with Equation (2.10) and using the injectivity of Exp, we obtain the

identities

(3.3) [C ] ·Ωr,n =

(
[C ] · [Pr−1] if n = 1

0 if n > 1.

By Equation (2.10), to prove the statement on an arbitrary C it is enough to show that

(3.4) Ωr,n =

(
[Pr−1] if n = 1

0 if n > 1.

By Lemma 3.1, we already know that Ωr,1 = [P
r−1]. Finally, the equation Ωr,n = 0 holds for

n > 1 because Ωr,n is effective. Indeed, write Ωr,n = [Y ] for a variety Y , so that 0= [C ] ·Ωr,n =

[C ×Y ]. But the class of a variety vanishes if and only if the variety is empty, and this happens

if and only if Y = ;.

To prove the last assertion, it is enough to combine Theorem 2.9 with the relations (3.4).

Remark 3.3. The formula (3.2) is proved in [1] over a field k of arbitrary charcateristic.

Remark 3.4. By Equation (3.4), the generating function of the punctual motives can be com-

puted as

(3.5) Pr (t ) = Exp([Pr−1]t ) = ζPr−1 (t ) =

r−1∏

i=0

1

1−Li t
.

3.2. The Hodge numbers of the Quot scheme on a curve. The Hodge–Deligne polynomial

(also called the E-polynomial) of a smooth complex projective variety Y is given by

E(Y ; u , v ) =
∑

p ,q

(−1)p+q h p ,q (Y )up v q

where h p ,q (Y ) = dimCH q (Y ,Ω
p

Y ) are the Hodge numbers of Y . For instance, one has

E(Pr−1; u , v ) =

r−1∑

i=0

u i v i ,

E(C ; u , v ) = 1− g u − g v +u v,

(3.6)

where C is a smooth projective curve of genus g . Sending [Y ] 7→ E(Y ; u , v ) defines a motivic

measure

K0(VarC)
E
−→Z[u , v ]

which is in fact a homomorphism of rings with power structure. The power structure on the

polynomial ring Z[u , v ] is determined by the formula

(1− t )− f (u ,v ) =
∏

i , j

�
1−u i v j t
�−pi j ,

where we have written f (u , v ) =
∑

i , j pi j u j v j for integers pi j . This implies (cf. [10, Prop. 4])

the basic relation

(3.7) E
�
(1− t )−[Y ]
�
= (1− t )−E(Y ;u ,v ).
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Let C be a smooth projective curve of genus g , and let E be a rank r locally free sheaf on C .

We compute the generating function

Er (C , t ) =
∑

n≥0

E(QuotC (E , n ); u , v )t n .

We already know this series does not depend on E .

Proposition 3.5. There is an identity

(3.8) Er (C , t ) =

r−1∏

i=0

(1−u i v i+1t )g (1−u i+1v i t )g

(1−u i v i t )(1−u i+1v i+1t )

in the ring Z[u , v ]Jt K.

Proof. We have

Er (C , t ) = E
�
Exp
��

C ×Pr−1
�
t
��

by (3.1)

= E

�
(1− t )−[C×P

r−1]
�

by definition of Exp

= (1− t )−E([C×P
r−1]) by (3.7)

= (1− t )−(1−g u−g v+u v )
∑r−1

i=0 u i v i

.

We have used that E is a ring homomorphism and the identities (3.6) in the last step. The re-

sult now follows from direct computation and by definition of the power structure onZ[u , v ].

Remark 3.6. Setting u = v in Formula (3.8) one recovers the generating function of (signed)

Poincaré polynomials computed in [1, Remark 4.6], namely

∑

n≥0

P (QuotC (F, n ),−u )t n =

r−1∏

i=0

(1−u2i+1t )2g

(1−u2i t )(1−u2i+2t )
.

3.3. The Hilbert scheme of points on a surface. Let S be a smooth quasi-projective surface,

and set r = 1, so that QuotS (L , n ) = Hilbn S for every line bundle L . We know by Formula

(2.10) that

ZOS
(t ) = Exp

�
[S ]
∑

n>0

Ω1,n t n

�
.

On the other hand, by Göttsche’s formula [7],

ZOS
(t ) = Exp

�
[S ]t

1−Lt

�
= Exp

�
[S ]
∑

n>0

L
n−1t n

�
.

By the injectivity of Exp, we conclude that on a surface S one has

(Ω1,n −L
n−1)[S ] = 0.

However, this relation holds universally for every quasi-projective surface, in particular for

S = P2 and S =A1 ×P1. Therefore

(Ω1,n −L
n−1)(1+L+L2) = 0= (Ω1,n −L

n−1)(L+L2),

showing that

(3.9) Ω1,n =L
n−1, n > 0.
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In particular, we recover the known generating function of the motives of punctual Hilbert

schemes, given by the formula

(3.10) P1(t ) =
∑

n≥0

�
Hilbn (A2)0
�
t n =
∏

n≥1

�
1−Ln−1t n
�−1

.

Finally, we obtain the following relative statement.

Theorem 3.7. There is an identity

∑

n≥0

�
Hilbn

A
2 σn
−→ Symn

A
2
�
= Exp∪

�∑

n>0

L
n−1
⊠
�
A

2 ∆n
−→ Symn

A
2
�
�

in K0(VarSymA2 ).

Proof. Combine Theorem 2.9 with Equation (3.9).

Remark 3.8. The relation (3.10) was already proved in [9], and it was exploited in [11] to pro-

vide a motivic check of the classification of modules of length 3 and 4 over the polynomial

ring k [x , y ].

4. A MOTIVIC-TO-GEOMETRIC OPEN PROBLEM

Let C be a smooth quasi-projective curve. The punctual Quot scheme

Pr,n ⊂QuotC (O
⊕r , n )

parameterises quotients O ⊕r
։ Q entirely supported at a single (fixed) point p ∈ C . As

proved in [1, Prop. 2.6], one has

Pr,1 = P
r−1.

How can one describe Pr,n for n > 1? The relation

Pr (t ) = Exp
��
P

r−1
�
t
�
= ζPr−1 (t )

established in Equation (3.5) translates into the motivic identity

(4.1)
�
Pr,n

�
=
�
Symn
P

r−1
�
=
�
Symn Pr,1

�
.

It thus makes sense to ask the following:

Question 4.1. What is the geometric meaning of the relation (4.1)? Can one geometrically

compare the schemes Pr,n and Symn Pr,1?
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[3] Kai Behrend, Jim Bryan, and Balázs Szendrői, Motivic degree zero Donaldson–Thomas invariants, Invent.

Math. 192 (2013), no. 1, 111–160.

[4] Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of points on three-

folds, Algebra Number Theory 2 (2008), 313–345.

[5] Franziska Bittner, On motivic zeta functions and the motivic nearby fiber, Math. Z. 249 (2005), no. 1, 63–83.

[6] Ben Davison and Andrea T. Ricolfi, The local motivic DT/PT correspondence, Preprint

https://arxiv.org/abs/1905.12458, 2019.

https://arxiv.org/abs/1905.12458


ON THE MOTIVE OF THE QUOT SCHEME 17

[7] Lothar Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5-6,

613–627.

[8] Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les

schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249–276.

[9] Sabir M. Gusein-Zade, Ignacio Luengo, and Alejandro Melle-Hernández, A power structure over the

Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57.

[10] Sabir M. Gusein-Zade, Ignacio Luengo, and Alejandro Melle-Hernández, Power structure over the

Grothendieck ring of varieties and generating series of Hilbert schemes of points, Mich. Math. J. 54 (2006),

no. 2, 353–359.

[11] Riccardo Moschetti and Andrea T. Ricolfi, On coherent sheaves of small length on the affine plane, Journal of

Algebra 516 (2018), 471–489.

[12] Andrea T. Ricolfi, The DT/PT correspondence for smooth curves, Math. Z. 290 (2018), no. 1-2, 699–710.

[13] Andrea T. Ricolfi, Local contributions to Donaldson–Thomas invariants, Int. Math. Res. Not. IMRN 2018

(2018), no. 19, 5995–6025.

[14] Andrea T. Ricolfi, Virtual classes and virtual motives of Quot schemes on threefolds, To appear in Adv. Math.,

2019.

[15] David Rydh, Families of cycles and the Chow scheme, Ph.D. thesis, KTH, Stockholm, 2008.

[16] Richard P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999.

SISSA, VIA BONOMEA 265 TRIESTE

E-mail address, Andrea T. Ricolfi: aricolfi@sissa.it


	0. Introduction
	1. Motivic preliminaries
	2. The motive of the Quot scheme
	3. Calculations: curves and surfaces
	4. A motivic-to-geometric open problem
	References

