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Aggregator-oblivious encryption is a useful notion put forward by Shi et al. in 2011 that allows an untrusted
aggregator to periodically compute an aggregate value over encrypted data contributed by a set of users.
Such encryption schemes find numerous applications, in particular in the context of privacy-preserving
smart metering.

This paper presents a general framework for constructing privacy-preserving aggregator-oblivious en-
cryption schemes using a variant of Cramer-Shoup’s paradigm of smooth projective hashing. This abstrac-
tion leads to new schemes based on a variety of complexity assumptions. It also improves upon existing
constructions, providing schemes with shorter ciphertexts and better encryption times.
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1. INTRODUCTION
Since the introduction of electricity into the home, its use has been recorded by an elec-
tricity meter attached to the exterior of the homes. This situation is however gradually
changing with the progressive deployment of smart meters [McDaniel and McLaughlin
2009]. In addition to the basic service offered by its predecessor, a smart meter comes
with extra useful features aiming at reducing energy costs. For example, a smart me-
ter can turn down momentarily high-energy electrical appliances during peak hours.
For the utility company, one of its most appealing features is its ability to report in
almost real-time the power consumption of their consumers. This fine-grained infor-
mation is very helpful as it allows the electricity provider to better adapt the load or
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10:2 F. Benhamouda, M. Joye, and B. Libert

forecast the supply. Moreover, it allows the electricity provider to quickly react when
anomalies are detected on the grid. The resulting savings are also beneficial to the
consumers as they give rise to better pricing. But there is a downside. Frequent us-
age reports leak information about the consumer habits and behaviors —for example,
when a certain consumer turns her TV on and what programs she is likely to watch.
These seemingly unimportant issues should not be underestimated as they may have
unintended consequences from the inference of some private information (attributes
or data).

In most cases, there is no need for the utility company (except for preparing the
monthly bill) to get the fined-grained energy usage of each customer. For example,
in the previous scenario, an aggregate suffices. The goal of this paper is to mitigate
the privacy issues that arise from smart metering by computing aggregates rather
than individual energy consumption. More generally, we are seeking efficient privacy-
preserving methods for the aggregation of time-series data. The entity computing the
aggregates is not necessarily trusted. We are interested in solutions that affect the
existing infrastructure as little as possible. In particular, in the above scenario, we
do not require smart meters to interact with each other nor the existence of a return
channel. We note that the billing issue is separate. In practice, smart meters report
their monthly energy consumption to the energy provider separately.

Related work. The above setting is the one considered in [Shi et al. 2011] and [Joye
and Libert 2013]. Each smart meter encrypts its actual energy consumption and sends
the result at regular intervals to an aggregator (which can be an entity different from
the energy provider). In the case of electricity metering, a typical time period is 15
minutes. Upon receiving the encrypted values from a predetermined set of users, the
aggregator combines the received values and therefrom deduces the total energy con-
sumption over the population of these users for the current time period. This operation
involves a secret key known only to the aggregator. Further, computing the sum over
the predetermined set of users is the only operation the aggregator can perform —it
cannot learn anything beyond what is revealed by the aggregate value. Following [Shi
et al. 2011], such a scheme is termed an aggregator-oblivious encryption scheme.

Like [Shi et al. 2011] and [Joye and Libert 2013], all our schemes can serve as a
building block for the fault tolerant solution of [Chan et al. 2012] while enjoying the
benefits of our construction. In fact, all the extensions of [Shi et al. 2011] are also
possible with our system. In particular, although the focus of this paper is put on the
encryption, the proposed schemes are compatible with the differential-privacy frame-
work [Dwork 2008; Dwork et al. 2006]. In this case, the smart meters simply need to
add some appropriately-generated noise to their data prior to encryption

Two other protocols in settings similar to the one of aggregator-oblivious encryp-
tion are the low-overhead protocol of [Kursawe et al. 2011] and the protocol of [Ács
and Castelluccia 2011]. These protocols however have the drawback of requiring each
smart meter to store as many keys as there are users, which can be impractical for a
large set of smart meters.

We also note that recent results on multi-input functional encryption [Gold-
wasser et al. 2014] imply non-interactive constructions of aggregator-oblivious encryp-
tion. However, due to their inevitable use of indistinguishability obfuscation candi-
dates [Garg et al. 2013], they are really far from being practical and should only be
seen as feasibility results.

Many other settings than the one we consider have been studied in the literature.
For example, the protocol of Dwork et al. in [Dwork et al. 2006] allows the aggrega-
tion of more complex functions, but requires communication between the smart me-
ters. The setting of [Rastogi and Nath 2010] and of [Garcia and Jacobs 2010] require
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bi-directional channels between the smart meters and the aggregator, while we only
require a uni-directional channel from each smart meter to the aggregator. The proto-
cols of [Leontiadis et al. 2014] as well as [Jawurek and Kerschbaum 2012] suppose the
existence of an additional semi-trusted party, who cannot collude with the aggregator.
In addition, in the second paper, the smart meter should be able to receive data from
this third party.

For more information on aggregation schemes, we refer the reader to the detailed
survey of Jawurek, Kerschbaum, and Danezis [Jawurek et al. 2012].

Our contributions. While applicable to our framework, the solutions offered in [Shi
et al. 2011] and [Joye and Libert 2013] are not fully satisfying, but for different reasons.
Table I gives a rough idea of the expected gains for our basic aggregator-oblivious
encryption scheme (a more detailed analysis with concrete implementation numbers
is provided in Section 3).

Table I. Reduction loss and typical parameter size for existing schemes and our basic scheme (for T = n = 220,
based on ECRYPT 2 recommendations, s−1(α) is the minimal number of bits of a modulus which cannot be
factored in time 2α, see Section 3.3 for details)

Typical size (bits)

Security
level Scheme Reduction

loss Group elements Private keys Ciphertexts

80 bits [Shi et al. 2011] ≈ 280 320 320 320
80 bits [Joye and Libert 2013] . 220 ≤ 3862 ≤ 3862 ≤ 3862

80 bits This work . 220 ≤ 200 ≤ 400 ≤ 200

128 bits [Shi et al. 2011] ≈ 280 416 416 416
128 bits [Joye and Libert 2013] . 220 ≤ 8900 ≤ 8900 ≤ 8900

128 bits This work . 220 ≤ 296 ≤ 592 ≤ 296

λ bits [Shi et al. 2011] ≈ Tn3 2(λ+ log2(Tn
3)) 2(λ+ log2(Tn

3)) 2(λ+ log2(Tn
3))

λ bits [Joye and Libert 2013] . T ≤ 2s−1(λ+log2(T )) ≤ 2s−1(λ+log2(T )) ≤ 2s−1(λ+log2(T ))

λ bits This work . T ≤ 2(λ+ log2(T )) ≤ 4(λ+ log2(T )) ≤ 2(λ+ log2(T ))

Joye-Libert’s scheme supports large plaintext spaces and a large number of users.
However as it is built over Paillier’s encryption scheme, the involved parameters are
somewhat large. Back to our example of smart meters, this in turn implies that these
are likely equipped with crypto-processors for modular arithmetic over large integers
and possess sufficient memory for storing intermediate computations. Larger cipher-
texts also mean more bandwidth for their transmission. Shi et al.’s scheme provides a
cheaper solution as it is ElGamal-based and relies on the Decisional Diffie-Hellman as-
sumption (DDH). In particular, it can be implemented using elliptic-curve groups with
much shorter parameters. It requires the computed aggregated sum to lie in a rela-
tively small predetermined set. In the case of smart meters, this does not really con-
stitute a limitation for most practical settings, as the sum should be less than 30 bits
long.

A reductionist security proof of a cryptographic scheme consists in an efficient algo-
rithm, called a reduction, that uses an attacker against the scheme as a subroutine to
solve a problem supposed hard. If ε and ε′ respectively denote the success probability of
the attacker and of the reduction algorithm, the security proof is said tight when ε ≈ ε′
and loose otherwise. The tightness gap is measured by the ratio ε/ε′ and captures the
security loss. This ratio is an important parameter as it defines the exact security [Bel-
lare and Rogaway 1996; Bellare 1998] of a scheme. It quantifies the amount by which
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10:4 F. Benhamouda, M. Joye, and B. Libert

the security parameters defining the scheme need to be increased to accommodate the
tightness gap.

But as already pointed out in [Joye and Libert 2013], one drawback of [Shi et al.
2011] is that the security reduction from the underlying complexity assumption is very
loose. If the scheme is set up for n users and if the number of time periods is at most T ,
there is a multiplicative gap of O(Tn3) between the adversary’s advantage and the
reduction’s probability to solve the DDH problem. Moreover, using a meta-reduction,
we show in Appendix C that a degradation factor of at least Ω(n2) is unavoidable in
the scheme of [Shi et al. 2011].

An important contribution of this paper is a new DDH-based aggregator oblivious
encryption scheme (cf. Section 3) with a much tighter security reduction. While the
security loss is O(Tn3) in Shi et al.’s scheme, our basic scheme reduces this gap to
roughly O(T ) in the worst-case scenario (this worst-case scenario is illustrated by the
figures given in Table I).

In Section 4, we generalize our basic DDH-based construction. We propose a
generic framework for the privacy-preserving aggregation of time-series data featur-
ing a tighter reduction. This framework is based on smooth projective hash func-
tions [Cramer and Shoup 2002] (SPHFs) with an extra additively homomorphic prop-
erty over the key space. Note that all SPHF realizations given in [Cramer and Shoup
2002] are natively additively key-homomorphic. As shown in Section 5, our framework
encompasses our basic scheme as well as a variation of Joye-Libert’s scheme. Several
other aggregator-oblivious encryption schemes based on a variety of complexity as-
sumptions are presented in Section 5. This clearly demonstrates the generic aspect of
our framework.

2. AGGREGATOR-OBLIVIOUS ENCRYPTION
We review the definition of aggregator-oblivious (secret-key) encryption and then pro-
ceed with the corresponding security notion. We refer the reader to [Shi et al. 2011] for
further introductory background.

Definition 2.1. An aggregator-oblivious encryption scheme is a tuple of three algo-
rithms, (Setup,Enc,AggrDec), defined as:

Setup(1λ). On input a security parameter λ, a trusted dealer generates the system
parameters param, the aggregator’s private key sk0, and the private key ski for each
user i (1 ≤ i ≤ n).

Enc(param, ski, τ, xi,τ ). At time period τ , user i encrypts a value xi,τ using her private
encryption key ski to get ci,τ = Enc(param, ski, τ, xi,τ ).

AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). At time period τ , the aggregator using sk0 obtains

Xτ =

n∑
i=1

xi,τ mod M ,

as the evaluation of Xτ = AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). M is some fixed inte-
ger contained in the system parameters param.

This definition slightly generalizes the definition introduced in [Shi et al. 2011].
We make explicit the fact the sum is computed modulo some integer M . To compute
sums over the integers, it is sufficient to choose M greater than the maximal possible
sum, as done in the constructions of [Shi et al. 2011]. Furthermore, we note that some
constructions assume AggrDec only works on a small subset of {0, . . . ,M − 1}.
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2.1. Aggregator obliviousness
Basically, the security notion of aggregator obliviousness (AO) requires that the aggre-
gator cannot learn, for each time period, anything more than the aggregate value Xτ

from the encrypted values of n (honest) users. If there are corrupted users (i.e., users
sharing their private information with the aggregator), the notion only requires that
the aggregator gets no extra information about the values of the honest users beyond
their aggregate value. Further, it is assumed that each user encrypts only one value
per time period.

More formally, AO is defined by the following game between a challenger and an
attacker.

Setup. The challenger runs the Setup algorithm and gives param to the attacker.
Queries. In a first phase, the attacker can submit queries that are answered by the

challenger. The attacker can make two types of queries:
(1) Encryption queries: The attacker submits tuples (i, τ, xi,τ ) for a pair (i, τ) and

gets back the encryption of xi,τ under key ski for time period τ ;
(2) Compromise queries: The attacker submits i and receives the private key ski of

user i; if i = 0, the attacker receives the private key of the aggregator.
Challenge. In a second phase, the attacker chooses a time period τ?. Let U? ⊆
{1, . . . , n} be the whole set of users for which, at the end of the game, no encryption
queries have been made on time period τ? and no compromise queries have been
made. The attacker chooses a subset S? ⊆ U? and two different series of triples

〈(i, τ?, x(0)i,τ?)〉
i∈S? and 〈(i, τ?, x(1)i,τ?)〉

i∈S? ,

that are given to the challenger. Further, if the aggregator capability sk0 is compro-
mised at the end of the game and S? = U?, it is required that∑

i∈S?
x
(0)
i,τ? mod M =

∑
i∈S?

x
(1)
i,τ? mod M . (1)

Guess. The challenger chooses uniformly at random a bit b ∈ {0, 1} and returns the
encryption of 〈x(b)i,τ?〉i∈S? to the attacker.

More queries. The attacker can make more encryption and compromise queries. Note
that since S? ⊆ U?, the attacker cannot submit an encryption query (i, τ?, ·) with
i ∈ S? or a compromise query i with i ∈ S?.

Outcome. At the end of the game, the attacker outputs a bit b′ and wins the game if
and only if b′ = b.

Definition 2.2. An encryption scheme is said to meet the AO security notion if no
probabilistic polynomial-time attacker can guess correctly, in the above game, the bit b
with a probability non-negligibly better (in the security parameter) than 1/2. Formally,
an encryption scheme is AO-secure if the advantage of any probabilistic polynomial-
time attacker A defined as

AdvAO(A) := 2
∣∣Pr[b′ = b]− 1/2

∣∣
is negligible; the probability is taken over the random coins of the game according to
the distribution induced by Setup and over the random coins of the attacker.

2.2. Existing schemes
So far, there are two known constructions of AO encryption schemes. They both meet
the AO security notion, in the random oracle model. The first one is due to Shi, Chan,
Rieffel, Chow, and Song [2011] and works in DDH groups. The second construction,
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10:6 F. Benhamouda, M. Joye, and B. Libert

due to Joye and Libert [2013], relies on the composite residuosity assumption [Paillier
1999]. These two schemes are reviewed in Appendix A.

3. A NEW DDH-BASED SCHEME
As aforementioned, the security proof offered in [Shi et al. 2011] incurs an O(Tn3)
degradation factor. The scheme in [Joye and Libert 2013] avoids this degradation fac-
tor; namely, the multiplicative gap between the adversary’s maximal advantage and
the probability to break the underlying complexity assumption is only proportional to
the number qenc of encryption queries made by the adversary for distinct time periods
other than τ? (so that, qenc < T ). In this section, we introduce an aggregator-oblivious
encryption scheme enjoying a security reduction as tight as in [Joye and Libert 2013]
but based on the DDH assumption. The main advantage is that the resulting cipher-
texts are much shorter.

3.1. Basic scheme
We base the security of our basic scheme on the standard DDH assumption.

Definition 3.1. Let G be a group of prime order p. The Decision Diffie-Hellman
(DDH) problem in G is to distinguish among the following two distributions:

D0 =
{

(g, ga, gb, gab) | g R← G, a, b R← Zp
}

and
D1 =

{
(g, ga, gb, gc) | g R← G, a, b, c R← Zp

}
.

The DDH assumption states that the advantage of a polynomial-time distinguisher A,
defined as

AdvDDH(A) =
∣∣Pr[A(g, u, v, w) = 1 | (g, u, v, w)

R← D0]−

Pr[A(g, u, v, w) = 1 | (g, u, v, w)
R← D1]

∣∣ ,
is negligible.

We are now ready to present the scheme. It is given by the following tuple of algo-
rithms.

Setup(1λ). Let G be a group of prime order M = p for which the DDH assumption holds,
and let g ∈ G be a random generator. Let also H1 : Z → G and H2 : Z → G be two
hash functions. Finally, for 2n random elements s1, . . . , sn, t1, . . . , tn

R← Zp, define
s0 = −

∑n
i=1 si mod p and t0 = −

∑n
i=1 ti mod p.

The system parameters are param = {p,G, g,H1, H2} and the secret key of user i is
ski = (si, ti), with 0 ≤ i ≤ n.

Enc(param, ski, τ, xi,τ ). At time period τ , for a private input xi,τ ∈ Zp, user i produces

ci,τ = gxi,τH1(τ)siH2(τ)ti .

AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). The aggregator obtains the sum Xτ =
∑n
i=1 xi,τ for

time period τ by first computing Vτ := H1(τ)s0H2(τ)t0
∏n
i=1 ci,τ = gXτ and next the

discrete logarithm of Vτ w.r.t. basis g.

As for the Shi et al. construction, since g has order p, the sumXτ is computed modulo
M = p. Further, in the AggrDec algorithm, the aggregator has to obtain the value of Xτ

from Vτ = gXτ in G. The most appropriate method for computing discrete logarithms
is Pollard’s λ algorithm (or variants thereof) and requires that the range of Xτ be
relatively small.
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3.2. Security
The next theorem proves that the basic scheme meets the AO security notion in the
random oracle model, based on the DDH assumption.

THEOREM 3.2. The scheme provides AO security under the DDH assumption in the
random oracle model. Specifically, for any probabilistic polynomial-time adversary A,
there exists a DDH distinguisher BDDH with comparable running time1 and such that

AdvAO(A) ≤ 2e (qenc + 1) · (AdvDDH(BDDH) + 1/p) ,

where qenc is the number of encryption queries made by the adversary for distinct time
periods other than τ?, and e is the base for the natural logarithm.

PROOF. The theorem is a corollary of Theorem 4.3, which ensures the security of
our abstract scheme (cf. Section 4.4).

3.3. Performance
The new scheme combines the advantages of [Joye and Libert 2013] (which offers
tighter security in the random oracle model) and of [Shi et al. 2011] (which has more
compact ciphertexts when implemented using elliptic-curve groups). As already shown
in Table I (Section 1), our basic scheme represents the aggregator-oblivious encryption
with the shortest ciphertexts. The key sizes are derived from the ECRYPT 2 recom-
mendations [ECRYPT II 2012] —where Shi et al.’s scheme and our basic scheme are
implemented in elliptic-curve groups and Joye-Libert’s scheme in Z∗N2 with N an RSA
modulus. Concretely, for a security gap of 2γ , key sizes are chosen such that the under-
lying problem (DDH for the Shi et al.’s scheme and our scheme, or DCR for the Joye-
Libert scheme) cannot be solved in time 2γ+λ (with constant probability, e.g., 1/2). Ac-
cording to ECRYPT 2 recommendations, for DDH-based scheme, the order of the group
used has to have 2(γ + λ) bits, while for DCR-based scheme, the modulus has to have
s−1(γ + λ) bits, where s is the function defined in [ECRYPT II 2012, Section 6.2.1]. As
the latter function is sublinear, higher security levels yield better results for our basic
scheme compared to [Joye and Libert 2013].

As exemplified in Table II, our new scheme also features better encryption times.
Table II presents the running times for a security level of 80 bits and was constructed
from a synthetically generated dataset by taking n = 220 ≈ 106 users and T = 220

time periods. This approximately allows computing an aggregation every 15 minutes
for 30 years over a city like Paris (there are about one million households in Paris).
Moreover, to have the fairest possible comparison, the worst case for our reduction is
considered: qenc = T − 1 ≈ 220. Higher security levels yield better results for our basic
scheme compared to [Joye and Libert 2013] as attacks against factorization and DCR
are subexponential in the key size while attacks against DDH are exponential in the
key size.

4. GENERALIZATION USING KEY-HOMOMORPHIC SMOOTH PROJECTIVE HASH
FUNCTIONS

In this section, we use the framework of key-homomorphic smooth projective hashing
to generalize our DDH construction presented in Section 3.

1By “comparable running time”, we mean that BDDH ’s running time exceeds that of A by a small additive
term (rather than a multiplicative factor) which only depends on the security parameter and the number of
queries, but not on A’s running time. More precisely, BDDH ’s running time roughly amounts to the running
time ofA plus O(qH+qenc) group exponentiations, where qH is the number of queries to the random oracle.
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10:8 F. Benhamouda, M. Joye, and B. Libert

Table II. Running times (with margin of error at 95% confidence, computed with 100 samples) of our basic
scheme and the existing schemes (for T = n = 220, 80-bit security, using parameters in Table I, SHA-512
for hashing, 24-bit xi,τ , and Xτ in a pre-determined 24-bit range, on an IntelTM Core i5 750 with MIRACLTM

library https://github.com/CertiVox/MIRACL, Jun 20, 2013)

Time (ms)

Scheme Hashinga Encryptionb First phase of
decryptionc

Second phase of
decryptiond

[Shi et al. 2011] 0.23 (±0.01) 5.5 (±0.1) 11.3 (±0.0) 192 (±20)
[Joye and Libert

2013] 0.01 (±0.00) 58.3 (±0.5) 45.5 (±0.0) 0.0 (±0.0)

Our basic scheme 0.23 (±0.01) 2.6 (±0.1) 6.9 (±0.0) 126 (±13)
a Computation of H(τ) or H1(τ) and H2(τ);
b Computation of ci,τ , excluding computation of H(τ)/H1(τ)/H2(τ);
c Computation of Vτ from (ci,τ ), excluding computation of H(τ)/H1(τ)/H2(τ);
d Computation of Xτ from Vτ (we used a variant of the Pollard’s kangaroo (or λ) method described

in [Montenegro and Tetali 2009]).

4.1. Key-homomorphic smooth projective hash functions
4.1.1. Subset-membership problem. We start with the important notion of subset-

membership problems, as introduced in [Cramer and Shoup 2002]. Consider an NP-
language L ⊂ X , defined by a polynomial-time witness relation R:

L =
{
y ∈ X | ∃w such that R(y, w) = 1

}
.

We suppose that L, X , L̄ = X \ L are efficiently (uniformly) samplable, and even that
sampling a word y ∈ L along with an associated witness w for this word can also be
done efficiently. We also assume that |L|/|X | is negligible: in other words, a random
element of X is in L̄ with overwhelming probability.

Basically, the language L induces a hard subset-membership problem if random el-
ements of L cannot be distinguished from random elements of X . More formally, this
notion can be defined via the following game between a challenger and an attacker.
The challenger chooses at random a bit b. The attacker can issue up to qm (a param-
eter of the game) queries to the challenger. On each query, the challenger returns a
uniformly random element in X if b = 0, and a uniformly random element in L if b = 1.
At the end of the game, the attacker outputs a bit b′ and wins the game if and only if
b′ = b.

Definition 4.1. A subset-membership problem is hard if, in the previous game, the
advantage, which is defined as Advmemb

qm (A) := 2
∣∣Pr[b′ = b]− 1/2

∣∣, is negligible for any
probabilistic polynomial-time attacker A.

Defining the subset-membership hardness via the above game allows us to generi-
cally obtain tighter security bounds. In instantiations based on specific assumptions
(e.g., DDH), the random self-reducibility of underlying problems (e.g., [Abadi et al.
1989; Stadler 1996; Naor and Reingold 1997]) allows avoiding any dependency on qm
in the reduction.

4.1.2. Smooth projective hash functions. Smooth projective hash functions (SPHFs) were
introduced by Cramer and Shoup [2002] as a tool to construct chosen-ciphertext secure
encryption schemes. We present below a variant tailored to fulfill our needs. A recent
account on the different flavors of SPHFs can be found in [Benhamouda et al. 2013].

Definition 4.2. Using the previous notations, a smooth projective hash function
(SPHF) is specified by a tuple of algorithms, (HashKG,ProjKG,Hash,ProjHash), of which
the first one is probabilistic and the other algorithms are deterministic, defined as:
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HashKG(1λ). On input a security parameter λ, algorithm HashKG generates a hashing
key hk identified as an element of K, where K denotes the key space.

ProjKG(hk). Given a hashing key hk, this algorithm derives a projection key hp.
Hash(hk, y). Given a hashing key hk and a word y ∈ X , algorithm Hash outputs the

hash value h of y.
ProjHash(hp, y, w). Given a projection key hp, a word y ∈ L and a corresponding wit-

ness w (such that R(y, w) = 1), algorithm ProjHash outputs the hash value h of y.

Further, letting Π denote the range of Hash and ProjHash and assuming that (Π, ·) is an
Abelian group (written multiplicatively with 1Π as neutral element), an SPHF must
satisfy the properties of correctness and special smoothness:

Correctness. This property means that Hash and ProjHash hash to the same value
for any word y in the language L. More precisely, for every hashing key hk

R←
HashKG(1λ), for all y ∈ L and associated witness w (such that R(y, w) = 1), we
have

Hash(hk, y) = ProjHash(hp, y, w)

provided hp = ProjKG(hk).
Special smoothness. Let Π ′ ⊆ Π be a subset of Π. Intuitively, the special smoothness

says that the hash value of any y ∈ L̄ = X \L looks random “over Π ′”, even knowing
hp. Formally, an SPHF is said to be (εs, Π

′)-smooth, if for all y ∈ L̄, the following two
distributions are εs-statistically indistinguishable:

D0 =
{

(hp, h) | hk R← K, hp← ProjKG(hk), h← Hash(hk, y)
}

and

D1 =
{

(hp, h · h′) | hk R← K, hp ← ProjKG(hk), h ← Hash(hk, y), h′
R← Π ′

}
.

There are a couple of differences compared to the definition given in [Cramer and
Shoup 2002]. Special smoothness replaces the original smoothness property. The latter
basically corresponds to the definition of special smoothness when Π ′ = Π. The special
smoothness is also required to hold for any word y ∈ L̄, and not just on average as in the
original definition. Furthermore, only HashKG and Hash are required to be polynomial-
time algorithms; ProjKG or ProjHash are not required to be efficient and they may run
in exponential time.

An additional property which will be used in the security proofs is called key unifor-
mity.

Key uniformity. An SPHF is εhk-key-uniform when an honestly generated hashing key
is εhk-statistically indistinguishable2 from a random element in K.

4.1.3. Key-homomorphic SPHF. An SPHF is said key-homomorphic if in addition

(1) (K,+) is an Abelian group (written additively with 0K as neutral element);
(2) Π ′ is a subgroup of Π;
(3) for any two hashing keys hk1, hk2 ∈ K and for every word y ∈ X

Hash(hk1 + hk2, y) = Hash(hk1, y) · Hash(hk2, y) .

2Recall that two distributions D0 and D1 on some finite set S are ε-statistically indistinguishable or ε-close
if 1

2

∑
x∈S |PrX R←D0

[X = x]− Pr
X
R←D1

[X = x]| ≤ ε .
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4.2. Our abstract scheme
We can now present our generic aggregator-oblivious encryption scheme, based on key-
uniform, key-homomorphic SPHF with the special smoothness property.

Let f be an injective group homomorphism, f : ZM → Π ′. We assume that this ho-
momorphism is efficiently and publicly invertible over the domain of possible sums Xτ

(which may be smaller than {0, . . . ,M − 1}, as is the case for our DDH-based scheme).

Setup(1λ). Let L ⊂ X be a hard subset-membership language. Let also H : Z → X
be a hash function (viewed as a random oracle in the security analysis). Finally,
let hk1

R← HashKG(1λ), . . . , hkn
R← HashKG(1λ) be n random hashing key. Define the

aggregator’s secret key as hk0 = −
∑n
i=1 hki.

The system parameters are param = {L, H} and the secret key of user i is ski = hki,
with 0 ≤ i ≤ n.

Enc(param, ski, τ, xi,τ ). At time period τ , for a private input xi,τ ∈ ZM , user i produces

ci,τ = f(xi,τ ) · Hash(hki, H(τ)) ∈ Π .

AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). The aggregator obtains the sum Xτ (mod M) for
time period τ by computing Xτ := f−1

(
Hash(hk0, H(τ)) ·

∏n
i=1 ci,τ

)
.

The correctness of the aggregation step follows from the homomorphic properties:

Hash(hk0, H(τ)) ·
∏n
i=1 ci,τ =

∏n
i=0 Hash(hki, H(τ)) ·

∏n
i=1 f(xi,τ )

= Hash(
∑n
i=0 hki, H(τ)) · f(

∑n
i=1 xi,τ )

= Hash(0K, H(τ)) · f(
∑n
i=1 xi,τ ) = 1Π · f(

∑n
i=1 xi,τ )

= f(
∑n
i=1 xi,τ ) ,

and therefore Xτ =
∑n
i=1 xi,τ (mod M) since f is injective.

4.3. Security
We prove security of the abstract scheme in the random oracle model, based on the
hardness of the subset-membership problem.

THEOREM 4.3. The scheme provides AO security under the hard subset-membership
assumption of L in the random oracle model. Namely, for any probabilistic polynomial-
time adversary A, if the SPHF is (εs, Π

′)-smooth and εhk-key-uniform, there exists a
distinguisher Bmemb for the subset-membership problem of L with comparable running
time and such that

AdvAO(A) ≤ 2e (qenc + 1) ·
(
Advmemb

T (Bmemb) + n εhk +
|L|
|X |

+ n(n+ 1) εs

)
,

where n is the number of users, qenc is the number of encryption queries made by the
adversary for distinct time periods other than τ?, and e is the base for the natural
logarithm.

We recall that we suppose |L|/|X | is negligible.

PROOF. The proof proceeds with a sequence of several games. It begins with
Game 0, which is the real game, and ends with Game 6, where even a computationally
unbounded adversary has no advantage. For each j ∈ {0, . . . , 6}, we denote by Sj the
event that the challenger B outputs 1 in Game j.3 We also define Adv j = 2·|Pr[Sj ]−1/2|.

3In the proof, the output b′ ∈ {0, 1} of the adversary A is not directly the output of the game, but is first
given to the challenger which then outputs a bit. For Game 0, which corresponds to the AO security notion,
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In the following, we assume w.l.o.g. that the adversary A has always already queried
the random oracle H on input τ before any encryption query for the time period τ . We
assume that the adversary does not query the random oracle H more than once for a
given τ .

Game 0. This is the real game. Namely, the challenger performs the setup of the sys-
tem by generating hk1, . . . , hkn using HashKG and defining hk0 = −

∑n
i=1 hki. Queries

to the random oracle H are answered by returning uniformly random group ele-
ments in X . Encryption queries (i, τ, xi,τ ) for time period τ are answered by return-
ing the ciphertext ci,τ = f(xi,τ ) · hi,τ with hi,τ = Hash(hki, H(τ)). Whenever the
adversary decides to corrupt some player i ∈ {0, . . . , n}, the challenger reveals hki.
In the challenge phase, the adversary chooses a target time period τ?, an uncor-
rupted subset S? ⊆ U?, and two distinct series 〈(i, τ?, x(0)i,τ?)〉

i∈S? , 〈(i, τ?, x(1)i,τ?)〉
i∈S?

that must sum up to the same value if S? = U? and the aggregator’s private key sk0
is exposed at some point of the game (see Section 2.1). At this stage, the challenger
flips a fair binary coin b

R← {0, 1} and the adversary A receives{
ci,τ? = f(x

(b)
i,τ?) · hi,τ?

}
i∈S?

with hi,τ? = Hash(hki, H(τ?)) .

We assume that the adversary queries H(τ?) before the challenge phase. Otherwise,
B can simply make the query for itself. In the second phase, after a second series of
queries, A outputs a bit b′ ∈ {0, 1}. We let the challenger B output 1 if b′ = b and 0
otherwise. The adversary’s advantage in Game 0 is thus Adv0 = 2 · |Pr[S0]− 1/2| =
AdvAO(A).

Game 1. This game is identical to Game 0 with the following difference. For each ran-
dom oracle query H(τ), the challenger B flips a biased coin δτ ∈ {0, 1} that takes the
value 1 with probability 1/(qenc + 1) and the value 0 with probability qenc/(qenc + 1).
At the end of the game, B considers the event E that one of the following conditions
holds:
— For the target time period τ?, the coin δτ? flipped for the hash query H(τ?) was

δτ? = 0.
— There exists a time period τ 6= τ? such that an encryption query (i, τ, .) was

made for some user i ∈ U? but for which δτ = 1.
If event E occurs (which B can detect at the end of the game), B halts and outputs a
random bit. Otherwise, it outputs 1 if and only if b′ = b. An analysis similar to that
in [Coron 2000] shows that

Pr[¬E] =
1

qenc + 1
·
(

qenc
qenc + 1

)qenc
=

1

qenc + 1

(
1− 1

qenc + 1

)qenc
≥ 1

e (qenc + 1)
,

where e is the base for the natural logarithm. The transition from Game 0 to Game 1
is thus a transition based on a failure event of large probability [Dent 2006] and we
therefore have Adv1 = Adv0 · Pr[¬E] ≥ Adv0/(e(qenc + 1)).

Game 2. In this game, we modify the distribution of random oracle outputs. Specifi-
cally, the treatment of each hash query τ depends on the random coin δτ ∈ {0, 1}.
— If δτ = 0, the challenger B samples a random word yτ ∈ L together with a

witness wτ , and defines H(τ) = yτ ;

this modification does not change anything. But it helps for the other games, as it enables the challenger to
change the output of the adversary.
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— If δτ = 1, B samples a word yτ ∈ X and defines H(τ) = yτ .
It is straightforward to see that Game 2 and Game 1 are computationally indistin-
guishable if the hard subset-membership assumption holds. Namely, there exists a
distinguisher Bmemb for the subset-membership problem of L with comparable run-
ning time and such that

|Pr[S2]− Pr[S1]| ≤ Advmemb
T (Bmemb) .

Therefore Adv1 ≤ Adv2 + 2 ·Advmemb
T (Bmemb).

Game 3. In this game, after the challenge query, if H(τ?) = yτ? ∈ L, then B halts and
outputs a random bit. We recall that, in the previous game, yτ? was drawn uniformly
at random from X (or B would already have stopped because of event E). Therefore
|Pr[S3]− Pr[S2]| ≤ |L|/|X | and Adv2 ≤ Adv3 + 2|L|/|X |.

Game 4. In this game, B generates hki as hki
R← K, for each i ∈ {1, . . . , n}, instead

of using HashKG (note that B is not polynomially bounded in this game nor in the
subsequent games). Therefore |Pr[S4]− Pr[S3]| ≤ n εhk and Adv3 ≤ Adv4 + 2n εhk.

Game 5. At the beginning of the game, the challenger picks a random index i? ∈
{0, . . . , n} and at the end of the game, B considers event E′ that one of the following
conditions holds:
— i? 6= maxS? and

∑
i∈S? x

(0)
i,τ? =

∑
i∈S? x

(1)
i,τ? ; or

— i? 6= max(U ′? \ S?) and
∑
i∈S? x

(0)
i,τ? 6=

∑
i∈S? x

(1)
i,τ? , where

U ′? =

{
U? when the aggregator is corrupted,
U? ∪ {0} otherwise.

Notice that when
∑
i∈S? x

(0)
i,τ? 6=

∑
i∈S? x

(1)
i,τ? , the set U ′? \S? cannot be empty, so that

the previous definition makes sense. If event E occurs (which B can detect at the
end of the game), B halts and outputs a random bit. Otherwise, it outputs 1 if and
only if b′ = b. As for the transition from Game 0 to Game 1, the transition from
Game 4 to Game 5 is a transition based on a failure event of large probability. We
therefore have Adv5 = Adv4 · Pr[¬E′] = Adv4/(n+ 1).

Game 6. In this game, B picks hki independently and uniformly at random in K, for
i ∈ {0, . . . , n} \ {i?}, and computes hki? = −

∑
i∈{0,...,n}\{i?} hki at the beginning of

the game. For any time period τ , B computes hi?,τ as
∏
i∈{0,...,n}\{i?}(hi,τ )−1. Fur-

thermore, for any i ∈ U ′? \ {i?} and any time period τ 6= τ?, B now computes hi,τ as
ProjHash(hpi, yτ , wτ ) (with wτ a witness for yτ ∈ L), instead of Hash(hki, yτ ). Game 6
is perfectly indistinguishable from Game 5 (thanks to the fact that hk0, . . . , hkn
are, in both games, all chosen uniformly at random under the only condition that∑n
i=0 hki = 0, and thanks to key-homomorphism and correctness of the SPHF) and

Adv6 = Adv5.

Game 7. In this game, for all i ∈ U? \ {i?}, we set hi,τ? = Hash(hki, H(τ?)) · h′i with
h′i

R← Π ′. In other words, we have:
— if

∑
i∈S? x

(0)
i,τ? 6=

∑
i∈S? x

(1)
i,τ? , then hi,τ? = Hash(hki, H(τ?)) · h′i with h′i

R← Π ′, for
i ∈ S? ⊆ U? \ {i?}; in this case, clearly, h′i completely masks f(x

(b)
i,τ?);
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— otherwise, then hi,τ? = Hash(hki, H(τ?)) · h′i with h′i
R← Π ′ for i ∈ S? \ {i?} ⊆ U? \

{i?}; and we have that, for any sequence (h′i)i∈S? , there exists a unique sequence
(h′′i )i∈S? (with

∏
i∈S? h

′
i =

∏
i∈S? h

′′
i = 1) that satisfies h′i · f(x

(0)
i,τ?) = h′′i · f(x

(1)
i,τ?).

It is therefore clear that Pr[S7] = 1/2, so that A has no advantage (Adv7 = 0).
In addition, Games 6 and 7 are statistically indistinguishable thanks to the special
smoothness of the SPHF: |Pr[S7]− Pr[S6]| ≤ n εs and so Adv6 ≤ Adv7 + 2n εs.

Putting all together, we get

AdvAO(A) ≤ 2e (qenc + 1) ·
(
Advmemb(B) + n εhk + |L|

|X | + n(n+ 1) εs

)
,

which concludes the proof.

4.4. A concrete instantiation
An example of hard subset-membership language is the DDH language. We then have:

X = G×G , L =
{
~y = (y1, y2) ∈ X | ∃w ∈ Zp such that R(~y, w) = 1

}
with

R(~y, w) = 1 ⇐⇒ y1 = g1
w and y2 = g2

w ,

where g1 and g2 are two generators of a group G of prime order p. The hard subset-
membership assumption for this language is the DDH assumption.

For the DDH language, Cramer and Shoup construct an SPHF as follows. The key
space is K = Zp × Zp and the hash range is Π = G. The hashing key is a random tuple
hk = (s, t) ∈ K and the projection key is hp = g1

sg2
t. We then have:

Hash : K ×X → Π,
(
hk, (y1, y2)

)
7→ Hash

(
hk, (y1, y2)

)
= y1

sy2
t

and, if w is a witness for (y1, y2), i.e., y1 = g1
w and y2 = g2

w,

ProjHash : G×X × Zp → Π,
(
hp, (y1, y2), w

)
7→ ProjHash

(
hp, (y1, y2), w

)
= hpw .

This SPHF is (0, Π)-smooth (see [Cramer and Shoup 2002]). It is readily seen that
this SPHF is key-homomorphic and 0-key-uniform. If we set f : Zp → Π,x 7→ f(x) = gx

(where g is a generator of G), which clearly is an injective group homomorphism, we get
exactly our DDH-based scheme of Section 3. Observe also that plugging εhk = εs = 0,
|X | = p2, and |L| = p in Theorem 4.3 yields the statement of Theorem 3.2.

5. FURTHER INSTANTIATIONS
5.1. k-linear assumption and generalizations
In [2013], Escala et al. generalize the k-LIN assumptions [Boneh et al. 2004; Hofheinz
and Kiltz 2007; Shacham 2007] in an assumption called MDDH. They also show how
to construct an SPHF from any MDDH assumption. Their construction can be used di-
rectly in our framework, with f(x) = gx (which is invertible for x in small ranges), since
their SPHFs are clearly key-homomorphic and 0-key-uniform. This yields in particular
an aggregator oblivious encryption scheme from the k-LIN assumption.

When k = 1, since 1-LIN = DDH, we get exactly the new scheme presented in Sec-
tion 3. A larger value of k implies a weaker assumption: indeed, the k-LIN assumption
is implied by the (k−1)-LIN assumption for any k > 1, as shown in [Hofheinz and Kiltz
2007; Shacham 2007]. The disadvantage of a larger k is an increase of the private-key
size, which has to be multiplied by (k + 1)/2. However, other parameter sizes given in
Table I remain unchanged. In particular, increasing k does not affect the ciphertext
size, which is unusual for encryption schemes based on the k-LIN assumption.
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5.2. Subgroup Decision (SD) assumption
Yet another instantiation can be derived from the subgroup decision (SD) assumption
(for cyclic groups of composite order, without pairing) as introduced by Boneh et al.
[2005].

Let N = pq be an RSA modulus with p and q two large primes. Let G = 〈g〉 be a cyclic
group of order N , Gp = 〈gp〉 be the subgroup of order p, and Gq = 〈gq〉 be the subgroup
of order q. Define X = G, L = Gp, K = ZN , Π = G, and Π ′ = Gq. A witness w for y ∈ L
is a discrete logarithm of y in base gp, y = gp

w. Then set:

— for any y ∈ X , Hash(hk, y) = yr, and for any y ∈ L, ProjHash(hp, y, w) = hpw with w a
witness for y such that y = gp

w, for hk = r
R← K and hp = gp

hk;
— f(x) = gq

x for x ∈ Zq.

The so-obtained SPHF is (0, Π ′)-smooth, 0-key-uniform, and key-homomorphic.

5.3. DCR assumption
Paillier’s decision composite residuosity (DCR) assumption [Paillier 1999] can also
be used to instantiate a slight variant of our general framework. The resulting
aggregator-oblivious encryption scheme shares many similarities with the Joye-
Libert’s construction in [Joye and Libert 2013] but it is not strictly the same scheme.

We rely on a variant of the hash proof system proposed by Cramer and Shoup [2002],
with inefficient ProjKG and ProjHash. Let N = pq be an RSA modulus where p and q are
two distinct primes. Define

X = (ZN2)∗ , L = {y = zN | z ∈ X} ⊂ X , K = ZNφ(N) ,

Π = X , Π ′ = 〈1 +N〉 ⊂ Π ,

and set

— For any y ∈ X , Hash(hk, y) = yr, and for any y ∈ L, ProjHash(hp, y,⊥) = yhp, where
the hashing key is chosen as hk = r

R← {−2κN2, . . . , 2κN2} (with κ depending on
the expected security —see below) and hp = r mod φ(N) —since φ(N) is unknown
(otherwise the language is not hard subset membership), note that hp cannot be
efficiently computed;

— f(x) = (1 +N)x ∈ Π ′ for x ∈ ZN .

If we set K = ZNφ(N) and identify hashing keys hk ∈ {−2κN2, . . . , 2κN2} as elements
of K, the resulting SPHF is clearly key-homomorphic. Furthermore, r mod Nφ(N) is
1/2κ+1-statistically close from the uniform distribution over K. Since if r R← K would
lead to a (0, Π ′)-smooth SPHF, the actual resulting SPHF is (1/2κ+1, Π ′)-smooth. As
shown in Appendix B, the corresponding scheme provably meets the notion of aggre-
gator obliviousness. We have the following theorem:

THEOREM 5.1. The scheme provides AO security under the DCR assumption in the
random oracle model. Specifically, for any probabilistic polynomial-time adversary A,
there exists a DCR distinguisher BDCR with comparable running time and such that

AdvAO(A) ≤ 2e (qenc + 1) ·
(
AdvDCR(B) +

n(n+ 1)

2κ+1
+

1

φ(N)

)
,

where n is the number of users, qenc is the number of encryption queries made by the
adversary for distinct time periods other than τ?, and e is the base for the natural
logarithm.
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A. AO ENCRYPTION SCHEMES
For completeness, we review in this appendix the two known constructions for
aggregator-oblivious encryption [Shi et al. 2011; Joye and Libert 2013].

A.1. Shi et al.’s scheme
Setup(1λ). Let G be a group of prime order p for which the DDH assumption holds, and

let a random generator g ∈ G. Let also H : Z → G be a hash function viewed as
a random oracle. Finally, let n random elements in Zp, s1, . . . , sn, and define s0 =
−
∑n
i=1 si mod p.

The system parameters are param = {G, g,H} and the secret key of user i, 0 ≤ i ≤ n,
is ski = si.

Enc(param, ski, τ, xi,τ ). At time period τ , for a private input xi,τ ∈ Zp, user i produces

ci,τ = gxi,τH(τ)si .

AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). The aggregator obtains the sum Xτ for time period
τ by first computing Vτ := H(τ)s0

∏n
i=1 ci,τ = gXτ and next the discrete logarithm of

Vτ w.r.t. basis g.

[Notice that since g has order p, the so-obtained value for Xτ is defined modulo
M = p.]

A.2. Joye-Libert’s scheme
Setup(1λ). Let M = N = pq be an RSA modulus of length `, i.e., a product of two

random equal-size primes p, q. Note that the size condition on p and q implies that
gcd(φ(N), N) = 1. Let also H : Z → Z∗N2 be a hash function viewed as a random
oracle. Finally let s1, . . . , sn be n randomly chosen elements in ±{0, 1}2`, and define
s0 = −

∑n
i=1 si.
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The system parameters are param = {N,H} and the secret key of user i, 0 ≤ i ≤ n,
is ski = si.

Enc(param, ski, τ, xi,τ ). At time period τ , for a private input xi,τ ∈ ZN , user i produces

ci,τ = (1 + xi,τN) ·H(τ)si mod N2 .

AggrDec(param, sk0, τ, c1,τ , . . . , cn,τ ). The aggregator obtains the sum Xτ for time period
τ by first computing Vt := H(τ)s0

∏n
i=1 ci,τ mod N2 and next Xτ as Xτ = Vτ−1

N .

[Notice that since (1 + N) has order N and (1 + xi,τN) ≡ (1 + N)xi,τ (mod N2), the
so-obtained value for Xτ is defined modulo M = N .]

B. DEFERRED PROOF OF OUR DCR INSTANTIATION
The proof of our DCR instantiation in Section 5.3 (Theorem 5.1) is similar to the proof of
Theorem 4.3 but not exactly the same, since the scheme is not key-uniform (as hashing
keys have multiple representations), and hk0 is the opposite of the sum of the hki over
the integers and not in the group K = ZNφ(N).

Again, we do a proof by games. We use the same first four games: Game 0 to Game 3.
Then, as the SPHF is not key-uniform, we just skip Game 4 and go directly to Game 5

(except now, in this game, we suppose that hk
R← {−2κN2, . . . , 2κN2} and that hk0 =∑n

i=1 hki over the integers). The problem, is that, when i? 6= 0, it is no more true
that Game 6 is indistinguishable from Game 5: B cannot pick hki independently and
uniformly at random in K (or even in {−2κN2, . . . , 2κN2}), for i ∈ {0, . . . , n} \ {i?} and
cannot compute hki? as −

∑
i∈{0,...,n}\{i?} hki, because hk0 is not uniform in K nor in

{−2κN2, . . . , 2κN2}, as it is the sum of the hki over the integers.

We remark however, that if i? = 0, the adversary nevers sees hk0, and if in Game 6,
B picks hki independently and uniformly at random in {−2κN2, . . . , 2κN2}), for i ∈
{0, . . . , n}\{i?} and computes hki? = hk0 as −

∑
i∈{0,...,n}\{i?} hki over the integers, then

the proof still works and Adv5 ≤ Adv6 + 2nεs ≤ n/2κ.

We now focus on the difficult case i? 6= 0.
We use the following Game 6: B picks hk1, . . . , hkn uniformly at random in

{−2κN2, . . . , 2κN2} and set hk0 = −
∑
i∈{1,...,n} hki over the integers (as in Game 5).

However, as in the original Game 6 and contrary to Game 5, B computes hi?,τ as∏
i∈{0,...,n}\{i?} h

−1
i,τ (which is perfectly indistinguishable). Furthermore, for any i ∈

S? \ {i?}, B computes hi,τ? as Hash(hk′i, yτ?), with hk′i a random hashing key in K corre-
sponding to the same projection key hpi as hki, or in other words:

hki mod φ(N) = hpi = hk′i mod φ(N) ,

but hk′i mod N and hki mod N are independent (and uniformly random). We remark
that hi,τ? = Hash(hk′i, yτ?) = y

hk′i
τ? could also be computed as (in the case of the SPHF

that we consider): Hi,τ? = Hash(hki, yτ?) ·H ′i with H ′i
R← Π ′. Therefore, Game 6 (in this

proof) is actually similar to Game 7 in the original proof, and A has no advantage in
this game: Adv6 = 0.

To conclude the proof, we just need to prove that Game 6 is statistically indis-
tinguishable from Game 5. We suppose w.l.o.g. that S? \ {i?} = {1, . . . ,m′}, where
m′ = m < n if i? /∈ S? and m′ = m − 1 < n otherwise. We also suppose that i? = n.
We first remark that for any i ∈ S? \ {i?} and for any time period τ 6= τ?, Hi,τ can
be computed from hpi = hki mod φ(N) and hki is only used to compute hk0. Define the
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following probability distributions (for j = 0, . . . ,m):

Dj =
{

(hk0, hp1, hk
′
1, . . . , hpm′ , hk′m′ , hkm′+1, . . . , hkn−1) |

hk1, . . . , hkn
R← {−2κN2, . . . , 2κN2},

hk0 ← −
n∑
i=1

hki, hk
′
1

R← K, . . . , hk′j
R← K,

hk′j+1 = hkj+1 mod Nφ(N), . . . , hk′m′ = hkm′ mod Nφ(N) such that

hp1 = hk1 mod φ(N) = hk′1 mod φ(N), . . . ,

hpm′ = hkm′ mod φ(N) = hk′m′ mod φ(N)
}
.

When all these variables are drawn from distibution D0, we get Game 5, while when
they are drawn from distribution Dm, we get Game 6.

To do that, we use the following lemma:

LEMMA B.1. Let M,N ′, N ′′ be three integers, with M ≥ N ′N ′′ and N ′ coprime
with N ′′. Let X,Y be two random uniform random variables in {−M, . . . ,M}, and
X ′ be a uniform random variable in {0, . . . , N ′ − 1}. If we suppose that X,Y,X ′

are mutually independent, then the statistical distance between the distribution of
(X mod N ′, X mod N ′′, X + Y ) and of (X ′, X mod N ′′, X + Y ) is at most N ′′(N ′+1)

2(2M+1) .

PROOF OF LEMMA B.1. This statistical distance is

1

2

∑
x′∈{0,...,N ′−1}
x′′∈{0,...,N ′′−1}
z∈{−2M,...,2M}

∣∣∣Pr[X mod N ′ = x′, X mod N ′′ = x′′, X + Y = z]−

Pr[X ′ = x′, X mod N ′′ = x′′, X + Y = z]
∣∣∣ .

We have X ′, X, Y are mutually independent, so

Pr[X ′ = x′, X mod N ′′ = x′′, X + Y = z]

=
∑

x∈{−M,...,M}
such that x mod N ′′=x′′

Pr[X ′ = x′] · Pr[X mod N ′′ = x, X + Y = z]

=
∑

x∈{−M,...,M}
such that x mod N ′=x′

1

N ′
· Pr[X mod N ′′ = x′′, Y = z − x]

=
nx′

N ′(2M + 1)2

where nx′ is the number of values x ∈ {−M, . . . ,M} such that x mod N ′′ = x′′ and
z − x ∈ {−M, . . . ,M}. There are 2M + 1− |z| values x such that z − x ∈ {−M, . . . ,M},
namely −M, . . . ,M + z if z ≤ 0, and −M + z, . . . ,M if z ≥ 0. Among these values either
b(2M + 1 − |z|)/N ′′c or b(2M + 1 − |z|)/N ′′c + 1 of them are such that x mod N ′ = x′.
Therefore, we have:

(2M + 1− |z|)
N ′′

− 1 ≤ nx′ ≤ (2M + 1− |z|)
N ′′

+ 1.
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Moreover, we have

Pr[X mod N ′ = x′, X mod N ′′ = x′′, X + Y = z]

=
∑

x∈{−M,...,M}
such that x mod N ′=x′

and x mod N ′′=x′′

Pr[X mod N ′ = x′, X mod N ′′ = x′′, X + Y = z]

=
∑

x∈{−M,...,M}
such that x mod N ′=x′

and x mod N ′′=x′′

Pr[X mod N ′ = x′, X mod N ′′ = x′′, Y = z − x]

=
nx′,x′′

(2M + 1)2

where nx′,x′′ is the number of values x ∈ {−M, . . . ,M} such that x mod N ′ = x′ and
x mod N ′′ = x′′ and z − x ∈ {−M, . . . ,M}. There are 2M + 1 − |z| values x such that
z − x ∈ {−M, . . . ,M}, namely −M, . . . ,M + z if z ≤ 0, and −M + z, . . . ,M if z ≥ 0.
Among these values either b(2M + 1 − |z|)/(N ′N ′′)c or b(2M + 1 − |z|)/(N ′N ′′)c + 1 of
them are such that x mod N ′ = x′ and x mod N ′′ = x′′, as N ′ and N ′′ are coprime, and
thanks to the CRT. Therefore, we have:

(2M + 1− |z|)
N ′N ′′

− 1 ≤ nx′,x′′ ≤ (2M + 1− |z|)
N ′N ′′

+ 1 .

Thus, the statistical distance satisfies

1

2

∑
x′,x′′,z

∣∣∣∣ nx′

N ′(2M + 1)2
− nx′,x′′

(2M + 1)2

∣∣∣∣ =
1

2

∑
x′,x′′,z

1

(2M + 1)2

∣∣∣nx′

N ′
− nx′′

∣∣∣
≤ 1

2

∑
x′,x′′,z

1

(2M + 1)2

(
1 +

1

N ′

)

≤ N ′′(N ′ + 1)

2(2M + 1)
.

This concludes the proof of the lemma.

We use the lemma with M = 2κN2, N ′ = N , and N ′′ = φ(N). For any integers
x′ ∈ {0, . . . , N ′ − 1} and x′′ ∈ {0, . . . , N ′′ − 1}, let us denote by x = CRT(x′, x′′) the
unique integer x ∈ {0, . . . , N ′N ′′ − 1} such that x mod N ′ = x′ and x mod N ′′ = x′′.
Then, in Dj−1, we remark that hkj , hpj , hk

′
j , hkn, and hk0 can alternatively be defined

as:

hkj = X
R← {−M, . . . ,M} (not actually used in the distribution directly)

hpj = X mod N ′′

hk′j = hkj mod N ′N ′′ = CRT(X mod N ′, X mod N ′′)

hkn = Y
R← {−M, . . . ,M}

hk0 = −
∑

i∈{1,...,n−1}\{j}

hki − (X + Y ) ,
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while in Dj , these random variables can alternatively be defined as:

hkj = X
R← {−M, . . . ,M} (not actually used in the distribution directly)

hpj = X mod N ′′

hk′j = hkj mod N ′N ′′ = CRT(X ′, X mod N ′′) where X ′ R← {0, . . . , N ′ − 1}

hkn = Y
R← {−M, . . . ,M}

hk0 = −
∑

i∈{1,...,n−1}\{j}

hki − (X + Y ) .

Back to the theorem, thanks to Lemma B.1, we can conclude Dj−1 and Dj are (N ′ +
1)N ′′/(2(2M + 1))-close, and the statistical distance between D0 and Dn is at most:

n
(N ′ + 1)N ′′

2(2M + 1)
≤ n

2κ+1
.

Therefore, Adv5 ≤ Adv6 + n/2κ.

C. IMPOSSIBILITY RESULT OF TIGHTNESS FOR A PREVIOUS SCHEME
We now show that any blackbox non-rewinding reduction from the aggregator oblivi-
ousness of Shi et al.’s scheme in [2011] to a non-interactive problem loses a factor of at
least n2. This bound cannot be improved in the Shi et al.’s scheme. This impossibility
result is shown by outlining a meta-reduction (that is, a reduction against the reduc-
tion) as in [Coron 2002]. The idea is to show that any reduction losing a factor better
than (about) n2 can be converted into an adversary for the original hard problem, by
constructing an adversary B which acts as an adversary for the reduction but which
can also rewind the reduction.

The basic idea is that, in the scheme of Shi et al., ski is completely defined (from the
information theory viewpoint) when a ciphertext ci,1 for 0 (for example) is given; and
sk0 is defined by (ci,1)i∈{1,...,n}.

More precisely, suppose that the reduction can solve the original hard problem with
probability εR, when playing with any adversary breaking the aggregator oblivious-
ness with advantage 2εA − 1. We construct an adversary B (which has the right to
rewind the reduction) as follows: B will first ask for the aggregator secret key sk0 and
for ciphertexts ci,1 of 0 for time period 1 (and for each user i). It can check that any
secret key ski given by the reduction is valid or not (for each user i), with respect to
ci,1 (by checking that Enc(param, ski, 1, 0) = ci,τ ) and that sk0 is valid (by checking that
AggrDec(param, sk0, 1, c1,1, . . . , cn,1) = 0). Then it will choose two random users i1 6= i2.
For all pairs of distinct users {i3, i4} 6= {i1, i2}, it then asks all the secret keys ski (in an
arbitrary order) except i3 and i4, store them, and then rewind the adversary just after
the corruption of sk0 —B therefore rewinds the reduction (n − 1)(n − 2)/2 times (one
for each pair {i3, i4} 6= {i1, i2}). After that, B will have stored (n− 1)(n− 2)/2 keys ski1
and (n − 1)(n − 2)/2 keys ski2 . If any of them are invalid, B aborts and returns b′ = 0
with probability 1/2, and b′ = 1 otherwise.

Otherwise, B then asks all the secret keys ski except for i1 and i2. If none of them
are valid, B aborts and returns b′ = 0 with probability 1/2, and b′ = 1 otherwise.
Otherwise, it just submits the challenge: S? = {i1, i2}, τ? = 2, (x

(0)
i1,2

= 0, x
(0)
i2,2

= 1)

and (x
(1)
i1,2

= 1, x
(1)
i2,2

= 0). The reduction will returns a pair of ciphertexts 〈ci1,1, ci1,2〉
encrypting either 〈x(0)i1,2, x

(0)
i2,2
〉 or 〈x(1)i1,2, x

(1)
i2,2
〉. And B will check that these ciphertexts

are coherent with sk0, by computing ci,2 = Enc(param, ski, 2, 0) for all i /∈ {i1, i2}, and
checking that AggrDec(param, sk0, 2, c1,2, . . . , cn,2) = 1. Finally, if B got a valid secret key

ACM Transactions on Information and System Security, Vol. 18, No. 3, Article 10, Publication date: February 2016.



A New Framework for Privacy-Preserving Aggregation 10:21

ski1 and if Enc(param, ski1 , 2, 0) = ci1,2, B sets b′′ = 0; if B got a valid secret key ski2
and Enc(param, ski2 , 2, 1) = ci2,1, B sets b′′ = 0; otherwise, B sets b′′ = 1. And B outputs
b′ = b′′ with probability εA and b′ = 1− b′′ otherwise.

We remark that if ski1 or ski2 is valid, B would behave exactly as an all powerful
(non polynomially bounded) adversary A which would do the same as B, except it does
not perform any rewinding (and so never corrupts ski1 and ski2 ), and instead computes
ski1 and ski2 simply by trying all possible values. This is true thanks to the check with
sk0 which ensures that if ci1,2 is an encryption of 0 (respectively, 1), then ci2,2 is an
encryption of 1 (respectively, 0), and so knowing only one of ski1 and ski2 is sufficient.
In addition, if any ski for some i /∈ {i1, i2} (obtained after the last rewinding for B) is
not valid, bothA and B abort. Therefore,A and B behave identically, except if all secret
keys ski (for i /∈ {i1, i2}) are valid (after the last rewinding for B) but B cannot find a
valid key ski1 or a valid key ski2 among all keys it got from all the rewindings. We call
‘bad case’ the case where the previous bad event happens, and let εbad the probability
of this event.

The advantage ofA (to break the aggregator obliviousness) is exactly AdvA = 2εA−1,
since when A plays against the real challenger for the aggregator obliviousness, A
never aborts, and the bit b′′ computed by A is always equal to b, the bit chosen in
the game, hence b′ = b with probability εA. In the bad case, B outputs b′ = b with
probability 1/2 instead of εA for A, while outside the bad case, B and A output b′ = b
with the same probability. Therefore, when playing with B, the reduction solves the
original hard problem with probability at least:

εR − εbad · |εA − 1/2| = εR − εbad ·AdvA/2
which in term of advantage (if the reduction solves a decisional problem) is

2
(
εR − εbad

∣∣εA − 1
2

∣∣)− 1 = (2εR − 1)− εbad|2εA − 1| = AdvR − εbad ·AdvA .

This has to be negligible, otherwise the hard problem would not be hard. Therefore, εR
or AdvR cannot be larger than εbad ·AdvA/2 or εbad ·AdvA (minus some negligible factor
in the security parameter). We just need to prove that εbad ≥ 2/(n(n− 1)), to show our
impossibility result.

For that purpose, for any integers j1 and j2, let Ej1,j2 denote the event that, when
the secret keys ski for i ∈ {1, . . . , n}\{j1, j2} are corrupted, the secret keys given by the
reduction are all valid. We clearly have:

εbad ≤ Pr

Ei1,i2 ∧
( ∧
{i3,i4}6={i1,i2}

¬Ei3,i4

) ,
since if Ei3,i4 is true for some {i3, i4} 6= {i1, i2} (i3 6= i4), then i1 /∈ {i3, i4} or i2 /∈ {i3, i4},
and we get a valid secret key ski1 or ski2 . If we fix everything except the choice
of i1 and i2, each event Ei3,i4 is either satisfied (it has probability 1) or not sat-
isfied (it has probability 0). If two distinct event Ei5,i6 and Ei′5,i′6 are satisfied, the
event

∧
{i3,i4}6={i1,i2} ¬Ei3,i4 never happens and εbad = 0. If no event is satisfied, the

event Ei1,i2 never happens and εbad = 0. Finally, if only one event Ei5,i6 is satisfied,
Ei1,i2 ∧ (

∧
{i3,i4}6={i1,i2} ¬Ei3,i4) happens only when {i1, i2} = {i5, i6}, which happens

with probability 2/(n(n− 1)). Therefore, εbad ≤ 2/(n(n− 1)).
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