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Abstract  Multiple myeloma (MM) is an incurable 
plasma cell malignancy, which is predominantly a 
disease of older adults (the median age at diagnosis is 
70 years). The slow progression from asymptomatic 
stages and the late-onset of MM suggest fundamen-
tal differences compared to many other hematopoietic 
system-related malignancies. The concept discussed 
in this review is that age-related changes at the level 
of terminally differentiated plasma cells act as the 
main risk factors for the development of MM. Epi-
genetic and genetic changes that characterize both 
MM development and normal aging are highlighted. 
The relationships between cellular aging processes, 
genetic mosaicism in plasma cells, and risk for MM 
and the stochastic processes contributing to clonal 
selection and expansion of mutated plasma cells are 
investigated. In line with the DNA damage accumula-
tion theory of aging, in this review, the evolution of 
monoclonal gammopathy to symptomatic MM is con-
sidered. Therapeutic consequences of age-dependent 

comorbidities that lead to frailty and have fundamen-
tal influence on treatment outcome are described. The 
importance of considering geriatric states when plan-
ning the life-long treatment course of an elderly MM 
patient in order to achieve maximal therapeutic ben-
efit is emphasized.
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Introduction

Multiple myeloma (MM) accounts for about 1% of 
all cancers and approximately 10% of all hemato-
logic malignancies. Aging is considered one of the 
most significant risk factors for various malignant 
diseases. MM excels in this regard, as it affects pre-
dominantly older people. It is diagnosed on average 
at the age of 70, and only a tiny proportion (less than 
2%) of patients with MM are less than 40 years old 
[1]. Males have a 20% higher chance of a MM diag-
nosis than females [2]. Excess body fat is known to 
increase the lifetime risk of developing MM [3].

MM is considered a rare disease, but its global inci-
dence increased by 126% from 1990 to 2016 [4], prob-
ably due to the worldwide aging population. In fact, it is 
the most common malignancy that originates in the bone 
marrow. In MM, the origin of the cells that serve as the 
starting point for the malignancy is not the bone marrow 
stem or progenitor cells, like in most other hematopoietic 
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malignancies, but terminally differentiated, mature B 
cells in the germinal centers of secondary lymphoid tis-
sues [5]. Symptomatic MM is characterized by the clonal 
expansion of terminally differentiated, antibody-produc-
ing plasma cells, progenies of a malignantly transformed 
B cell. Plasma cells in MM produce non-functional 
monoclonal antibodies (M proteins) that result in ele-
vated serum levels in most patients, termed a monoclonal 
gammopathy. Malignant clones later tend to colonize the 
bone marrow but also may cause damage to soft tissues 
in the form of plasmacytomas. The diagnosis of MM is 
primarily based on an elevated clonal plasma cell count 
(or plasmacytoma) and nowadays less importantly of the 
M protein and disease defining CRAB criteria (hypercal-
cemia, renal insufficiency, anemia, and osteolytic bone 
destruction). In most cases, gammopathies very slowly 
develop from the asymptomatic forms [6] towards the 
manifest MM [7]. More recently, the SLiM diagnos-
tic criteria were also established for defining myeloma: 
smoldering myeloma with more than 60% plasma cells, 
with more than 100 for free light chain ratios, and/or 
more than one focal lesion on MRI scans is also termed 
as MM that requires therapy.

In this review, the stochastic genetic, epigenetic, 
and cellular processes involved in clonal selection 
and expansion of mutated plasma cells are presented 
from a geroscience perspective, highlighting the role 
of basic mechanisms of aging in the pathogenesis of 
MM. The goal of therapy—especially in the elderly—
should be to slow down disease progression, achieve 
symptomatic relief, possibly a remission, and provide 
the best possible quality of life, considering patients’ 
older age and comorbidities.

The biological and clinical heterogeneity observed in 
MM results in variable responses to treatment and out-
come. Therefore, while tailoring the treatment, predictive 
and prognostic biological markers, as well as geriatric/
frailty assessments, are to be considered according to the 
recommendation of the International Myeloma Working 
Group (IMWG) [8]. Here, an overview of the clinical 
practice and experiences as well as recommendations for 
elderly, unfit, and frail patients are provided.

Diverse mechanisms underlying the long‑lasting 
pathogenesis of symptomatic MM

Epigenetic changes and genetic mutations with struc-
tural and numerical chromosome aberrations that 

characterize MM may develop asymptomatically for 
decades. Prolonged disease progression and branch-
ing evolution lead to clonal heterogeneity of malig-
nant cells in different patients [8]. Additionally, 
the disorder has different cytogenetic backgrounds 
despite similar clinical diagnostic criteria [9]. There 
are no two MM patients alike, though certain biologic 
subclasses of the disease are clearly distinguishable. 
Due to its complexity and heterogeneity, our under-
standing has been developing at least as slowly and 
gradually as the MM itself. The IMWG has differenti-
ated asymptomatic plasma cell disorders from asymp-
tomatic MM in their 2009 recommendations for dif-
ferential diagnosis [10]. According to more recent 
updates by Rajkumar [11], subcategories of these 
asymptomatic stages are non-IgM as well as IgM 
monoclonal gammopathies of undetermined signifi-
cance (MGUS and IgM MGUS), light-chain MGUS, 
and smoldering multiple myeloma (SMM). These 
phenotypes lack myeloma-defining events (MDE), 
such as end-organ damage or amyloidosis. However, 
patients affected have an abnormally higher rate of 
monoclonal B cells in their bone marrow (MGUS, 
SMM) or elevated serum and urinary monoclonal 
protein that is a class of IgA or IgG (in MGUS), 
IgM (in IgM MGUS), or light chain (in light-chain 
MGUS). The asymptomatic MGUS and SMM disor-
ders tend to develop into MM at different rates and 
speeds, depending on their genetic background. Inter-
estingly, the MGUS is known to be present in approx-
imately more than 3% in the population above the age 
of 50 [12]. MGUS progresses to multiple myeloma or 
related malignancies at a steady rate of 1% per year 
[13], meaning that MGUS diagnosis may precede 
the development of MM by more than 10 years [14]. 
SMM is considered a more advanced stage of the 
developing malignancy, and it tends to develop into 
symptomatic MM at a rate ten times higher than seen 
in MGUS, especially in the first 2 to 5 years after its 
diagnosis. SMM may also have early active forms 
depending on genetic changes and require closer fol-
low-up [15].

Multiple myeloma was initially termed “multiple” 
to distinguish it from plasmacytoma, a solitary tumor 
of a bone or an organ/tissue. Solitary plasmacytoma 
(SP) may develop further into a solitary plasmacy-
toma with minimal marrow involvement (SPMMI). 
Both SP and SPMMI are characterized by monoclonal 
plasma cell contribution confirmed by biopsy evidence 
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[16]. By contrast, MM typically has multiple foci of 
the clonal proliferation of malignant plasma cells in 
the bone marrow, and these form multiple osteolytic 
lesions in the involved bones, most commonly in the 
vertebrae, skull, ribs, pelvis, and the proximal long 
bones [10]. SP has a much better prognosis than MM. 
However, symptomatic MM is developing in almost 
50% of patients with SP of bone. This unfavorable pro-
gression may take as long as 15 years [17].

MM in companion animals

Veterinary medicine offers a unique insight into the 
biology of age-associated diseases, including malig-
nancies. In the field of geroscience, dogs are consid-
ered highly interesting models to understand biological 
and environmental factors that influence aging, age-
related pathologies, and longevity. Unlike laboratory 
rodents, companion dogs and humans are exposed to 
similar environmental conditions. There is strong evi-
dence that many chronic conditions that are manifested 
in older humans (e.g., obesity, chronic inflammatory 
diseases, diabetes mellitus), and which are associated 
with comorbidities, are also present in companion dogs 
and are associated with similarly high levels of comor-
bidities [18, 19]. In both dogs and humans, malignan-
cies are leading causes of death, and age trajectories 
of deaths from malignant diseases are almost identi-
cal between the two species [18]. Multiple myeloma 
also develops in older dogs, and it represents approxi-
mately 1% of all canine tumors [20–29]. An analysis 
of myeloma in 156 cases in companion dogs reported 
diagnosis at the median age of 10.7 years [20] (37% of 
maximum lifespan potential in Canis familiaris [30] 
and dogs are generally considered old after 10 years of 
age). Thus, multiple myeloma is an age-related malig-
nancy in dogs, similarly to humans (the median age 
of humans with multiple myeloma at time of diagno-
sis is ~70 year, which is 57% of the maximum lifes-
pan potential of the species). Dogs are also considered 
powerful models of genetic determinants of success-
ful aging [31, 32], as the aging profiles of different 
dog breeds vary according to their adult size: smaller 
dogs often live for over 15–16 years, medium and large 
size dogs have a lifespan typically of 10 to 13 years, 
and some giant dog breeds such as mastiffs often live 
only for 7 to 8 years. It is interesting to consider that 
certain relatively shorter-lived dog breeds seem to be 
more susceptible to developing plasma cell tumors, 

including German shepherds (median lifespan: ~10.3 
years) [33].

Cats also develop myeloma at old ages [34–45]. 
A detailed analysis of myeloma cases in sixteen cats 
reported a median age of 14.0 years (47% of maxi-
mum lifespan potential in Felis catus domesticus [30] 
at time of diagnosis [46]. In contrast to other hemato-
logical malignancies (e.g., lymphoma) in cats, there 
is no evidence that would suggest that infection with 
oncogenic viruses (e.g., feline immunodeficiency 
virus, feline leukemia virus) is causally linked to the 
pathogenesis of feline cases of multiple myeloma 
[47]. The available evidence suggests that in contrast 
to the model of primary intramedullary neoplastic 
transformation explaining the pathogenesis of multi-
ple myeloma in humans, in felines primary extramed-
ullary neoplastic transformation (plasmacytoma) is 
more common [48].

Many characteristics of myeloma are similar in 
humans and companion animals. Multiple myeloma 
in companion animals appears to exhibit an immuno-
globulin isotype distribution that is similar to human 
cases: IgG and IgA gammopathies are the most com-
mon in both people and companion animals (dogs and 
cats). Both dogs and cats exhibit evidence of skeletal 
lesions, similarly to humans.

Taken together, veterinary medicine may offer 
valuable insight into the gero-oncological aspects of 
the pathogenesis of MM. Future studies are also war-
ranted to investigate the similarities of risk factors for 
myeloma in humans and companion animals, includ-
ing the role of obesity and exposure to environmental 
toxicants (e.g., the presence of benzene in food con-
sumed by companion animals; see below).

Potential roles of fundamental cellular 
and molecular mechanisms of aging 
in the pathogenesis of MM

Geroscience research in the past 2 decades has dem-
onstrated that the rate of organismal aging is con-
trolled by evolutionarily conserved genetic pathways 
and biochemical processes [49]. By definition, the 
pathogenesis of all age-related diseases, including 
that of MM, must involve these processes and path-
ways. In the following section, the potential roles of 
fundamental cellular and molecular mechanisms of 
aging in the pathogenesis of MM are discussed.
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Reactive oxygen species, DNA damage, and mutation 
accumulation

Aging is characterized by increased production of 
reactive oxygen species (ROS) and increased suscep-
tibility to ROS-mediated DNA damage. Importantly, 
DNA damage mediated by ROS (either produced by 
cellular sources or generated by exogenous factors, 
e.g., UV radiation, tobacco smoke constituents, and 
other environmental toxicants) plays a central role 
in the accumulation of different mutations in B cells, 
ranging from a single nucleotide divergence to the 
broken chromosomes and ploidy changes [50], pro-
moting the pathogenesis of MM.

There is strong evidence that in addition to 
increased production of ROS, aging impairs pathways 
underlying cellular resilience to oxidative stressors. 
In young cells, evolutionarily conserved antioxidative 
stress resilience pathways maintain cellular reduction-
oxidation homeostasis through transcriptional regula-
tion of key cytoprotective genes encoding antioxidant 
enzymes, pro-survival factors, anti-inflammatory, and 
macromolecular damage repair pathways. A critical 
mechanism by which aging may exacerbate the induc-
tion of DNA damage in plasma cells and thereby the 
pathogenesis of MM involves an age-related impair-
ment of oxidative stress resilience pathways [51–55] 
and, consequentially, increased propensity for ROS-
mediated alterations to the DNA.

One of the most abundant spontaneous hydrolytic 
reactions also points to the close interaction between 
mutations and epigenetic impairment (see below). 
Cytosine with an epigenetic mark, i.e., 5-methylcyto-
sine, tends to easily lose an amino group and therefore 
easily be converted to thymine. As this spontaneous 
mutation primarily occurs at methylated CpG islands 
[56], we can speculate that quiescent (e.g., memory 
B cells) or senescent cells are particularly vulnerable 
to mutations at the loci of cell cycle regulation and, 
therefore, can be the source of a malignant clone with 
time. Every tissue accumulates mutations at a roughly 
constant mutation rate throughout life; the estimated 
rate is 13–44 mutations per genome per year [57]. 
Therefore, with age, genetic mosaicism seems to be 
inevitable, and it is only a question of time when the 
fitness of a clone leads to clonal expansion to the det-
riment of others [57]. Stochastic processes may pro-
duce malignant, benign, or natural/functional clones 
or senescent cells.

Role of DNA damage induced by environmental 
toxicants in the pathogenesis of MM

Several toxic chemicals to which humans are exposed 
have been causally linked to the pathogenesis of MM 
through their ability to induce oxidative stress and/
or DNA damage. An important example is benzene 
which is a natural constituent of crude oil and is one 
of the most widely used chemicals in developed coun-
tries. Benzene is highly toxic and is used to manufac-
ture resins, adhesives, nylon fibers, plastics, rubbers, 
lubricants, dyes, detergents, drugs, explosives, and 
pesticides. There are many studies linking exposure 
to benzene to myeloma [58–63]. Benzene is pre-
sent in petrol, and inhalation of benzene with petrol 
fumes (e.g., taxicab drivers [64], workers in gaso-
line stations [65], and refineries) results in a signifi-
cantly increased risk for malignancies. Exposure to 
the herbicide glyphosate (Roundup®) has also been 
linked to the genesis of myeloma and other malignan-
cies [66, 67], and on the basis on findings of epide-
miological studies and preclinical investigations, the 
World Health Organization’s International Agency for 
Research on Cancer (IARC) classified it as “probably 
carcinogenic in humans” (category 2A). Although 
some controversies exist regarding the methodologies 
of epidemiological studies [68, 69], exposure of labo-
ratory rodents under controlled conditions results in 
induction of myeloma. Age-related decline in cellular 
stress resilience likely renders aged B cells more sus-
ceptible to environmental toxicants.

Possible mechanisms contributing to the increased 
susceptibility of B cells to DNA damage 
and malignant transformation

During normal B cell maturation and develop-
ment to plasma cells in germinal centers, the several 
developmental steps—reviewed in detail elsewhere 
[70]—make these cells a particularly good target for 
mutations, increasing the risk of potential malignant 
transformation. Firstly, genetically inherent steps of 
somatic hypermutations are needed for the most effec-
tive B cell receptor and antibody-producing clones. 
Somatic hypermutations involve a step when cytosine 
deamination occurs with enzymatic help (activation-
induced cytidine deaminase, AID) at genomic regions 
coding variable regions of immunoglobulins. This 
way, germinal centers are the places of “officially” 
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promoted mutations. Enormous cellular and intracel-
lular networks [70] are responsible for the mutations 
and the proper clone selection via epigenetic changes; 
the more steps needed, the more mistakes may occur. 
Secondly, multiple cell divisions are needed that lead 
to proliferation and survival vs. extinction of suitable 
vs. not suitable clones for effective humoral immune 
response vs. autoimmune responses. For clonal selec-
tion, clones are needed. The single-stranded DNA 
during replication is more vulnerable to mutations. 
Thirdly, to preserve a long-term humoral memory, 
quiescent B cells are preserved with an arrested cell 
cycle for a long time, necessarily with hypermethyl-
ated regions of their genome at cell cycle regulation. 
We speculate that, similarly to senescent cells, mem-
ory B cells, due to the vulnerability of the hypermeth-
ylated regions, may become malignant, depending 
on other mutations accumulated. Due to the afore-
mentioned factors, B cells are susceptible to DNA 
damage, which may lead to further structural and 
numerical chromosomal mutations. B cells divide in 
germinal centers, but healthy plasma cells do not. Due 
to cascading mutational events that start in B cells, 
a plasma cell clone may proliferate and gain further 
mutations. The monoclonal source of a dysfunctional 
antibody is detectable in gammopathies [5].

Cellular senescence

Cellular senescence, an evolutionarily conserved, 
DNA damage-associated cellular stress response, is 
a critical biological process underlying aging [71]. 
Several molecular stressors associated with aging, 
including oxidative and nitrative stress, mitochon-
drial dysfunction, inflammatory cytokines, and 
replicative exhaustion/telomere attrition, may trig-
ger cellular senescence [72–74]. Cellular senes-
cence results in stable growth arrest whereby cells 
stop proliferating in spite of the presence of growth 
signals. In order to escape apoptosis in replicative 
arrest, senescent cells inactivate p53 and other pro-
teins with apoptosis-induction roles in case of DNA 
damage [74]. This may act to facilitate malignant 
transformation in senescent and pre-senescent cells 
[75]. Other mechanisms by which senescent cells 
may indirectly promote the pathogenesis of MM 
involve changes in the cellular microenvironment. 
Senescent cells have intense metabolism and exhibit 
a pro-inflammatory senescence-associated secretory 

phenotype (SASP). Chemokines, pro-inflammatory 
cytokines, growth factors, and matrix proteases 
secreted by senescent cells likely contribute to the 
genesis of a wide range of age-related diseases 
and may play a critical role in the development of 
a growth promoting tumor microenvironment that 
influences the growth, invasion, and metastasis of 
transformed cells [71, 76]. Senescent cells survive 
for a prolonged time, occupying up to more than 10 
percent of aging tissues [77] that may become grad-
ually dysfunctional.

Epigenetic dysregulation: changes in DNA 
methylation

Epigenetic alterations are important hallmarks of aging 
[49] and play an important role in the pathogenesis of 
MM [78–99]. In the field of geroscience, there is an 
important distinction between biological age (deter-
mined based on alterations in the epigenome and con-
sequential phenotypic and functional changes) and 
chronological age [100–102]. Biological age accelera-
tion (which indicates unsuccessful/unhealthy aging due 
to lifestyle factors, among other) was shown to asso-
ciate with DNA methylation-based cancer risk factors 
[103–106]. Future studies should determine how age 
acceleration, via altering the epigenome, promotes the 
pathogenesis of MM.

As shown in the differentiation studies, DNA 
hypermethylation at CpG islands in a gene’s pro-
moter region can switch off its transcription, and 
hypomethylation of these areas switches them 
on, depending on the cell’s fate during develop-
ment. There is a global DNA hypomethylation in 
malignant cells, including MM cells [107]. Overall 
hypomethylation leads to genomic instability, e.g., 
release of the transposable elements, which lead 
to mutations and disease progression [107], [108]. 
Hypermethylation of distinct genes also occurs in 
malignant cells as well as aged cells. In myeloma 
cells, genes typically affected are tumor suppres-
sor genes [109], [110], leading to the loss of cell 
cycle control, and genes involved in stress resil-
ience, including DNA repair genes [92, 111]. Epi-
genetic aberrations have also been causally linked 
to chemoresistance in MM [112]. In senescent cells, 
global hypomethylation is accompanied by hyper-
methylation of the senescent-associated heterochro-
matin foci (SAHFs). The SAHFs are at the loci of 
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proliferative genes such as E2F target genes, respon-
sible for initiating the G1 phase of the cell cycle. 
This way, senescent cells may live with replicative 
arrest for a long time. Epigenetic changes that affect 
cell cycle regulation may lead directly (via silencing 
of tumor suppressor genes) or indirectly (via regu-
lation of cellular senescence) to malignancy. In this 
regard, see also possible prevention strategies later. 
Due to MM’s late-onset, we have no reason to doubt 
that myeloma development lacks the effect of senes-
cent cells or that the origin of the malignant clone is 
not a long-lived memory B cell with senescence-like 
properties.

Epigenetic dysregulation: histone modifications

In addition to DNA methylation, posttranslational 
histone modifications also have an important role 
in regulation of chromatin structure and thereby 
in the transcriptional regulation of pathways that 
modulate aging [113–115]. Histone proteins form 
a complex with DNA to compile the nucleosomes 
consisting of 2 subunits of each core histone 
(H2A, H2B, H3, and H4). Changes in the abun-
dance of core histones and the ratio of different 
histone variants may also affect genomic stability 
both in aging cells and malignant clones in MM. 
Reduced histone protein synthesis with aging 
results in a loss of histones and changed nucleo-
some positioning on particular DNA sequences. 
This age-related decrease in nucleosome abun-
dance may contribute to dysregulation of gene 
expression and increased genomic instability, 
including increased DNA breaks, translocations, 
and increases in retrotransposons and the inser-
tion of mitochondrial DNA into nuclear DNA 
[116], all of which may promote the pathogenesis 
of MM. During aging in mammals, the abundance 
of non-canonical histone protein variants increases 
[117], which may also affect the histone methyla-
tion patterns. Histone variants may be replaced at 
any stage of the cell cycle [118]; thus, dynamic 
epigenetic changes may occur even in non-divid-
ing cells, potentially contributing to cancer forma-
tion. It can be hypothesized that similar processes 
may occur during aging of memory B cells with 
an arrested cell cycle, which may lead to multiple 
cytogenetic changes. Previous studies identified 

genes encoding histones and diverse histone modi-
fiers as targets of somatic mutation in MM [119]. 
Pawlyn et  al. found mutations of the HIST1H1B-
E gene family encoding H1 histone in 6% of 463 
MM patients and, with lower frequency, mutations 
in genes encoding core histone proteins [120].

The N-terminal domains of the core histone pro-
teins (histone tails) are the sites of posttranslational 
modifications, including methylation, acetylation, 
phosphorylation, ubiquitination, and sumoylation. 
These histone marks present an additional layer 
of epigenetic information that affects the chroma-
tin structure and, consequently, gene transcription, 
DNA replication, and repair [121]. There are distinct 
changes in histone marks in aging cells. A global 
increase in active histone marks such as H3K4me3 
and H4K16ac and a decrease in repressive marks 
such as H3K9me3 and H3K27me3 associate with 
aging. These changes further increase the instability 
and vulnerability of the genome. Not surprisingly, 
aberrant histone posttranslational modification pro-
files are also linked to tumorigenesis [122]. The case 
with histone code is complex with many site-, cell-, 
and tumor-type-specific changes in aging and MM 
[79, 119]. Dysregulation of histone modifiers (e.g., 
histone methyltransferases, acetyltransferases, dem-
ethylases, deacetylases) and their associated histone 
mark profiles in MM pathogenesis were recently 
reviewed [107].

The interaction between epigenetic alterations 
associated with aging and the pathogenesis of cancer 
is subject to intensive research. Sirtuins (Sirt 1-7) are 
evolutionarily conserved histone modifiers, which 
function as NAD+-dependent histone deacetylases. 
Sirt proteins regulate essential metabolic pathways 
and are involved in cell survival, senescence, pro-
liferation, apoptosis, DNA repair, cell metabolism, 
and caloric restriction[123–138]. In particular, Sirt 
6 seems to play a role in MM as its high expression 
is related to poor prognosis [139]. In contrast, SIRT2 
and SIRT3 expression is reduced in MM patients 
as compared to healthy controls [140]. Sirtuins are 
considered potential targets for treating neurodegen-
erative diseases, cardiovascular diseases, cancer, and 
aging [133–138, 141]. The role of SIRT1 activators 
and that of other histone modifiers in the pathogene-
sis and treatment of MM is a focus of intensive inves-
tigations [120, 142–144].
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Post‑transcriptional regulation of gene expression

Post-transcriptional regulation of gene expression 
represents an additional layer of epigenetic regula-
tion. Long non-coding RNAs (lncRNAs) are RNA 
transcripts more than 200 nucleotides long that are 
not translated into protein, which are involved in 
both in transcriptional regulation and post-transcrip-
tional regulation of gene expression. There is grow-
ing evidence that lncRNA-mediated regulation of 
gene expression plays a role in modulation of cellu-
lar aging processes [145–149]. Importantly, lncRNAs 
are useful biomarkers for the diagnosis and prognosis 
of MM [150]. lncRNAs have been causally linked to 
dysregulation of cell proliferation, tumor growth, and 
drug resistance in MM [151–160].

MicroRNAs (miRNAs) are small single-stranded 
non-coding RNAs (containing about 22 nucleo-
tides), whose functions include RNA silencing and 
post-transcriptional regulation of gene expression 
[161–164]. Dysregulation of miRNA expression was 
shown to contribute to the genesis of aging pheno-
types in various organs [165–173] including cells 
of the immune system [174, 175]. miRNAs play 
important roles in the generation and differentiation 
of B cells [176–178]. Importantly, dysregulation of 
miRNA expression has been demonstrated in MM, 
which likely plays a multifaceted role in the patho-
genesis of the disease [179–186].

Dysregulation of proteostasis

Normal proteostasis, the homeostatic regulation of 
the functional proteome, is essential for the main-
tenance of youthful organ function. Age-related 
changes of the proteostasis network underlie the 
altered biogenesis, folding, trafficking, and degrada-
tion of proteins in aging cells and tissues and contrib-
ute to the pathogenesis of a wide array of age-related 
diseases [187–198].

Survival and proliferation of myeloma cells, which 
unusually produce large amounts of abnormal immu-
noglobulins, critically depend on a normal proteosta-
sis. Factors that overwhelm the proteasome (e.g., pro-
teasome inhibitors, such as bortezomib or heat shock 
[199] result in increased cellular stress and promote 
apoptosis in myeloma cells.

Nutrient sensing pathways

Nutrient-sensing pathways, including GH/IGF-1 
pathway, mammalian target of rapamycin (mTOR), 
sirtuins, and AMP-activated protein kinase (AMPK) 
signaling, regulate organismal and cellular metabo-
lism and modulate cellular processes of aging [49, 
200, 201]. These pathways also play critical roles in 
the regulation of metabolism and survival of malig-
nant cells, including MM cells. IGF-1 signaling 
promotes myeloma cell survival and progression 
[202–207], whereas inhibition of IGF-1 signaling 
promotes the pro-apoptotic effects of chemothera-
peutic drugs in MM. mTOR regulates cellular protein 
synthesis, autophagy, cell growth, and proliferation 
as well as cell survival and thereby modulates aging 
processes and lifespan regulation. In myeloma cells, 
mTOR signaling plays an important pro-survival role, 
and pharmacological inhibition of its activity was 
shown to exert significant, therapeutically relevant 
cytotoxic effects [208–214]. AMPK plays a central 
role in regulation of cellular energy homeostasis, by 
activating glucose and fatty acid uptake and metabo-
lism. Activation of AMPK was shown to delay aging 
and extend lifespan in models of aging. Metformin 
is a pharmacological activator of AMPK, which was 
shown to extend lifespan in rodent models, and its 
anti-aging activity is to be tested in clinical studies as 
well [215–217]. Importantly, metformin was shown 
to exert significant anti-myeloma effects in preclini-
cal studies and is also being considered for myeloma 
treatment in human patients [218–224].

Age‑related sterile inflammation and 
immunosenescence

Aging per se results in chronic low-grade sterile inflam-
mation (termed “inflammaging”) in multiple tissues 
due to age-related phenotypic changes in a number of 
cell types, including cells of the cardiovascular system, 
adipocytes, fibroblasts, and immune cells [225]. The 
highly proinflammatory SASP of senescent cells is an 
important contributing factor [226–229]. Inflammaging 
results in increased levels of pro-inflammatory media-
tors in the circulation and tissues and is a strong risk 
factor for multiple age-associated diseases. Various 
lifestyle factors, including obesity associated with con-
sumption of an unhealthy diet, exacerbate age-related 
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inflammation. Obesity in older adults is associated with 
a heightened state of inflammation in the white adipose 
tissue and with a consequential increase in circulat-
ing levels of pro-inflammatory cytokines [230–232]. 
Increased systemic inflammation in obese older sub-
jects is known to promote the pathogenesis of MM 
[233–235]. Other obesity-associated cancers may also 
be present in obese older MM patients.

Advanced aging associates with immunosenes-
cence, which is characterized by immune dysfunc-
tion increasing susceptibility to infectious pathogens, 
compromising vaccine responses and promoting the 
development of autoimmune diseases and malignant 
tumors in older adults. Immunosenescence mainly 
affects the adaptive immune responses by decreas-
ing lymphopoiesis, while myelopoiesis is maintained. 
Immunosenescence has also been causally linked to 
the pathogenesis of frailty and age-related cardiovas-
cular diseases and degenerative diseases [236]. The 
heightened state of inflammation in older adults com-
bined with an age-related decline in tumor immune 
surveillance favors the genesis of MM[236].

Clonal hematopoiesis

Clonal hematopoiesis of indeterminate potential 
(CHIP) is a newly recognized phenomenon in older 
adults. There is growing evidence that somatic 
mutations are manifested in blood cells and/or cells 
of the bone marrow in 10% of adults aged 70 to 80 
[237–240]. In CHIP, hematopoietic stem cells with 
somatic mutations modulate hematopoietic lineage 
potential by a mechanism of clonal expansion. CHIP 
is associated with an increased risk for hematologic 
malignancies and cardiovascular diseases [237–248]. 
It also associates with adverse outcomes in patients 
with other advanced malignancies [249]. In MM the 
presence of CHIP in bone marrow is also associ-
ated with poor prognosis and development of second 
hematopoietic malignancies [250].

Importance of cytogenetic heterogeneity 
for the progression of MM

There are no two MM patients alike. The genetic back-
ground of the same disease phenotype in MM varies 
greatly, which also influences the progression of the 
disease. According to Rajkumar’s update [11], the 

clonal plasma cell population of MGUS or SMM cells 
are primarily gaining multiple odd-numbered chromo-
somes or immunoglobulin heavy chain translocations. 
Trisomies are present in the plasma cells obtained 
from the bone marrow in approx. 40% of the MM 
cases, termed trisomic (or hyperdiploid) MM. Almost 
all the rest of the myeloma patients have a transloca-
tion involving the immunoglobulin heavy chain (IgH) 
locus at chromosome 14q32; their condition is com-
monly termed as IgH-translocated MM. Both numeri-
cal and structural chromosomal changes, i.e., trisomies 
and IgH translocations, can be present in rare cases up 
to 15%. Further cytogenetic abnormalities may arise 
later in the progression of the MGUS/SMM condition 
or MM [11]. These typically include gains or losses 
of short or long arms of certain chromosomes e.g., 
gain(1q), del(1p), del(17p), del(13); RAS mutations, 
and secondary translocations [251].

IgH locus at 14q32 is transcriptionally active 
in B cells; therefore, patients with IgH transloca-
tion may have oncogenes translocated to the 14q32 
region, which may lead to their enhanced expression. 
There are several known reciprocal translocations of 
14q32 with other chromosomes, including t(4;14) and 
t(11;14) translocations (30% of patients with MM) and 
the less common t(14;16), t(6;14), t(8;14), and t(14;20) 
translocations. For example, the t(4;14) translocation 
can be associated with upregulation of the fibroblast 
growth factor receptor 3 (FGFR3) and the myeloma 
SET domain protein (MMSET). Affected patients 
show an overall poor prognosis and therapeutic resist-
ance. The reciprocal translocations of the IgH allele at 
14q32 with other oncogenes such as D types of cyclins, 
Maf family members, or c-MYC also affect the disease 
course [252]. In addition, patients with t(4;14) trans-
location, del(17p), and gain(1q) are at a higher risk of 
progression from MGUS or SMM to MM [253].

The effect of any cytogenetic abnormality varies 
depending on the stage of the disease. Complexity, 
variability, and randomness all suggest that there is 
essentially an aging process in B-cells resulting in a 
vulnerable epi/genomic state and, finally, the propa-
gation of a malignant clone at work in MM.

Treatment aspects of MM in older adults

Therapy of MM has been revolutionized in the last 
2 decades with the registration and availability of 

734



GeroScience (2023) 45:727–746

1 3
Vol.: (0123456789)

multiple highly effective novel agents, such as immu-
nomodulatory agents, proteasome inhibitors, mono-
clonal antibodies, and more recently, CAR-T cells and 
bispecific antibodies. Despite these advances, effec-
tive treatment of MM in unfit and frail older adults is 
still a challenge.

Frailty is a functional term representing the multi-
system decrease in physiological functions that leads 
to increased vulnerability, which, in return, results 
in increased morbidity and mortality during cancer 
therapy. Since MM is a disease that affects predomi-
nantly older adults, frailty may influence the therapy 
of up to two-thirds of MM patients. These patients are 
frequently designated as “not eligible for autologous 
stem cell transplantation,” which is a highly effec-
tive standard procedure for younger patients. Yet, this 
classification may be entirely misleading: multiple 
different cohorts of older MM patients exist. There-
fore, it is paramount to properly address frailty and 
adjust anti-myeloma therapy accordingly to obtain 
a maximal therapeutic benefit. As elderly and frail 
patients are less likely to participate in clinical trials, 
the evidence of their proper therapy is of lower grade, 
mainly based on results of fit elderly patients that 
did participate and on the expert opinions of recom-
mended dose adjustments.

In order to properly identify myeloma patients 
who are at increased risk of therapy-related toxicity, 

clinical frailty scores were established. These scores 
aim to help predict survival, likely adverse event 
rate, and treatment tolerability. In the field of mye-
loma, the most accepted frailty scoring system is 
the International Myeloma Working Group (IMWG) 
frailty score [254]. It uses age, the Katz Activity 
of Daily Living (ADL), the Lawton Instrumental 
Activity of Daily Living (IADL), and the Charlson 
Comorbidity Index (CCI), as shown in Table 1 (and 
a convenient web-based tool is available at http://​
www.​myelo​mafra​iltys​corec​alcul​ator.​net/​Geria​tric.​
aspx). Score systems such as this and others used 
clinically as complex geriatric assessments are 
time-consuming and not readily available, though 
may be more reliable in the long run [255]. It has 
been shown multiple times that during therapy of 
elderly myeloma patients, proper determination of 
frailty is as important for progression-free and over-
all survival as molecular and genetic markers of the 
underlining disease [256]. Notably, all risk scoring 
systems have determined age as one of the most rel-
evant risk factors for therapy failure, though it is a 
matter of debate what age may exactly be the best 
for cutoff (70, 75, or 80 years of age). An additional 
aspect with definite future potential is the inclusion 
of easily measurable predictive biomarkers in the 
frailty scoring system. A pioneer of this approach 
has been the Mayo Clinic. Their score includes the 

Table 1   The IMWG frailty 
determination system

The table was constructed based on the article by Palumbo et al. [254]

A
Variable Hazard ratio (CI 95%) p Score
Age Age < 75 years 1 - 0

Age 75–80 years 1.37 (0.93–2.03) 0.114 1
Age > 80 years 2.75 (1.81–4.18)  < 0.001 2

Charlson Index Charlson ≤ 1 1 - 0
Charlson ≥ 2 1.6 (1.07–2.39) 0.021 1

ADL score ADL > 4 1 - 0
ADL ≤ 4 1.76 (1.14–2.71) 0.01 1

IADL score IADL > 5 1 - 0
IADL ≤ 5 1.53 (1.03–2.27) 0.036 1

B
Additive total score Patient status
0 Fit
1 Unfit
 ≥  Frail
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Performance Score (WHO PS), the age, and the 
NT-proBNP value (Table  2) [257]. Four  clearly 
separable subgroups could be identified with widely 
disparate OS differences (18 to 54 months from 
diagnosis).

The most important value of frailty measurement 
for everyday clinical practice is in the available recom-
mendations for relevant drug dosing in the treatment of 
MM in older adults. Accordingly, in multiple clinical 
trials, evidence has been presented that elderly patients 
abandon therapy early and do not get its total possi-
ble value unless the anticancer drug dosing intensity 

has been adapted to their fitness level. Consequently, 
a well-designed, personalized therapy may achieve its 
full benefit for the patient (Table 3) [255, 258].

An additional essential aspect of clinical care of 
elderly myeloma patients is vaccination. As infections 
are the leading cause of death in myeloma and the 
“alertness” of the aged immune system is impaired, 
prophylaxis of infections may be lifesaving. Regular 
seasonal Influenza vaccinations, Pneumococcus vac-
cination, and SARS-CoV vaccination should be done 
as the standard of care. Acyclovir prophylaxis is inex-
pensive and effective for herpes simplex and zoster 
and should be pursued for most patients who receive 
anticancer therapy.

Antibacterial prophylaxis is controversial, though 
the evidence is reasonably strong for initial therapy 
in frail patients (levofloxacin or sulfamethoxazole/
trimethoprim could be used). The latter is also appro-
priate as Pneumocystis prophylaxis, especially in late-
line heavily pretreated patients.

Conclusion

MM is different from many other hematopoietic 
malignancies with respect to the origin of cells. It 
develops from terminally differentiated B cells over 
very long periods, possibly decades. The gradually 
increasing and interconnected instability of the epige-
nome and genome and the accumulation of mutations 
have common roots and are similar in many aspects 
during the development of aging and MM. It is easy 
to hypothesize that the development of MM as can-
cer is unusually long because it is aging associated 

Table 2   The Mayo myeloma frailty evaluation system and its 
influence on overall survival

Each variable may score a point, creating a staging from 0 to 
three. This frailty score was determined to be independent of 
cytogenetics and the revised ISS stage of the disease. Based on 
Milani et al. [257]

A
Variable Value Score
ECOG-PS  ≥ 2 1

 < 2 0
Age  ≥ 70 years 1

 < 70 years 0
NT-proBNP  ≥ 300 ng/l 1

 < 300 ng/l 0
B
Score Overall survival
0 NR
1 58 months
2 28 months
3 18 months

Table 3   Myeloma treatment dosing recommendations based on the patient frailty assessment, modified from Möller et  al. [255], 
[258]

Treatment Fit (“go-go”) Unfit (“intermediate-go”) Frail (“slow-go”)

Overall dosing Standard level Level-1 Level-2
Dexamethasone 40 mg a day, weekly 20 mg a day, weekly 8–10 mg a day, weekly
Melphalan 0.25 mg/kg, days 1–4, 4–6-week 

cycle
0.18 mg/kg, days 1–4, 4–6-week 

cycle
0.13 mg/kg, days 1–4, 4–6-week 

cycle
Bortezomib 1.3 mg/m2 twice weekly 1.3 mg/m2 weekly 1.0 mg/m2 weekly
Thalidomide 100–200 mg/day 50–100 mg/day 50 mg every other day
Lenalidomide 25 mg days 1–21 of a 28-day cycle 15 mg days 1–21 of a 28-day cycle 10 mg days 1–21 of a 28-day cycle
Ixazomib 4 mg weekly 3 mg weekly 2.3 mg weekly
Daratumumab 16 mg/kg biweekly iv or 1800 mg sc 

in cycles 1 + 2, in combo
16 mg/kg biweekly iv or 1800 mg sc 

in cycles 1 + 2
8 mg/kg initial dose, increase to 

16 mg/kg or weekly 1800 mg Sc
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with stochastic clone development and selection that 
causes it.

The memory B cells in germinal centers may at least 
potentially give rise to many plasma cells, making the 
cell source similar when the aged bone marrow HSCs 
population is already depleted, and hematopoiesis 
relies increasingly on progenitors. After multiple divi-
sions, with more cellular memories of differentiation 
and environmental effects, a somatic cell carries much 
more epigenetic and genetic divergencies than a stem 
cell [259], [260], [261]. Aging is also characterized by 
mutations that lead to mosaicism, forming divergent 
clonal cell lines in tissues [262]. The older  the body is, 
the fewer cells carry the original genomic blueprint of 
the zygote and preserve multipotency. Above a cer-
tain age, it is a matter of luck when and which clone 
becomes dysfunctional or malignant. In Fig.  1, we 
summarized aging processes and B cell maturation that 

act in concert in the development of MM. Aging alone 
is a malignancy risk, but memory B cells are especially 
endangered by this transformation.

Additionally, B cell development involves steps 
(like SHM and clonal selection) that make its genome 
particularly vulnerable, potentially causing an accel-
erated aging process in this cell type compared with 
others. It is stochastic which clone, a possibly trans-
formed B cell, is activated and whether this leads 
to the proliferation of a truly malignant plasma cell 
clone. Chronic inflammation in the aging body and 
the general aging of the immune system as well as 
clonal hematopoiesis favor the development of MM 
by providing a nurturing environment.

In summary, the claim that aging is the most sig-
nificant risk factor for cancer development is particu-
larly striking in the case of MM. If we consider aging 
a multifaceted disease process, then gammopathy 

Fig. 1   Schematic illustration of the role of fundamental cel-
lular and molecular mechanisms of aging in the pathogenesis 
of multiple myeloma. The scheme highlights stages of B cell 
differentiation and myelomagenesis, showing how myeloma 
progresses from a normal plasma cell to monoclonal gam-
mopathy of undetermined significance (MGUS) and smolder-
ing multiple myeloma (SMM) to full blown multiple myeloma. 
Aging promotes the genesis of DNA damage and mutations, 
facilitates the selection of premalignant and malignant clones, 

impairs the mechanisms involved immunosurveillance and 
elimination of malignantly transformed cells, and exacerbates 
cellular and molecular mechanisms contributing to tumor cell 
survival, proliferation, extramedullary tumor formation, and 
tumor angiogenesis. Abbreviations used: SASP, senescence-
associated secretory phenotype; MGUS, monoclonal gam-
mopathies of undetermined significance; SMM, smoldering 
multiple myeloma
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is one of the possible faces, and MM is the final 
outcome.

Treatment of the aged and polymorbid myeloma 
patients is incredibly challenging and puts a strain 
on the patient, the caregiver, and the healthcare sys-
tem. When tailoring the therapy, we must consider 
that all organs of these elderly patients are aged and 
have a lower tolerance. On the other hand, myeloma 
in elderly patients is generally not more resistant to 
anticancer therapy, just one needs to apply the most 
adequate drug dosing and therapy intensity.
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