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Abstract: This study investigates strongly nonlinear gravity waves in the compressible atmosphere from the
Earth’s surface to the deep atmosphere. Thesewaves are effectively described byGrimshaw’s dissipativemod-
ulation equations which provide the basis for finding stationary solutions such as mountain lee waves and
testing their stability in an analytic fashion. Assuming energetically consistent boundary and far-field con-
ditions, that is no energy flux through the surface, free-slip boundary, and finite total energy, general wave
solutions are derived and illustrated in terms of realistic background fields. These assumptions also imply
that the wave-Reynolds number must become less than unity above a certain height. The modulational sta-
bility of admissible, both non-hydrostatic and hydrostatic, waves is examined. It turns out that, when ac-
counting for the self-induced mean flow, the wave-Froude number has a resonance condition. If it becomes
1/

√
2, then the wave destabilizes due to perturbations from the essential spectrum of the linearized modula-

tion equations. However, if the horizontal wavelength is large enough, waves overturn before they can reach
the modulational stability condition.

1 Introduction
Gravity waves are an omnipresent oscillation mode in the atmosphere. They redistribute energy vertically
but also laterally and thereby affect the dynamics relevant for weather and climate prediction [1, 2]. Usually
excited in the troposphere, gravity waves may persist deep into the upper layers of the atmosphere [3, 4, 5]
where they interact with the mean flow. They exert drag onto the horizontal mean-flowmomentum, produce
heat when dissipating [6], and cause increased mixing of tracer constituents such as green-house gases [7].

Atmospheric gravity waves can be excited by various processes such as convection due to latent heat re-
lease in clouds or spontaneous emission from jets and fronts [8]. The dominant excitationmechanism is back-
ground flow over mountain ranges resulting in mountain lee waves that can be considered quasi-stationary
as their horizontal phase speed is essentially opposite to the mean-flow horizontal wind. In the troposphere
wave amplitudes are often small such that linear wave theory is applicable [9, 10]. Whenmountain lee waves
extend into the higher layers they get anelastically amplified due to the decreasing background densitywhich
is an effect of the compressibility of the atmosphere. Amplitudes get indeed so large that linear theory be-
comes invalid.

The natural extension to linear wave theory is to incorporate weakly nonlinear effects which remains
asymptotically valid as long as the amplitudes are relatively small. This approach works exceedingly well for
the description of oceanic internal waves. We will argue, however, that weakly nonlinear theory is in certain
cases not sufficient for atmospheric gravity waves. These cases comprise situations when the amplitudes
come close to the regime where the horizontal wind perturbation due to the waves is of the same order of
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magnitude as the mean-flow horizontal wind. This situation is, in fact, rather common in the stratosphere
and higher [11].

Weakly nonlinear theory for gravity waves was studied in [12, 13, 14, 15, 16]. Here, nonlinear effects such
as Doppler shift of the frequency and interaction with the mean flow appear as higher-order corrections to
the linear model. In the asymptotic limit the model therefore approaches linear theory. An important effect
of the weak nonlinearity is the occurrence of modulational instabilities: plane non-hydrostatic Boussinesq
waves become modulationally unstable if the second derivative of the dispersion relation with respect to the
vertical wavenumber becomes negative. It was shown in [17] that this holds true even for strongly nonlinear
waves of the same kind. In the strongly nonlinear theory, Doppler shift and wave-mean-flow interaction ap-
pear to leading order such that the perturbation fields are of the same order of magnitude as the background.
However, Boussinesq theory does not account for the anelastic amplification. Furthermore, the plane waves
extend to the infinities experiencing no lower boundary conditions and no dissipative effects. In [18], a partic-
ular flow regime, where anelastic amplification and dissipative forces are exactly balanced, was investigated
with respect to modulational stability.

This study aims to generalize the modulation theory incorporating strong nonlinearity, anelastic ampli-
fication according to pseudo-incompressible theory, dissipative damping and lower boundary conditions in
a comprehensive fashion. Pioneering work on themodulation theory of strongly nonlinear gravity waves was
accomplished by [19, 20].

In section 2 of this paper we will introduce Grimshaw’s dissipative modulation equations as our govern-
ing equations and link them to asymptotic solutions of the compressible Navier-Stokes equations. Boundary
conditions and limit behavior in the far field as derived from physical arguments will be shown in section 3.
After the introduction of the antitriptic flow assumption in section 4, which amounts to a leading-order bal-
ance of mean-flow pressure gradient and frictional forces, stationary solutions will be found and illustrated
in terms of observational data in section 5. In section 6, the modulational stability of the stationary solution
will be investigated followed by some concluding remarks in section 7.

2 Model equations
The governing equations for our investigation are Grimshaw’s dissipative modulation equations [20]. Solv-
ing them generates an asymptotic solution to the Navier-Stokes equations (NSE). Before stating Grimshaw’s
equations let us briefly elaborate on their derivation bymeans of nonlinearWentzel-Kramers-Brillouin (WKB)
theory. A systematic derivation of the inviscid modulation equations consistent with the Euler equations can
be found in [21, 22]. For a review on how viscosity and heat conduction are added to the picture we refer to
[18].

The starting point for the derivation are the dimensionless NSE scaled by an appropriate reference length
Lr (a typical wavelength) and time tr (a typical oscillation period) favorable for gravity waves. So, the dimen-
sionless coordinates are written as

(x, z, t) = (x*/Lr , z*/Lr , t*/tr). (1)

Throughout this work, dimensional variables are labeled by an asterisk. The appropriate scaling of the NSE
is specified in terms of a scale separation parameter ε = Lr/Hθ ≪ 1 where Hθ denotes the reference scale
height of potential temperature, a measure for the reference stratification. The idea is to map ε to the Mach,
Froude, Reynolds and Prandtl number, individually, which generates a distinguished limit typical for gravity
waves. For the sake of brevity, we do not reproduce the full set of the scaled NSE here. The interested reader
finds them in [18, Eq. 7].

Next, compressed coordinates are introduced,

(X, Z, T) = (εαx, εz, εα t) where α =
{︃
1, (nh),
2, (h),

(2)
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The two different versions of compressed coordinates correspond to the hydrostatic (h) and non-hydrostatic
(nh) wave regime, respectively. Assuming that the background changes only slowly in comparison with the
rapidly oscillating wave (the “WKB assumption”), the thermodynamic background state can be entirely de-
termined by the background temperature profile T(Z). The background density ρ and the Brunt-Väisälä fre-
quency N are calculated with regard to a hydrostatic atmosphere being considered an ideal gas,

N2(Z) = 1
T

(︂
dT
dZ + 1

)︂
, (3a)

ρ(Z) = exp

⎛⎝ Z∫︁
0

η(Z′) dZ′
⎞⎠ with η(Z) = −1

T

(︂
dT
dZ + 1

κ

)︂
(3b)

where κ = (𝛾 − 1)/𝛾 and 𝛾 the heat capacity ratio for ideal gases.
With this preparation, the NSE are ready for the asymptotic ansatz, i.e. the nonlinear WKB expansion.

The idea is to expand the state vector of theNSEUUU = (vvv, β, φ)T in a Fourier-like fashionwhere amplitudes and
phase are functions only of the compressed coordinates. Here, vvv, Nβ = b and φ denote the two-dimensional
velocity vector, buoyancy force and kinematic pressure, respectively. The latter is defined by the product of
background potential temperature and Exner pressure of the perturbation. The WKB ansatz reads

UUU(x, z, t; ε) = UUU0,0(X, Z, T) +
(︁
UUU0,1(X, Z, T)eiΦ(X,Z,T)/ε + c.c.

)︁
+ h.h. + O(ε) (4)

where c.c. stands for the complex conjugate and h.h. for higher harmonics. This ansatz is substituted into the
NSE and terms are ordered in powers of ε and harmonics, i.e. integer multiples of the phase Φ. The leading-
order solution of the NSE as ε → 0 is given in terms of Grimshaw’s dissipative modulation equations [20, Eq.
4.1–4.6]

∂kkk
∂T +∇X(ω̂ + kxu) = 0 (5a)

ρ ∂a∂T +∇X ·
[︂(︂

∂ω̂
∂kkk + ueeex

)︂
ρa
]︂
= −Λ|kkk|2ρa (5b)

ρ ∂u∂T +∇X ·
(︂
∂ω̂
∂kkk kxρa

)︂
= − ∂p∂X (5c)

∂u
∂X = 0. (5d)

This set of coupled nonlinear partial differential equations governs the evolution of the modulation fields,
wavenumber vector kkk = (kx , kz)T, wave action density ρa, and mean-flow horizontal momentum ρu. ∇X =
(∂/∂X, ∂/∂Z)T denotes the nabla operator and eeex is the unit vector pointing into the horizontal direction.
Intrinsic frequency ω̂ is a function of kkk. It is determined by the dispersion relation for either hydrostatic (h)
or non-hydrostatic (nh) gravity waves

ω̂(kz) =
{︃
Nkx/|kkk|, (nh),
Nkx/|kz|, (h),

(6)

with |kkk|2 = k2x + k2z .
The height profile of the kinematic viscosity Λ is determined by the sum of turbulent andmolecular viscosity.
Λ is negligible at the surface and in the lower atmosphere. At a certain height, however, amplitudes of gravity
waves become typically so large due to the anelastic amplification that turbulence is produced by small-scale
instabilities and this increases Λ. Even higher in the atmosphere, about 100 km, molecular viscosity starts to
dominate becoming orders of magnitude larger than the turbulent viscosity. Eventually in the highest layer,
the thermosphere, molecular dissipation damps effectively every wave motion.
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The modulation fields generate the leading-order variables from the WKB ansatz and hence the asymp-
totic solution to the NSE via

∇XΦ = kkk, (7a)

−∂Φ∂T = ω̂ + kxu, (7b)

UUU0,0 = (u, 0, 0, p)T, (7c)
UUU0,1 = BUUU† (7d)

where

UUU† =
(︂
−i kzkx

ω̂
N , i ω̂N , 1, −i kz

k2x
ω̂2

N

)︂T
(8)

represents the polarization vector andB =
√︀
ω̂a/2 the amplitude.

In Whitham’s modulation theory [12], equation (5a) represents conservation of waves. The second equa-
tion (5b) gives conservation of wave action plus a sink due to dissipation. Finally, (5c) describes the accel-
eration of mean-flow horizontal momentum due to horizontal pseudo-momentum flux convergence and the
horizontal gradient of mean-flow kinematic pressure p. The latter is unspecified at the moment and needs
further assumptions to close the system. A thorough discussion of the horizontal gradient of mean-flow kine-
matic pressure p is also found in [20, p 142].

Moreover, the modulation equations exhibit a total energy density being the sum of mean-flow kinetic
energy density and wave energy density,

ρe = 1
2ρu

2 + ρaω̂. (9)

It evolves in time as governed by

ρ ∂e∂T +∇X ·
[︂
pueeex +

(︂
∂ω̂
∂kkk + ueeex

)︂
ρa(ω̂ + kxu)

]︂
= −ω̂Λ|kkk|2ρa. (10)

In conclusion, (9) is a locally conserved quantity in the inviscid limit, i.e. Λ → 0.
In [22], exact horizontally confined traveling wave packet solutions for the inviscid version of (5) were

derived. Note that the class of traveling waves also includes stationary waves (with zero propagation speed).
Grimshaw considered two classes of solutions in [20] for the dissipative case: (Z, T)-dependent modulations,
supported and not supported by the horizontal gradient of mean-flow kinematic pressure. In the following
analysis, we will also assume modulation only in the vertical direction and we will argue that this implies a
non-vanishing horizontal gradient of mean-flow kinematic pressure for stationary waves like mountain lee
waves.

If kkk, a and u depend only on T and Z, (5a) implies that kx = const. And, without loss of generality, we
restrict the subsequent considerationswith kx > 0. Furthermore, (5d) is automatically fulfilled. The remaining
equations simplify to

∂kz
∂T + ∂

∂Z (ω̂ + kxu) = 0 (11a)

ρ ∂a∂T + ∂
∂Z (ω̂

′ ρa) = −Λ|kkk|2ρa (11b)

ρ ∂u∂T + ∂
∂Z (ω̂

′ kxρa) = − ∂p∂X . (11c)

where primes denote derivatives with respect to the vertical wavenumber kz. The domain is Z ∈ [0,∞), from
the Earth’s surface to the deep atmosphere.

3 Surface boundary and far-field conditions
The leading-order asymptotic solution to the NSE as defined by (4) governed by the modulation equations
already determines the shape of the anticipated wave solution. However, it has some degrees of freedom to
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specify physically motivated surface boundary conditions and the far-field limit behavior. Given amean-flow
horizontal wind, three additional conditions are needed to set the horizontal and vertical wavenumber as
well as the specific wave action density at Z = 0. We will assume that close to the surface the viscosity is
negligible. Thus, a free-slip boundary is justified. Let us carve a mountain to the shape of the lowest stream
line. Then, this particular, prototypical mountain will define two of the surface boundary conditions. For the
third, we will assume that there shall be no energy flux through the boundary and therefore the extrinsic
frequency will be zero at the mountain.

3.1 No-energy-flux boundary condition

According to (10), if no vertical energy flux through the boundary but finite wave action and wavenumber at
the boundary are presumed, then

ω̂ + kxu = 0 at Z = 0 (12)

must hold which coincides with the absence of wavenumber flux (cf. (11a)). Let us remark that therefore u < 0
as kx > 0 and ω̂ > 0 at Z = 0.

3.2 Free-slip boundary condition: carving a mountain to the wave

To leading order the solution as given by (4) is solenoidal and therefore entirely determined by a stream func-
tion. From the polarization vector (8), the stream function can be written in terms of the fast, uncompressed
coordinates as

Ψ(x, z) = uz − 2B ω̂
Nkx

cos(kxx + kzz) + O(ε). (13)

Stream functions of solenoidal flows are constant on stream lines
(︀
x, h(x)

)︀
which can be formulated

mathematically by

Ψ(x, h(x)) = const. (14)

Considering the stream line in an O(ε)-neighborhood of the boundary Z = 0, (14) defines a parametrization
of h implicitly via

h(x) = 2B
u

ω̂
Nkx

cos(kxx + kzh(x)) + O(ε). (15)

Here, we have essentially presented the boundary condition of [23, Eq. 7], who define the condition in terms
of the vertical displacement of an air parcel δ = −Ψ/u, but in the framework of Grimshaw’s dissipative mod-
ulation equations.

Note that in the asymptotic limit ε → 0, (15) is of the form

y = f (y) (16)

with y(ξ ) = kzh, ξ = kxx and f = q cos(ξ + y) where

q = 2B
u

ω̂kz
Nkx

. (17)

Thus, the stream line can be interpreted as a fixed point of f . For every fixed ξ the differentiable function f of
y has a Lipschitz constant

L =
⃒⃒⃒⃒
sup
y

f ′(y)
⃒⃒⃒⃒
= |q|. (18)
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Fig. 1: Stream lines as fixed points of f for different q. Sinusoidal stream line of the linear regime where q ≪ 1 (blue line, see
(17)).

Banach’s fixed point theorem states if L = |q| < 1, then f is a contraction and hence has a fixed point.
The results of a fixed-point iteration yn+1 = f (yn) with y0 = 0 are plotted in figure 1. It can be observed

how the stream lines steepen when q is increased whereas for small values the stream lines approximate the
sinusoidal (linear) profile. Exploiting the polarization (8), we can write

q = u′
|u| , u′ = 2|u0,1| = 2B ω̂|kz|

Nkx
(19)

which provides a measure for nonlinearity. If it is small one may assume linear wave excitation. The factor 2
appears simply because of the definition of amplitude due to (4).

Also, using polarization (8) and no-energy-flux (12) in combination with the convergence condition for
the fixed-point iteration, we obtain

N2 > |kz|b′, b′ = 2BN (20)

which confirms the classical condition for static stability, lines of constant potential temperature must not
overturn [24].

A boundary condition close to the surface but sufficiently far away to be considered free-slip assuming
Λ(0) = 0 can be determined by a periodic mountain ridge with period P and maximum mountain height
Hm which we consider to be given constants hereinafter. In terms of the nonlinearity parameter (17) and the
no-energy-flux condition (12), we obtain that kx = 2π/P and

Hm = 2B
N at Z = 0. (21)

The combined boundary condition from (21) and (12) may be written in vector form as

BBB(yyy) =
(︃

ω̂ + kxu
H2
mN2 − 2aω̂

)︃
= 0 at Z = 0. (22)

3.3 Far-field condition - limit behavior

Additionally to the lower boundary, the limit of the solution as Z → ∞must be specified in order to obtain a
physical wave solution. For this argument, we exploit the global energy as derived from (9) being

∞∫︁
0

ρe dZ =
∞∫︁
0

1
2ρu

2 dZ +
∞∫︁
0

ρaω̂ dZ. (23)
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A physical wave must be such that the global energy is finite.
In the thermosphere, temperature approaches an equilibrium T∞ as altitude increases [25]. Hence, it is

safe to assume that N → N∞ and η → η∞ < 0 as Z → ∞ (cf. (3a) and (3b)). Due to the high viscosity
in the thermosphere and above, we can also assume that u, a → 0 as Z → ∞. These assumptions suffice
for the integrals in (23) to converge and also that the energy flux in (10) vanishes. Additionally, we assume
that the background variables are exponentially asymptotic, i.e. they converge even when multiplied by an
exponentially increasing function [26, p 40].

4 The antitriptic flow assumption and momentum conservation
In the inviscid limit the modulation equations (11) assume stationary solutions where ∂p/∂X = 0 which can
be computed analytically by a formula of [22, Eq. 5.20]. We want to point out that mentioned formula is also
valid for horizontally confinedwaves.Whenwemultiply (11b) by kx and subtract (11c),weobtain the evolution
equation for total momentum density,

ρ ∂
∂T (kxa − u) =

∂p
∂X − kxΛ|kkk|2ρa. (24)

Thus, to be consistent with the inviscid limit, the dissipative modulation equations assume stationary solu-
tions if the right hand side of (24) vanishes which provides eventually a closure for the horizontal gradient of
mean-flow kinematic pressure,

∂p
∂X = Λ|kkk|2ρkxa. (25)

This result implicates that the mean-flow horizontal kinematic pressure gradient balances the dissipation of
horizontal pseudo-momentum, ρkxa. Thereby, total momentum is locally conserved.

A flow configuration where pressure gradient balances viscous forces is referred to as antitriptic flow in
the literature [27]. Under this antitriptic flow assumption (25) themodulation equations degenerate as we can
integrate (24) with respect to time to obtain the mean-flow horizontal wind,

u(Z, T) = kxa(Z, T) + Ū(Z), (26)

reducing to a diagnostic variable. We call Ū the background horizontal wind since it is time-independent and
we emphasize that in the absence of a wave (a = 0), mean-flow and background horizontal wind coincide.
The difference between mean-flow and background horizontal wind can be identified as specific horizontal
pseudo-momentum. Note that in weakly nonlinear wave theory, the pseudo-momentum is of higher order
and would not appear in a leading-order equation as shown here.

Substituting (26) into the governing equations (11) reduces the dimension of the system. We may refor-
mulate the reduced system in vector form

∂yyy
∂T + ∂FFF(yyy)

∂Z = GGG(yyy) (27)

where we call yyy = (kz , a)T : [0,∞)2 → R2 the prognostic state vector. The nonlinear flux and inhomogeneity
are determined by

FFF =
(︀
ω̂ + kxu, ω̂′ρa

)︀T , (28a)

GGG =
(︀
0, −(Λ|kkk| + ηω̂′)a

)︀T . (28b)

Before we focus on a specific solution and its stability in the next section, we want to discuss how a
general solution to the modulation equations with boundary, far-field and antitriptic-flow conditions may
look like in the original variables of the Navier-Stokes equations. A prototypical wave is plotted in Figure
2. Additionally, three different length scales are indicated. The rapid oscillations of the wave occur on the
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Fig. 2: Qualitative sketch of a wave generated by the solution to the modulation equations. The rulers at the top indicate the
different scales involved. Contour lines of potential temperature (top diagram). Mean-flow horizontal wind (middle diagram).
Mean-flow kinematic pressure (bottom diagram).

shortest scale∼ Lr and its modulation fields vary on the intermediate scale∼ Hθ which separates by a factor
ε. In the previous sections, we assumed that the wave is horizontally homogeneous posing an unphysical
situation as neither waves nor mountains in the real world extend to infinity. Therefore, it becomes clear that
there is an even larger scale∼ Hθ/ε onwhich thewave andmountain vanish at the infinities. For a systematic
approach including also the largest scale, one may employ the method of matched asymptotic expansion
which is beyond the scope of this paper. However, considering this largest scale rather qualitatively, we are
able to comprehend several properties of the solution. First, onemay regard the background horizontal wind
Ū as the unperturbed wind upstream away from the mountain. In the region where the wave is excited, the
wave drag reduces the wind resulting in the wave-induced mean flow (middle diagram in Fig. 2). Second, the
right hand side of (25) does not depend on X being on the intermediate scale and can therefore be integrated
to obtain a linear function in the horizontal direction for the mean-flow kinematic pressure. Consequently,
it is unbounded on the intermediate scale for |X| → ∞ but on the largest scale it will converge towards the
balanced state with constant pressure and constant background horizontal wind (bottom diagram).

5 Stationary solution
This section will examine stationary solutions to Grimshaw’s dissipative modulation equations. They de-
scribe typical mountain lee waves which are excited by a background flow over a mountain.

5.1 Derivation for stationary waves

A stationary solution yyy = YYY(Z) = (Kz , A)T must fulfill

∂FFF(YYY)
∂Z = GGG(YYY). (29)
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Note that we label the stationary solution with capital letters. The first component of (29) can readily be
integrated, so

const. = Ω = Ω̂ + KxU . (30)

with U(A) = KxA + Ū and Ω̂(n) = ω̂(n)(Kz). We can solve (30) explicitly exploiting (6) for

Kz(A) =
{︃
−Kx

√︀
N2/(KxU(A) − Ω)2 − 1, (nh),

KxN/(KxU(A) − Ω), (h).
(31)

Wewant to point out that in the non-hydrostatic case, the vertical wavenumbermay become imaginarywhich
is referred to as evanescence since the ansatz (4) would switch from an oscillatory to an exponential behavior.
In fact vertically evanescent waves are observed in the atmosphere and can be modeled by linear theory.
However, the nonlinear WKB theory becomes invalid for imaginary wavenumbers. The second component of
(29) becomes an explicit, non-autonomous, scalar, ordinary differential equation when we insert (31),

∂A
∂Z = Γ(A, Z)A in (0,∞), (32a)

Γ = η(Re−1wave − 1) − (1 − αΩ̂)∂Z ln(N) + αKx∂Z Ū
1 − K2

xαA
, (32b)

α = Ω̂′′

Ω̂′2
, (32c)

Rewave = |η|Ω̂′

Λ|KKK|2 . (32d)

Definition (32d) can be interpreted as a wave-Reynolds number. It was introduced and discussed by [18] and
measures, roughly speaking, the damping of wave amplitude.

From the boundary condition (22), BBB(YYY) = 0 at Z = 0, we obtain

Ω = 0, (33)

A± = |Ū|
2Kx

(︂
1∓

√︁
1 − 2Fr2wave

)︂
at Z = 0 (34)

where

Frwave = HmN
|Ū|

⃒⃒⃒⃒
Z=0

≤ 1√
2
. (35)

We can rule out A− immediately as non-physical solution as there must be no wave if Hm = 0. The constant
Frwave possesses an upper bound in order to obtain real-valued wave action. It is often referred to as “non-
dimensional mountain height” in the literature. Other names are also common. However, we follow a recent
discussion in [28] who argue to call it wave-Froude number.

For a brief discussion on the existence of solutions to (32) we restrict ourselves to the hydrostatic and
isothermal case, so let N, η and Ū be constant. Then, (32a) reduces to

∂A
∂Z = η Re−1wave − 1

1 − KzN−1KxA
A in (0,∞). (36)

We can immediately observe that the denominator is always greater than one as Kz < 0 and due to this
fact, a singularity cannot be reached. By definition Re−1wave = 0 at Z = 0 and η < 0 which implies that the
solution will grow exponentially from the boundary. This property is known from linear theory and is called
anelastic amplification. The viscosity Λ increases with height and in conclusion, the wave-Reynolds number
drops until it becomes unity. At this point, A assumes it maximum. Physically speaking, it saturates due to
turbulent damping.

In order to meet the requirements in the deep-atmosphere limit from section 3.3, A → 0, we must find

Rewave < 1 for Z > Zturbo. (37)
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Zturbo marks the turbopause, i.e. the transition zone from turbulent-dominated damping to energy diffusion
bymolecular viscosity [29]. Due to the strongmolecular dissipation above the turbopause increasing Λ, there
can be no doubt that the bound (37) will be reached. But its position Zturbo is hard to predict as it depends on
small-scale processes which are not governed by the modulation equations anymore. However, we will see
in section 6 that the actual value of Zturbo has no influence on the stability of the waves.

The general case, non-isothermal and non-hydrostatic, will be investigated numerically in the following
section.

5.2 Illustrative example

An illustrative example for a typical mountain wave is plotted in figure 3. We took observation data from the
zonal mean COSPAR International Reference Atmosphere (CIRA-86, [30]) for the dimensional temperature
profile T* (Panel a) and the dimensional background horizontal wind Ū* (Panel d). The values are taken for
March in the northern hemisphere at 50∘ as here conditions of background wind for waves that extend deep
into the atmosphere are optimal.

We defined the dimensional kinematic viscosity profile Λ*(z*) ∝ tanh in extrapolation of [31, Fig. 1] since
viscosity is unavailable in the CIRA-86 data set. In contrast to the commondefinition,we span the zonal x-axis
from East to West due to our sign convention (kx > 0). Background and wave fields are computed accordingly
(see figure caption for equation references).

The data set contains important features of the atmosphere such as clearly pronounced troposphere,
stratosphere, mesosphere and thermosphere due to the temperature inflection points. Also, the polar and
mesospheric jets are distinctly visible. A typical wave envelope profile is generated in terms of standard nu-
merical solvers for (32) (panel d). It grows exponentially with height as the background density decreases
until viscosity starts to dominate damping the wave to disappearance. As a final remark, we must recognize
that the data set does not reach far enough into the higher atmosphere to observe the far-field behavior as
discussed in Section 3.3 and shown in [25].

6 Modulational stability of the stationary solution
This section is dedicated to the stability of the stationary solution of themodulation equations. In order to as-
sess stabilitywe linearize the governing equations (27) and the boundary condition (22) around the stationary
solution (29) and apply the ansatz for the pertubation

yyy(Z, T) = ŷyy(Z)eλT . (38)

This transforms the problem of stability into a boundary eigenvalue problem (BEVP),

λŷyy + ∂
∂Z
[︀
DFFF(YYY)ŷyy

]︀
= DGGG(YYY)ŷyy for Z ∈ (0,∞), (39a)

DBBB(YYY)ŷyy = 0 at Z = 0 (39b)

with the Jacobian matrices

DFFF(YYY) =
(︃

Ω̂′ K2
x

Ω̂′′A Ω̂′

)︃
, (40a)

DGGG(YYY) =
(︃

0 0
−ηΩ̂′′A − 2ΛKzA −ηΩ̂′ − Λ|KKK|2

)︃
, (40b)

DBBB(YYY) =
(︃

Ω̂′ K2
x

−2AΩ̂′ −2Ω̂

)︃
. (40c)
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Fig. 3: Illustrative example. CIRA-86 zonally averaged temperature (panel a) and background horizontal wind (panel d, thick
blue line) for March at 50∘ N. Kinematic viscosity (panel b), Brunt-Väisälä frequency (panel c) computed by (3a). Vertical wave
number (panel e) and specific wave action density (panel f) computed by (31) and (32a), respectively, assuming horizontal
wavenumber K*

x = 0.2 km−1. Wave-induced mean flow (panel d, dashed blue line).
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Solving the BEVP really means to find the spectrum of the linear differential operator L defined due to (39).
The wave is stable if there is no spectrum on the right-hand side of the complex plane. We can decompose
the spectrum into the essential (continuous) and the point (matrix-like) spectrum. A comprehensive intro-
duction in this method can be found in [32]. In the following sections, wewill study each part of the spectrum
individually.

6.1 Essential spectrum

The linear operatorLof theBEVPcanbeapproximatedbyanasymptotic differential operator having constant
coefficients, L∞. Utilizing Fredholm operator theory one can prove that it has the same essential spectrum
as the original operator [26]. The BEVP of the asymptotic operator can be reformulated as an initial value
problem

∂ŷyy
∂Z = C∞(λ)ŷyy for Z ∈ (0,∞), (41a)

DBBB(YYY)ŷyy = 0 at Z = 0 (41b)

where the constant coefficient matrix is given by

C∞(λ) = lim
Z→+∞

C(Z, λ), (42)

C(Z, λ) = DFFF(YYY)−1
(︂
DGGG(YYY) − ∂DFFF(YYY)

∂Z − λ
)︂
. (43)

Existence of the limit is granted due to the assumptions of section 3.3.
The asymptotic operatorL∞ − λ, and hence the original operatorL− λ, are Fredholm if C∞ is hyperbolic,

i.e. all its eigenvalues have non-zero real part. We find two distinct spatial eigenvalues

ν1(λ) = − λ
Ω̂′∞

, (44a)

ν2(λ) = − λ + η∞Ω̂
′
∞ + Λ∞|KKK∞|2

Ω̂′∞
. (44b)

Thus, theMorse index,which is definedas thedimensionof theunstable subspace of a hyperbolicmatrix,
is

i∞(λ) =

⎧⎪⎨⎪⎩
0 if 0 < ℜ(λ),
1 if −η∞Ω̂′

∞ − Λ∞|K∞|2 < ℜ(λ) < 0,
2 if ℜ(λ) < −η∞Ω̂′

∞ − Λ∞|KKK∞|2.
(45)

Note that −η∞Ω̂′
∞ − Λ∞|KKK∞|2 < 0 due to (37). On lines in the complex plane where ℜ(λ) = 0 and

ℜ(λ) = −η∞Ω̂′
∞ − Λ∞|KKK∞|2 the matrix C∞ is not hyperbolic and hence the operator is not Fredholm.

The Fredholm index tells us where the essential spectrum lies. According to [33, their formula 1.10] and
also [34, p 391], it can be written as

ind = dim
(︀
kerDBBB(YYY0)

)︀
− i∞(λ) (46)

where YYY(0) = YYY0. The essential spectrum is the set of λ’s for which the operatorL− λ is Fredholm but ind ̸= 0
or it is not Fredholm. The point spectrum, on the other hand, lies where the operator is Fredholm and ind = 0
but the operator is not invertible. We will investigate the point spectrum in section 6.2.

Having a closer look on (45), it turns out that

dim
(︀
kerDBBB(YYY0)

)︀
= 0 (47)

must be true in order to obtain a stable essential spectrum, i.e. no essential spectrum on the right hand side
of the complex plane. In particular, if the kernel is non-empty, the waves are unstable and the operator is
even ill-posed as the complete right plane is in the essential spectrum.
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The criterion can be rephrased: stable waves necessitate Dirichlet boundary conditions. This is violated
and hence the wave destabilizes due to perturbations from the essential spectrum if

HmN
|U| =

√
2 at Z = 0 (48)

which can be called the grosswave-Froude number. This instability criterion is not determined by an inequal-
ity like most fluid dynamical stability criteria. In fact the instability condition has to be fulfilled by equality.
It is therefore more similar to a catastrophic resonance condition.

6.2 Point spectrum

In this section we will prove the non-existence of unstable point spectrum. Let us assume a stable essential
spectrum and the existence of an unstable eigenvalue. For this eigenvalue the Fredholm index is zero and
hence it may belong to the point spectrum. Then, the eigenfunction solves the associated ODE

∂ŷyy
∂Z = C(Z, λ)ŷyy. (49)

By assumption, the essential spectrum is stable and hence the kernel of the Jacobian of the boundary condi-
tion is empty or, in other words, we get a Dirichlet boundary condition, ŷyy = 0 at Z = 0. The Dirichlet boundary
is the initial condition for the ODE which then assumes the trivial solution, so there is no eigenfunction. This
contradiction completes the proof that there is no unstable point spectrum. In conclusion, modulational in-
stabilities, given that the resonance condition is true, originate from the essential spectrum.

7 Summary and conclusion
Let us summarize the results of the previous section. The gross wave-Froude number depending on the wave
itself due to the induced mean flow is specified in terms of (34) and (35) by

HmN
|U| = 2Frwave√︀

1 − 2Fr2wave + 1
at Z = 0. (50)

In conclusion, stationary waves extending from the surface to the deep atmosphere, that experience

Rewave < 1 above Zturbo, (51)

are
• non-evanescent and statically stable if{︃

0, (h),
HmKx , (nh)

< HmN
|U| <

{︃
1, (h),√︀
1 + H2

mK2
x , (nh)

at Z = 0. (52)

Here, the lower bound originates from (31). It provides a real-valued and negative vertical wavenumber.
The upper bound is due to (20) and guarantees static stability.

• modulationally stable if

HmN
|U| ̸=

√
2 at Z = 0. (53)

This non-resonance criterion stems from the investigation of the essential spectrum in section 6.1.
An illustration combining these criteria for the wave-Froude number computed by inversion of (50) is plotted
in figure 4. It turns out that the resonance condition for the wave-Froude number is the same as the threshold
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Fig. 4: Admissible wave-Froude number as function of height-period ratio for non-hydrostatic waves. For hydrostatic waves, it is
the same result but P → ∞ (Kx = 0). Only values in the blue area correspond to wave solutions.

that guarantees real-valued wave action in (34). Combining this result with the upper bound for real-valued
wave action (35), we obtain a strict inequality,

Frwave < 1√
2
, (54)

for the existence and modulational stability of the wave. That the critical values are the same does not come
as a surprise because A+ and A− coincide at this value which is linked to the singularity of the Jacobian of the
boundary condition by the inverse function theorem.

Also, beyond HmKx =
√
2waves cease to exist. Only solutions where HmKx > 1may becomemodulation-

ally unstable since waves in the region HmKx < 1 overturn before they ever reach the resonance condition.

The main result of this paper is that the stability of stationary strongly nonlinear gravity waves with re-
spect toGrimshaw’s dissipativemodulation equations depends on three characteristic parameters: Thewave-
Reynolds number, the wave-Froude number and the mountain’s height-period ratio. Considering vertically
modulatedwaves from the surface to the deep atmosphere,we find that the stability is completely determined
by the boundary and far-field conditions. These results are valid for fairly general wave solutions that posses
only minor restrictions on the background fields: the background is hydrostatic and exhibits a physical far-
field behavior. Other than this, the background temperature and horizontal wind are unconditioned.

We want to give some remarks on the characteristic parameters that we hope are particularly useful for
interpreting measurements and numerical simulations of atmospheric gravity waves. When reformulated in
dimensional variables, the wave-Reynolds number reads

Rewave =
C*gzD*

Λ* (55)

where C*gz represents the vertical group velocity and D* = H*−1
p |KKK*|−2 defines a length scale with H*

p the local
pressure scale height.

The net wave-Froude number as defined in this work is readily redimensionalized, so

Frwave = H*
mN*

|Ū*|
. (56)
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It has to be distinguished from the gross wave-Froude number as the latter contains the induced mean-flow
and is therefore not independent of the wave itself. In the literature, only the gross wave-Froude number is
considered which is reasonable since from observations one gets the mean-flow horizontal wind. Usually, it
is not feasible to ask for the background flow of a mountain wave which really is the flow without the moun-
tain or alternatively the flow far upstream. However, knowing the wave parameters of the excited wave, it is
possible to compute the background wind by the total momentum equation (26). Also, in weakly nonlinear
theory they are indeed the same as the inducedmean flow is a higher-order correction. Still, the strongly non-
linear description in this paper reduces the mean-flow wind and therefore gains wave energy from the mean
flow when excited. Hence, from a theoretical point of view the net wave-Froude number should not depend
a priori on the wave that is excited by the background flow over the mountain.

In an envisaged companion paper we want to extend our investigations to the stability of gravity waves
governed by three-dimensional modulation equations including the Coriolis force. The basis for such a study
was already founded in [35].
Acknowledgments: This researchwas supported by the GermanResearch Foundation (DFG) throughGrants
KL 611/25-2 of the Research Unit FOR1898 and Research Fellowship SCHL 2195/1-1. Comments of Prof. Rupert
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